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Various regularization methods have been used to compute the self-force acting on a static particle
in a static, curved spacetime. Many of these are based on Hadamard’s two-point function in three
dimensions. On the other hand, the regularization method that enjoys the best justification is that
of Detweiler and Whiting, which is based on a four-dimensional Green’s function. We establish the
connection between these methods and find that they are all equivalent, in the sense that they all
lead to the same static self-force. For general static spacetimes, we compute local expansions of the
Green’s functions on which the various regularization methods are based. We find that these agree
up to a certain high order, and conjecture that they might be equal to all orders. We show that this
equivalence is exact in the case of ultrastatic spacetimes. Finally, our computations are exploited to
provide regularization parameters for a static particle in a general static and spherically-symmetric
spacetime.

I. INTRODUCTION

A test body moving freely in a curved spacetime follows
a geodesic of the spacetime. When, however, the body
carries a (scalar or electric) charge, the field created by
the charge interacts with the spacetime curvature in such
a way as to produce a deformation of the field lines from
an otherwise isotropic distribution around the body. The
field gives rise to a net self-force acting on the body, and
the self-force prevents it from moving on a geodesic. The
self-force typically contains two components, a radiation-
reaction force that is accompanied by a loss of energy
to radiation, and a conservative force that survives even
when the body is maintained in a stationary position. A
self-force can also be present in the absence of a charge,
when the body’s mass is too large for it to be considered
a test mass; in this case the body creates a gravitational
perturbation that affect its motion, which is no longer
geodesic in the background spacetime. The (scalar, elec-
tromagnetic, and gravitational) self-force has been the
topic of intense development in the last several years; for
an extensive review see Ref. [1]. Most of this activity was
focused on the gravitational case, in an effort to model
the inspiral and gravitational-wave emissions of a binary
system with a small mass ratio [2–4].

Self-force computations are usually attempted under
the assumption that the body is a point particle, in order
to avoid the largely irrelevant complications associated
with internal structure. In this context, however, the
very definition of the self-force requires scrutiny. Given
that the field of a point particle diverges at the position
occupied by the particle, it is not immediately clear how
one can make sense of its action on the particle and con-
struct a self-force that is well defined, finite, and in agree-
ment with the self-force acting on an extended body in

the the limit in which the size is taken to zero. One must
find a sensible regularization procedure that not only re-
turns a finite expression for the self-force, but does so in a
unique and physically well-motivated way. In this paper
we examine regularization procedures that have been in-
voked in the computation of (scalar and electromagnetic)
self-forces in the restricted context of static particles in

static spacetimes. Our aim is to show that the differing
procedures are equivalent and lead to the same self-force.
To the best of our knowledge, this issue has not been pre-
viously addressed in the literature.

In our view, the regularization procedure that has re-
ceived the best physical and mathematical justification
is the one proposed by Detweiler and Whiting [5]. The
method, which is completely general and not restricted
to static situations, involves a decomposition of the field
created by the particle into singular and regular pieces.
The singular field is precisely identified by a local con-
struction, and is designed to provide an exact solution
to the field equation sourced by the particle, with the
property that it shares the singularity structure of the
particle’s actual field. The regular field is the difference
between the actual field and the singular field; it satisfies
the source-free field equation, it is smooth at the parti-
cle’s position, and it is known to be entirely responsible
for the self-force. The Detweiler-Whiting regularization
method has been thoroughly justified [6–9], and it has
emerged as the method of choice in most self-force com-
putations reported in the recent literature. Because of its
generality and naturalness, it is the standard by which
other regularization methods must be compared.

Many self-force computations, however, did not make
use of the Detweiler-Whiting regularization procedure,
but employed instead ad hoc procedures that perhaps do
not enjoy the same degree of justification. This is the case
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of all computations of self-forces acting on static parti-
cles in static spacetimes [10–24], which involved a variety
of regularization methods. In the pioneering Smith-Will
paper [10], for example, the field of a static electric charge
in the spacetime of a Schwarzschild black hole was reg-
ularized by the Copson solution [25], which was shown
to be as singular as the particle’s own field but to exert
no force. As other examples, self-force computations for
charges in wormhole spacetimes [17–20], or for charges
near global monopoles [21–24], were regularized with the
help of Hadamard’s two-point function, defined in each
spatial section of the four-dimensional spacetime (or in
a conformally related space). Because Copson’s solution
is known to be an exact representation of Hadamard’s
function in the (conformally related) spatial sections of
the Schwarzschild spacetime, these regularization meth-
ods are essentially the same.
The issue that interests us in this paper is the re-

lationship between these regularization procedures, and
whether they can be shown to be equivalent, so that they
will lead to the same self-force. The regularization pro-
cedures mentioned previously are all based on a choice of
Green’s function for the (scalar or electromagnetic) field.
We shall consider a number of possible choices.
The first is the four-dimensional version of the

Detweiler-Whiting singular Green’s function, given by

GS

4(x, x
′) =

1

2
U(x, x′)δ(σ) − 1

2
V (x, x′)Θ(σ), (1.1)

in which x and x′ are spacetime events, assumed to be
sufficiently close that they are within each other’s nor-
mal convex neighborhood, σ := σ(x, x′) is Synge’s world
function, equal to half the squared geodetic distance be-
tween x and x′, Θ is the Heaviside step function, δ is the
Dirac distribution, and U , V are two-point functions that
are known to be smooth when x → x′. Because σ = 0
when x and x′ are linked by a null geodesic, we see that
the Green’s function is singular on the past and future
light cones emerging from x′, and has support outside
the light cones, where σ > 0; it is also symmetric in its
arguments. As stated previously, the Detweiler-Whiting
Green’s function gives rise to a robust regularization pro-
cedure that applies to any particle moving in any space-
time.
For static particles in static spacetimes, an adequate

substitute for the four-dimensional singular Green’s func-
tion is its three-dimensional variant

GS

3(x,x
′) =

∫

GS

4(x, x
′) dτ ′, (1.2)

obtained by integrating the four-dimensional Green’s
function over the proper time τ ′ of a static observer at the
spatial position x

′. For static particles in static space-
times, this Green’s function gives rise to the same regu-
larization procedure as the four-dimensional version.
An alternative choice of Green’s function, which is also

appropriate in the case of static particles in static space-
times, is the three-dimensional Hadamard function, given

by

GH

3 (x,x
′) =

W (x,x′)√
2σ

, (1.3)

in which σ(x,x′) is now half the squared geodetic dis-
tance between x and x

′ as measured in the purely spa-
tial sections of the spacetime, and W is a smooth two-
point function. This Green’s function, also known as
Hadamard’s elementary solution [26], is a local construc-
tion that is known to reproduce the singular behavior of
a field sourced by a point particle at x

′. It is a plausi-
ble starting point for a regularization procedure, but as
stated above, it does not enjoy the same level of justifi-
cation as the Detweiler-Whiting Green’s function.
As a final choice we shall also consider a Green’s func-

tion G̃H
3 (x,x

′) that is related to the Hadamard function
by a conformal transformation. This is to account for
the fact that it is often convenient, when solving for the
field in the spatial sections of the spacetime, to formulate
the field equation in a conformally related space. If the
metric on the original spatial sections is hab, then the
metric on the conformally related space is h̃ab = Ω−2hab,
in which Ω(x) is a scalar field. When h̃ab is simple, the
field equation simplifies in the conformally related space,
and the field can then be regularized with the help of G̃H

3 ,
which differs from GH

3 by factors of Ω.
Our main goal in this paper is to compare the reg-

ularization procedures that are based on GS
3(x,x

′),

GH
3 (x,x

′), and G̃H
3 (x,x

′). Our preferred regulariza-
tion method is the one based on the Detweiler-Whiting
Green’s function, because the resulting singular field was
proved to share the same singularity structure as the par-
ticle’s actual field and to exert no force on the particle. In
this case we find that if ǫ is a measure of distance between
x and x

′, then the singular Green’s function admits the
local expansion

GS

3(x,x
′) =

1

ǫ

[

1 + g1ǫ+ g2ǫ
2 + g3ǫ

3 +O(ǫ4)
]

, (1.4)

with expansion coefficients g1, g2, and g3 (computed be-
low) that depend on geometrical quantities (such as the
spatial Riemann tensor) evaluated at x′. Removing this
from the particle’s actual field returns a regularized field
that is finite (indeed, once differentiable) at the position
of the particle, leading to a straightforward computation
of the self-force.
Our main result is the statement that the local expan-

sions of GH
3 (x,x

′) and G̃H
3 (x,x

′) are identical to the lo-
cal expansion of the Detweiler-Whiting Green’s function,
and that they therefore lead to equivalent regularization
procedures. We view this as a significant result that clar-
ifies and justifies the alternative regularization methods
that have been employed in self-force computations; it
puts these computations on a firmer footing, and lends
them additional credence.
We show by explicit calculation that the local expan-

sions of all Green’s functions agree through order ǫ2,
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which is more than enough to guarantee the same self-
force, but we also ask whether equality could be estab-
lished to all orders in ǫ. We provide only a partial answer
to this question. We collect evidence that the conjectured
equality is likely to be true, sketch a proof that relies
on a strong assumption about the convergence of formal
power series, and present a complete proof of equality in
the special case of ultrastatic spacetimes.
As an application of our results we consider the scalar

and electromagnetic self-force acting on a particle held
in place in a static and spherically-symmetric space-
time. The assumption of spherical symmetry implies that
the self-force can be easily computed with a mode-sum
method based on a spherical-harmonic decomposition of
the field. The mode coefficients of the singular field then
play the role of regularization parameters [27–29] that
can be inserted in the mode-sum to ensure convergence.
We use our local expansions to compute these regulariza-
tion parameters for any static and spherically-symmetric
spacetime. We expect that our explicit listing of regular-
ization parameters will greatly facilitate future self-force
computations.
Our developments below rely heavily on the general

theory of bitensors and Green’s functions in curved space-
time, as developed in Ref. [30] and summarized in Ref. [1],
from which we import our notations. We begin in Sec. II
with a description of the static spacetimes that are impli-
cated in this work. We continue in Sec. III with a review
of the scalar and electromagnetic field equations in static
spacetimes, along with the associated Green’s functions,
and in Sec. IV we review the Hadamard construction of
the three-dimensional Green’s functions. The following
sections contain our new work. In Secs. V and VI we
compute the local expansions of the Hadamard functions.
We do the same for the Detweiler-Whiting functions in
Sec. VII, and prove the equality of the local expansions in
Sec. VIII. In Sec. IX we prove that in ultrastatic space-
times, the Hadamard and Detweiler-Whiting functions
are strictly equal to one another. And finally, in Sec. X
we consider the scalar and electromagnetic self-forces in
static, spherically-symmetric spacetimes, and involve the
local expansions in a computation of regularization pa-
rameters for mode-sum computations of the self-force.
In the following we denote a spacetime event by x or

x′, and a spatial position by x or x
′, so that x = (t,x)

and x′ = (t′,x′). Spacetime tensors at x are denoted
Aα, with a Greek index α that ranges over the values
{0, 1, 2, 3}; spacetime tensors at x′ are denoted Aα

′

, with
a primed Greek index. Spatial tensors at x are denoted
Aa, with a Latin index a that ranges over {1, 2, 3}; spatial
tensors at x′ are denoted Aa

′

, with a primed Latin index.
Variants of these notations will be introduced as needed.

II. STATIC SPACETIMES

The class of spacetimes considered in this paper admits
a hypersurface-orthogonal, timelike Killing vector tα, and

in an adapted coordinate system the metric is expressed
as

ds2 = −N2 dt2 + hab dx
adxb, (2.1)

in terms of a lapse function N and a spatial metric hab
which depend on the spatial coordinates xa only. No
other assumptions are placed on the spacetime. We in-
troduce the vector field

Aa := ∂a lnN =
∂aN

N
, (2.2)

which acts as a substitute for ∂aN ; the vector has a van-
ishing time component.
A straightforward computation reveals that the con-

nection coefficients are given by

4Γtta = Aa,
4Γatt = N2Aa, 4Γabc = Γabc, (2.3)

in which Γabc is the connection compatible with the spatial
metric hab. We shall indicate covariant differentiation rel-
ative to the spacetime connection with the operator ∇µ

or with a semicolon (for example, ∇µA
ν = Aν;µ), and

covariant differentiation relative to the spatial connec-
tion with the operator Da or with a vertical stroke (for
example, DaA

b = Ab|a).
For future reference we examine a vector vα that

is parallel-transported along a purely spatial curve de-
scribed by the parametric equations t = constant, xa =
za(s), in which s is proper distance. The vector tan-
gent to the curve is nα with components nt = 0 and
na = dza/ds. The equation of parallel transport is

dvα

ds
+ 4Γαβγv

βnγ = 0, (2.4)

and its time component reduces to dvt/ds+(Aan
a)vt = 0.

With Aan
a = N−1dN/ds, the solution to the differential

equation is Nvt = constant, or

vt(s) =
N(0)

N(s)
vt(0). (2.5)

For the spatial components we find that the equation
reduces to dva/ds + Γabcv

bnc = 0, which states that va

is parallel-transported as if it were a vector in a three-
dimensional space with metric hab. When the spatial
curve is a spacetime geodesic, we find that Eq. (2.5)
produces nt(s) = 0, while the spatial components re-
veal that na satisfies the geodesic equation in the three-
dimensional space. A purely spatial geodesic in space-
time is therefore a geodesic in a three-dimensional space
with metric hab.
The nonvanishing components of the Riemann tensor

are

4Rtatb = N2
(

Aa|b +AaAb
)

, 4Rabcd = Rabcd, (2.6)

in which Rabcd is the Riemann tensor associated with the
spatial metric hab. The nonvanishing components of the
Ricci tensor are

4Rtt = N2
(

Ac|c +AcAc
)

, (2.7a)
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4Rab = Rab −
(

Aa|b +AaAb
)

. (2.7b)

The Ricci scalar is

4R = R− 2
(

Ac|c +AcAc
)

. (2.8)

For future reference we also record the components of the
covariant derivative of the Riemann tensor:

4Rtatb;c = N2
(

Aa|bc +Aa|cAb +AaAb|c
)

, (2.9a)
4Rtabc;t = N2

(

Aa|bAc −Aa|cAb −AdRdabc
)

, (2.9b)
4Rabcd;e = Rabcd|e. (2.9c)

We also have

4Rtt;a = N2
(

Ac|ca + 2AcAc|a
)

, (2.10a)

4Rta;t = −N2
(

Ac|cAa −Ac|aAc +AcRca
)

, (2.10b)

4Rab;c = Rab|c −Aa|bc −Aa|cAb −AaAb|c (2.10c)

and

4R;a = R|a − 2
(

Ac|ca + 2AcAc|a
)

(2.11)

for the covariant derivative of the Ricci tensor and scalar.
Below we shall consider a scalar or electric charge at

rest in the static spacetime. The charge follows an orbit
of the timelike Killing vector, and the only nonvanishing
component of its velocity vector is

ut =
1

N
. (2.12)

The covariant acceleration is defined by aα := uα;βu
β,

and its nonvanishing components are

aa = Aa. (2.13)

We shall also require the vectors ȧα := aα;βu
β and äα :=

ȧα;βu
β; the nonvanishing components are

ȧt =
1

N
AcAc, äa =

(

AcAc
)

Aa. (2.14)

III. FIELD EQUATIONS AND GREEN’S

FUNCTIONS

A. Scalar field

The potential Φ generated by a scalar-charge density
µ obeys the wave equation

�Φ = −4πµ (3.1)

in any four-dimensional spacetime; � := gαβ∇α∇β is the
covariant wave operator. Our considerations in this pa-
per are limited to scalar fields that are minimally coupled
to the spacetime curvature; it is, however, a very straight-
forward exercise to extend our discussion to arbitrary

couplings. When the spacetime is static, and when the
potential and charge density are both time-independent,
the wave equation reduces to

∇2Φ+Aa∂aΦ = −4πµ; (3.2)

here ∇2 := habDaDb is the covariant Laplacian operator
in a three-dimensional space with metric hab.
It is sometimes convenient to formulate Eq. (3.2) in a

conformally related space with metric h̃ab; this is related
to the original metric hab by the conformal transforma-
tion

hab = Ω2h̃ab, (3.3)

in which Ω is a function of the spatial coordinates xa.
As a consequence of this transformation we find that
hab = Ω−2h̃ab and h1/2 = Ω3h̃1/2. A simple computa-
tion reveals that in the conformal formulation, Eq. (3.2)
becomes

∇̃2Φ+ Ãa∂aΦ = −4πµ̃, (3.4)

in which ∇̃2 := h̃abD̃aD̃b is the covariant Laplacian op-
erator associated with the metric h̃ab,

Ãa := h̃ab∂b ln(NΩ) = h̃ab
(

∂bN

N
+
∂bΩ

Ω

)

, (3.5)

and

µ̃ := Ω2µ. (3.6)

The four-dimensional Green’s function associated with
Eq. (3.1) is G4(x, x

′), which satisfies the wave equation

�G4(x, x
′) = −4πδ4(x, x

′), (3.7)

in which δ4(x, x
′) is a scalarized Dirac distribution de-

fined by

δ4(x, x
′) =

δ(x− x′)√−g′ , (3.8)

where δ(x − x′) is the usual product of four coordinate
delta functions. A solution to Eq. (3.1) is then given by

Φ(x) =

∫

G4(x, x
′)µ(x′)

√

−g′d4x′. (3.9)

The three-dimensional Green’s function associated
with Eq. (3.2) is G3(x,x

′), which satisfies the Poisson
equation

∇2G3(x,x
′) +Aa∂aG3(x,x

′) = −4πδ3(x,x
′), (3.10)

in which δ3(x,x
′) is a scalarized Dirac distribution de-

fined by

δ3(x,x
′) =

δ(x− x
′)√

h′
, (3.11)
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where δ(x− x
′) is the usual product of three coordinate

delta functions. A solution to Eq. (3.2) is then given by

Φ(x) =

∫

G3(x,x
′)µ(x′)

√
h′d3x′. (3.12)

The Green’s function associated with Eq. (3.4) is

G̃3(x,x
′), which satisfies

∇̃2G̃3(x,x
′) + Ãa∂aG̃3(x,x

′) = −4πδ̃3(x,x
′), (3.13)

in which δ̃3(x,x
′) is defined by

δ̃3(x,x
′) =

δ(x− x
′)

√

h̃′
. (3.14)

A solution to Eq. (3.4) is then given by

Φ(x) =

∫

G̃3(x,x
′)µ̃(x′)

√

h̃′d3x′. (3.15)

The relation between G4 and G3 can be identified by
performing the time integration in Eq. (3.9) and compar-
ing with Eq. (3.12). The result is

G3(x,x
′) =

∫

G4(x, x
′)N(x′)dt′. (3.16)

Apart from the factor of N(x′), which converts from co-
ordinate time to proper time at x′, the three-dimensional
Green’s function is simply the time integral of the four-
dimensional Green’s function.
The relation between G̃3 and G3 is found by making

the substitutions h1/2 = Ω3h̃1/2 and µ = Ω−2µ̃ within
Eq. (3.12) and comparing with Eq. (3.15). The result is

G̃3(x,x
′) = Ω(x′)G3(x,x

′). (3.17)

This can be confirmed by expressing Eq. (3.10) in terms

of the conformally-related metric h̃ab. We find that the
equation becomes

∇̃2G3(x,x
′) + Ãa∂aG3(x,x

′) = −4π
δ(x− x

′)

Ω′
√

h̃′
, (3.18)

and comparison with Eq. (3.13) allows us to make the
identification of Eq. (3.17).
When the charge density µ describes a point charge

q moving on a world line γ described by the parametric
relations z(τ), we have that

µ(x) = q

∫

γ

δ4
(

x, z(τ)
)

dτ. (3.19)

For a general world line the scalar charge produces a
potential given by Eq. (3.9), which evaluates to

Φ(x) = q

∫

γ

G4

(

x, z(τ)
)

dτ. (3.20)

For a static charge at a fixed position z, the integral of
Eq. (3.19) evaluates to

µ(x) = qδ3(x, z), (3.21)

and in this case the potential, as given by Eq. (3.12),
becomes

Φ(x) = qG3(x, z). (3.22)

The link between Eqs. (3.20) and (3.22) can be seen di-
rectly from Eq. (3.16).
In the conformal formulation we have instead

µ̃(x) = q
δ̃3(x, z)

Ω(z)
, (3.23)

and Eq. (3.15) produces

Φ(x) = q
G̃3(x, z)

Ω(z)
. (3.24)

This result is compatible with Eq. (3.22) by virtue of
Eq. (3.17).

B. Electromagnetic field

A current density jα creates an electromagnetic field
Fαβ that satisfies Maxwell’s equations

Fαβ;β = 4πjα, Fαβ;γ + Fγα;β + Fβγ;α = 0. (3.25)

The homogeneous equations are automatically satisfied
when the field tensor is expressed in terms of a vector
potential Φα,

Fαβ = ∇αΦβ −∇βΦα. (3.26)

The inhomogeneous equations then take the form of a
wave equation for the vector potential,

�Φα −R β
α Φβ = −4πjα, (3.27)

provided that Φα is required to satisfy the Lorenz gauge
condition

∇αΦ
α = 0. (3.28)

In a static spacetime, and for a static distribution of
charge, the only relevant component of Maxwell’s equa-

tions is F tβ ;β = 4πjt, and with Fta := −∂aΦt this re-
duces to

∇2Φt −Aa∂aΦt = 4πµ, µ := N2jt = −jt. (3.29)

This equation also follows from evaluating Eq. (3.27) in
a static spacetime. Comparing with Eq. (3.2), we see
that Φt satisfies the same Poisson equation as a scalar
potential Φ, except that the sign of Aa is reversed. It is
easy to see that the gauge condition of Eq. (3.28) becomes
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DaΦ
a +AaΦ

a = 0 in a static spacetime, and that it has
no impact on Φt.
In a conformal formulation in which the spatial metric

is expressed as hab = Ω2h̃ab, Eq. (3.29) becomes

∇̃2Φt − Ãa∂aΦt = 4πµ̃, (3.30)

in which

Ãa := h̃ab∂b ln

(

N

Ω

)

= h̃ab
(

∂bN

N
− ∂bΩ

Ω

)

(3.31)

and

µ̃ = Ω2µ = N2Ω2jt. (3.32)

The four-dimensional Green’s function associated with
Eq. (3.27) isG β′

α (x, x′), which satisfies the wave equation

�G β′

α (x, x′)−R γ
α G

β′

γ (x, x′) = −4πg β′

α (x, x′)δ4(x, x
′),

(3.33)

in which g β′

α (x, x′) is an operator of parallel transport,
taking a vector Aβ′ at x′ and producing a parallel-
transported vector Aα at x. A solution to Eq. (3.27)
is then given by

Φα(x) =

∫

G β′

α (x, x′)jβ′(x′)
√

−g′d4x′. (3.34)

The three-dimensional Green’s function associated
with Eq. (3.29) is G3(x,x

′), which satisfies the Poisson
equation

∇2G3(x,x
′)−Aa∂aG3(x,x

′) = −4πδ3(x,x
′). (3.35)

A solution to Eq. (3.29) is then given by

Φt(x) = −
∫

G3(x,x
′)µ(x′)

√
h′d3x′. (3.36)

Notice the minus sign on the right-hand side of Eq. (3.36),
which can be compared with its scalar equivalent in
Eq. (3.12). Notice also that while we denote both
the scalar and electromagnetic Green’s functions by
G3(x,x

′), these functions are not equal to each other
because they satisfy distinct differential equations.
The Green’s function associated with Eq. (3.30) is

G̃3(x,x
′), which satisfies

∇̃2G̃3(x,x
′)− Ãa∂aG̃3(x,x

′) = −4πδ̃3(x,x
′). (3.37)

A solution to Eq. (3.30) is then given by

Φt(x) = −
∫

G̃3(x,x
′)µ̃(x′)

√

h̃′d3x′, (3.38)

which features the same minus sign as in Eq. (3.36).

The relation between G β′

α (x, x′) and G3(x,x
′) can

be identified by performing the time integration in
Eq. (3.34) and noticing that in a static situation, the

integral involves jt′ only. Comparing with Eq. (3.36) pro-
duces

G3(x,x
′) =

∫

G t′

t (x, x′)N(x′)dt′, (3.39)

essentially the same relation as in the scalar case.
The relation between G̃3 and G3 is found by making

the substitutions h1/2 = Ω3h̃1/2 and µ = Ω−2µ̃ within
Eq. (3.36) and comparing with Eq. (3.38). The result is

G̃3(x,x
′) = Ω(x′)G3(x,x

′), (3.40)

the same relation as in the scalar case.
When the current density jα describes a point charge

e moving on a world line γ described by the parametric
relations z(τ), we have that

jα(x) = e

∫

γ

gαµ(x, z)u
µδ4(x, z) dτ. (3.41)

For a general world line the electric charge produces a
potential given by Eq. (3.34), which evaluates to

Φα(x) = e

∫

γ

Gαµ(x, z)u
µ dτ. (3.42)

For a static charge at a fixed position z, the integral of
Eq. (3.41) evaluates to jt(x) = eN−1(z)δ3(x, z), so that

µ(x) = eN(z)δ3(x, z). (3.43)

In this case the potential, as given by Eq. (3.36), becomes

Φt(x) = −eN(z)G3(x, z). (3.44)

Notice the extra minus sign and factor of N when com-
paring this with Eq. (3.22). In the conformal formulation
we have instead

µ̃(x) = e
N(z)

Ω(z)
δ̃3(x, z), (3.45)

and Eq. (3.38) produces

Φt(x) = −eN(z)

Ω(z)
G̃3(x, z). (3.46)

This result is compatible with Eq. (3.44) by virtue of
Eq. (3.40).

IV. HADAMARD’S CONSTRUCTION

A. Scalar field

We wish to find a representation for a Green’s function
G3(x,x

′) that satisfies

∇2G3(x,x
′) +Aa∂aG3(x,x

′) = −4πδ3(x,x
′). (4.1)
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The Hadamard’s construction developed here applies to
this equation — a copy of Eq. (3.10) — but it applies
just as well to the conformally-related formulation of
Eq. (3.13).
The Hadamard construction for the Green’s function

is [26]

GH

3 (x,x
′) =

W (x,x′)
√

2σ(x,x′)
, (4.2)

in which the two-point function W (x,x′) satisfies the
differential equation

2σa∂aW+
(

∇2σ+Aaσa−3
)

W−(2σ)
(

∇2W+Aa∂aW
)

= 0
(4.3)

together with the boundary condition

W (x′,x′) = 1; (4.4)

here σa := ∂σ/∂xa and ∇2σ := habDaσb. The two-point
function is known to be smooth in the coincidence limit
x → x

′, so that the factor (2σ)−1/2 is fully responsi-
ble for the singular behavior of the Green’s function at
coincidence.
To constructW we express it as an expansion in powers

of 2σ,

W (x,x′) =

∞
∑

n=0

Wn(x,x
′)
[

2σ(x,x′)
]n
, (4.5)

insert this within Eq. (4.3), and collect powers of 2σ,
making use of the identity σaσa = 2σ. Setting each co-
efficient to zero, we find that each Wn must satisfy the
differential equation

∇2Wn−1 +Aa∂aWn−1 = 2(1− 2n)σa∂aWn

+ (1− 2n)
(

∇2σ +Aaσa
)

Wn

−
[

3 + 4n(n− 2)
]

Wn. (4.6)

The burden of enforcing Eq. (4.4) is then placed solely
upon W0, which must satisfy

W0(x
′,x′) = 1. (4.7)

Equation (4.6) is a recursion relation for each Wn. With
Wn−1 previously determined, Wn is obtained by select-
ing a base point x′ and integrating Eq. (4.6) along each
geodesic that emanates from x

′.

B. Electromagnetic field

We now wish to find the Hadamard representation for
the electromagnetic Green’s function G3(x,x

′), which
satisfies

∇2G3(x,x
′)−Aa∂aG3(x,x

′) = −4πδ3(x,x
′). (4.8)

The Hadamard construction applies to this equation —
a copy of Eq. (3.35) — but it applies just as well to the
conformally-related formulation of Eq. (3.37).

The construction is obtained directly from the scalar
case by altering the sign of Aa in all equations. The
Hadamard representation for the Green’s function is

GH

3 (x,x
′) =

W (x,x′)
√

2σ(x,x′)
, (4.9)

in which the two-point function W (x,x′) is smooth in
the coincidence limit x → x

′. It satisfies the differential
equation

2σa∂aW+
(

∇2σ−Aaσa−3
)

W−(2σ)
(

∇2W−Aa∂aW
)

= 0
(4.10)

together with the boundary condition

W (x′,x′) = 1. (4.11)

As in the scalar case we express W as an expansion in
powers of 2σ,

W (x,x′) =

∞
∑

n=0

Wn(x,x
′)
[

2σ(x,x′)
]n
, (4.12)

in which each coefficient Wn must satisfy the differential
equation

∇2Wn−1 −Aa∂aWn−1 = 2(1− 2n)σa∂aWn

+ (1 − 2n)
(

∇2σ −Aaσa
)

Wn

−
[

3 + 4n(n− 2)
]

Wn. (4.13)

V. LOCAL EXPANSION OF HADAMARD’S

FUNCTION

A. Scalar field

We wish to express the three-dimensional Green’s func-
tion GH

3 (x,x
′) as a local expansion about the base point

x
′. We return to the Hadamard construction of Eq. (4.2)

with the expansion of Eq. (4.5), and now expressW0 and
W1 as the local expansions

W0 = 1 +W 0
a′σ

a′ +
1

2
W 0
a′b′σ

a′σb
′

+
1

6
W 0
a′b′c′σ

a′σb
′

σc
′

+O(ǫ4) (5.1)

and

W1 =W 1 +W 1
a′σ

a′ +O(ǫ2), (5.2)

in which σa′ := ∂σ/∂xa
′

and each expansion coefficient
is an ordinary tensor at x

′. We let ǫ be a measure of
the distance between x and x

′, and the expansions of
Eqs. (5.1) and (5.2) give rise to an expression for W ac-
curate through order ǫ3.
The expansion coefficients are determined by inserting

Eqs. (5.1) and (5.2) within Eq. (4.6). We begin with W0,
which satisfies

2σa∂aW0 +
(

∇2σ +Aaσa − 3
)

W0 = 0. (5.3)
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We rely on the standard expansions

σab = ha
′

ah
b′

b

[

ha′b′ −
1

3
Ra′c′b′d′σ

c′σd
′

+
1

4
Ra′c′b′d′|e′σ

c′σd
′

σe
′

+O(ǫ4)

]

(5.4)

and

Aa = ha
′

a

[

Aa′ −Aa′|c′σ
c′ +

1

2
Aa′|c′d′σ

c′σd
′

+O(ǫ3)

]

,

(5.5)

in which σab := Daσb and h
a′

a is the operator of parallel
transport in the three-dimensional space. From the first
equation we get

∇2σ = 3− 1

3
Rc′d′σ

c′σd
′

+
1

4
Rc′d′|e′σ

c′σd
′

σe
′

+O(ǫ4),

(5.6)
and the second equation gives rise to

Aaσ
a = −Ac′σc

′

+Ac′|d′σ
c′σd

′

− 1

2
Ac′|d′e′σ

c′σd
′

σe
′

+O(ǫ4) (5.7)

because ha
′

aσ
a = −σa′ . Making use of the identity

σc
′

aσ
a = σc

′

we also find that

σa∂aW0 =W 0
c′σ

c′ +W 0
c′d′σ

c′σc
′

+
1

2
W 0
c′d′e′σ

c′σd
′

σe
′

+O(ǫ4). (5.8)

Making the substitutions within Eq. (5.3) and equating
each expansion coefficient to zero, we eventually arrive
at

W 0
a′ =

1

2
Aa′ , (5.9a)

W 0
a′b′ = −1

2
Aa′|b′ +

1

4
Aa′Ab′ +

1

6
Ra′b′ , (5.9b)

W 0
a′b′c′ =

1

2
A(a′|b′c′) −

3

4
A(a′Ab′|c′) +

1

8
Aa′Ab′Ac′

+
1

4
A(a′Rb′c′) −

1

4
R(a′b′|c′). (5.9c)

It should be noted that since Aa′ is the gradient of a
scalar function, Aa′|b′ = A(a′|b′).
We next turn to W1, which satisfies the differential

equation

2σa∂aW1+
(

∇2σ+Aaσa−1
)

W1 = −
(

∇2W0+A
a∂aW0

)

.
(5.10)

The left-hand side of the equation is computed with the
same methods as for the previous computation. For the
right-hand side we make use of the results σa

′

b′ = δa
′

b′ +

O(ǫ2), σa
′

b = −ha′b + O(ǫ2), and ∇2σa
′

= − 2
3R

a′

c′σ
c′ +

O(ǫ2) to obtain

∇2W0 = ha
′b′W 0

a′b′ +

(

−2

3
W 0
a′R

a′

c′ + ha
′b′W 0

a′b′c′

)

σc
′

+O(ǫ2) (5.11)

and

Aa∂aW0 = −Aa′W 0
a′ −

(

Aa
′

W 0
a′c′ −W 0

a′A
a′

|c′
)

σc
′

+O(ǫ2).

(5.12)
Making the substitutions within Eq. (5.10), equating
each expansion coefficient to zero, and simplifying the
results with Eq. (5.9), we eventually arrive at

W 1 =
1

4
Aa

′

|a′ +
1

8
Aa

′

Aa′ −
1

12
R′, (5.13a)

W 1
a′ = −1

8
Ac

′

|c′a′ −
1

8
Ac

′

Ac′|a′ +
1

8
Ac

′

|c′Aa′

+
1

16
Ac

′

Ac′Aa′ −
1

24
R′Aa′ +

1

24
R|a′ , (5.13b)

in which R′ stands for the Ricci scalar evaluated at
x
′. The expression for W 1

a′ was simplified by invoking

the contracted Bianchi identity Rc
′

a′|c′ = 1
2R|a′ as well

as Ricci’s identity to write A
|c′

a′ c′ + Ac
′

|a′c′ + Ac
′

|c′a′ =

3Ac
′

|c′a′ + 2Ra′c′A
c′ ; recall that Aa′|c′ = Ac′|a′ because

Aa′ is the gradient of a scalar function.
The local expansion of the Green’s function is therefore

GH,local
3 (x,x′) =

1√
2σ

{

1 +W 0
a′σ

a′ +
1

2
W 0
a′b′σ

a′σb
′

+
1

6
W 0
a′b′c′σ

a′σb
′

σc
′

+O(ǫ4)

+ 2σ
[

W 1 +W 1
a′σ

a′ + O(ǫ2)
]

+O(σ2)

}

, (5.14)

with the expansion coefficients listed in Eqs. (5.9) and
(5.13).

B. Electromagnetic field

We wish to express the three-dimensional Green’s func-
tion GH

3 (x,x
′) as a local expansion about the base point

x
′. Once more we rely on the results from the scalar

case, which we directly import after implementing the
substitution Aa → −Aa.
The local expansion of the electromagnetic Green’s

function is

GH,local
3 (x,x′) =

1√
2σ

{

1 +W 0
a′σ

a′ +
1

2
W 0
a′b′σ

a′σb
′

+
1

6
W 0
a′b′c′σ

a′σb
′

σc
′

+O(ǫ4)

+ 2σ
[

W 1 +W 1
a′σ

a′ + O(ǫ2)
]

+O(σ2)

}

, (5.15)
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with

W 0
a′ = −1

2
Aa′ , (5.16a)

W 0
a′b′ =

1

2
Aa′|b′ +

1

4
Aa′Ab′ +

1

6
Ra′b′ , (5.16b)

W 0
a′b′c′ = −1

2
A(a′|b′c′) −

3

4
A(a′Ab′|c′) −

1

8
Aa′Ab′Ac′

− 1

4
A(a′Rb′c′) −

1

4
R(a′b′|c′) (5.16c)

and

W 1 = −1

4
Aa

′

|a′ +
1

8
Aa

′

Aa′ −
1

12
R′, (5.17a)

W 1
a′ =

1

8
Ac

′

|c′a′ −
1

8
Ac

′

Ac′|a′ +
1

8
Ac

′

|c′Aa′

− 1

16
Ac

′

Ac′Aa′ +
1

24
R′Aa′ +

1

24
R|a′ . (5.17b)

VI. LOCAL EXPANSION IN CONFORMAL

FORMULATION

A. Scalar field

The local expansion of Eq. (5.14) applies to the
Hadamard representation of the Green’s function
G3(x,x

′) defined by Eq. (3.10), but it applies just as well

to the conformally related Green’s function G̃3(x,x
′) de-

fined by Eq. (3.13); in this case one simply inserts the

conformally related quantities (such as Ãa
′

, σ̃a
′

, and

R̃a′b′) in place of the original quantities (such as Aa
′

,

σa
′

, and Ra′b′). As we shall now show, the expansions
are then related by Eq. (3.17),

G̃H,local
3 (x,x′) = Ω(x′)GH,local

3 (x,x′), (6.1)

a conclusion that guarantees the consistency of the two
approaches to the local expansion. Thus, a local expan-
sion formulated in the original space, and a local ex-
pansion formulated in the conformally related space, will
produce the same Green’s function, apart from the fac-
tor of Ω(x′) that appears in the relationship between the
Green’s functions.
This conclusion can be verified by straightforward com-

putation, making use of the well-known relations between
conformally related quantities. These include

Ãa = Aa +Ba, (6.2a)

h̃ab = Ω−2hab, (6.2b)

Γ̃abc = Γabc + δabBc + δacBb − hbcB
a, (6.2c)

R̃abcd = Rabcd + δacDdBb − δadDcBb − hbcDdB
a + hbdDcB

a + δacBbBd − δadBbBc

− δachbdBmB
m + δadhbcBmB

m − hbcB
aBd + hbdB

aBc, (6.2d)

R̃ab = Rab +DaBb + habDmB
m +BaBb − habBmB

m, (6.2e)

R̃ = Ω2
(

R+ 4DmB
m − 2BmB

m
)

, (6.2f)

D̃cR̃ab = DcRab +DcDaBb + habDcDmB
m + 2

(

BaDbBc +BcDaBb +BbDcBa
)

−
(

hacB
mDmBb + hbcB

mDmBa + 2habB
mDmBc

)

+ 2habBcDmB
m

+ 2RabBc +RacBb +RbcBa − hacRbmB
m − hbcRamB

m + 4BaBbBc

−
(

hacBb + hbcBa + 2habBc
)

BmB
m, (6.2g)

D̃aR̃ = Ω2
(

DaR + 4DaDmB
m − 4BmDaBm + 8BaDmB

m + 2RBa − 4BaBmB
m
)

, (6.2h)

in which Ba := ∂a lnΩ, and where all indices on the right-hand side are raised with hab. They include also

σ̃a
′

= σa
′

+
1

2
Sa

′

b′c′σ
a′σb

′

σc
′

+
1

6
Sa

′

b′c′d′σ
a′σb

′

σc
′

σd
′

+
1

24
Sa

′

b′c′d′e′σ
a′σb

′

σc
′

σd
′

σe
′

+O(ǫ6), (6.3)

an expansion of σ̃a
′

:= h̃a
′b′D̃b′ σ̃ in powers of σa

′

:= ha
′b′Db′σ, in which σ̃ is half the geodetic separation in the

conformally related space. The expansion coefficients are given by [31]

Sa
′

b′c′ = 2δa
′

b′Bc′ − hb′c′B
a′ , (6.4a)
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Sa
′

b′c′d′ = −2δa
′

b′Dc′Bd′ + hb′c′Dd′B
a′ + 4δa

′

b′Bc′Bd′ − δa
′

b′hc′d′Bm′Bm
′ − 2gb′c′B

a′Bd′ , (6.4b)

Sa
′

b′c′d′e′ = 2δa
′

b′Dc′Dd′Be′ − hb′c′Dd′De′B
a′ − 12δa

′

b′Bc′Dd′Be′ + 4hb′c′Bd′De′B
a′ + 4δa

′

b′hc′d′B
m′

De′Bm′

− hb′c′hd′e′B
m′

Dm′Ba
′

+ 2hb′c′B
a′Dd′Be′ + 8δa

′

b′Bc′Bd′Be′ − 4δa
′

b′hc′d′Be′Bm′Bm
′

− 4hb′c′Bd′Be′B
a′ + hb′c′hd′e′Bm′Bm

′

Ba
′ − hb′c′R

a′

d′m′e′B
m′

, (6.4c)

in which the lower indices b′c′, or b′c′d′, or b′c′d′e′ are understood to be fully symmetrized on the right-hand side of
the equations. These relations imply

σ̃(x,x′) = Ω−2(x′)σ(x,x′)

[

1 + Pa′σ
a′ +

1

2
Pa′b′σ

a′σb
′

+
1

6
Pa′b′c′σ

a′σb
′

σc
′

+O(ǫ4)

]

, (6.5)

with

Pa′ = Ba′ , (6.6a)

Pa′b′ = −2

3
Da′Bb′ +

4

3
Ba′Bb′ −

1

6
ha′b′Bm′Bm

′

, (6.6b)

Pa′b′c′ =
1

2
Da′Db′Bc′ − 3Ba′Db′Bc′ +

1

2
ha′b′B

m′

Dc′Bm′ + 2Ba′Bb′Bc′ −
1

2
ha′b′Bc′Bm′Bm

′

, (6.6c)

with the same understanding regarding the a′b′ or a′b′c′ indices on the right-hand side.

To verify that Eq. (6.1) holds, we begin with the con-
formal formulation of Eq. (5.14), in which we make the
substitutions listed above. Simplifying, and keeping all
expansions accurate through order ǫ3, reveals that in-
deed, the end result is Eq. (5.14) formulated in the orig-
inal space, except for the overall factor of Ω(x′) that
occurs in Eq. (6.1). Consistency of the local expansions
is therefore assured.
It is natural to ask whether the validity of Eq. (6.1)

could be established as an exact relation, instead of as
an approximate local expansion pursued through order
ǫ3. Defining a W̃ (x,x′) by the relation

W̃ (x,x′) := Ω(x′)

√

σ̃(x,x′)

σ(x,x′)
W (x,x′), (6.7)

the proof would amount to a demonstration that this W̃
is suitable to be implicated in a Hadamard construction
of the conformal Green’s function via G̃H

3 = W̃/
√
2σ̃.

The proof would involve three essential steps. First,
the function W̃ , as defined here, must be shown to sat-
isfy the same differential equation as Eq. (4.3) expressed
in its conformal formulation; this property follows di-
rectly from the fact that W̃ =

√
2σ̃ G̃3, in which the

two-point function G̃3 := Ω(x′)GH
3 is known to satisfy

Eq. (3.13), the conformal formulation of Green’s equa-

tion. (The issue at stake is whether this G̃3, which is

defined as W̃/
√
2σ̃, is a proper Hadamard representation

of the conformal Green’s function.) Second, W̃ must be
shown to satisfy the boundary condition of Eq. (4.4); this
property follows immediately from the coincidence limit
of Eq. (6.5) and the fact thatW itself satisfies the bound-

ary condition. Third, W̃ must be shown to be smooth at
x = x

′, by which we mean that the function must be
C∞ when viewed as a function of x with x

′ fixed; this

property ensures that W̃ admits an expansion in pow-
ers of σ̃ as displayed in Eq. (4.5), which is known to
be convergent and unique. The expansion being unique,
smoothness ensures that the Hadamard construction

G̃H

3 (x,x
′) =

W̃ (x,x′)
√

2σ̃(x,x′)
(6.8)

gives rise to a Green’s function that satisfies Eq. (6.1)
exactly.
Evidence that W̃ is smooth through order ǫ3 was pre-

sented in the context of the local expansion. Because W
is known to be smooth, smoothness of W̃ to all orders
relies on the smoothness of σ̃/σ, which can only be as-
sured if the series expansion of Eq. (6.5) can be proved
to converge. In the absence of such a proof, we shall
have to give the exact version of Eq. (6.1) the status of
a plausible, but unproved, conjecture.

B. Electromagnetic field

In Sec. VIA we were able to establish that in the case of
a scalar field, a local expansion of the Hadamard Green’s
function formulated in the original space, and a local ex-
pansion formulated in the conformally related space, pro-
duce the same Green’s function, apart from the factor of
Ω(x′) that appears in Eq. (3.40). In addition, we formu-
lated a conjecture to the effect that the two Hadamard
forms may be related by

G̃H

3 (x,x
′) = Ω(x′)GH

3 (x,x
′) (6.9)

as a matter of exact identity. The methods of Sec. VIA
allow us to make the same statements regarding the elec-
tromagnetic Green’s function. The required computa-
tions are almost identical, and all the relevant equations
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can be obtained from the scalar case by making the sub-
stitution Aa → −Aa.

VII. DETWEILER-WHITING CONSTRUCTION

A. Scalar field

In this section we construct the three-dimensional ver-
sion of the Detweiler-Whiting singular Green’s function
for a static scalar field in a static spacetime. By virtue
of Eq. (3.16), this can be related to the four-dimensional
version of Eq. (1.1) by

GS

3(x, z) :=

∫

γ

GS

4(x, z) dτ (7.1)

in which τ is proper time for an observer at rest at the
spatial position z. The integral can be evaluated with
the techniques described in Sec. 17.2 of Ref. [1], and we
have that

GS

3(x, x̄) =
1

2r
U(x, x′) +

1

2radv
U(x, x′′)

− 1

2

∫ v

u

V (x, z) dτ, (7.2)

in which x′ := z(u) is the retarded point on the (static)

world line, x′′ := z(v) is the advanced point, r := σα′uα
′

is the retarded distance, radv := −σα′′uα
′′

is the ad-
vanced distance, and U(x, z) and V (x, z) are the two-
point functions that appear in the construction of the
four-dimensional Green’s function.
To calculate GS

3 we follow the methods of Haas and
Poisson (HP) [32], wherein the retarded and advanced
points are related to a middle point x̄ on the world line.

But while x̄ was chosen arbitrarily in HP, here we specif-
ically choose x̄ to be simultaneous with x, so that x̄ and
x have the same time coordinate. This condition implies
that r̄ := σᾱ(x, x̄)u

ᾱ = 0.

Following HP we define the world-line functions

σ(τ) := σ
(

x, z(τ)
)

, (7.3a)

U(τ) := U
(

x, z(τ)
)

, (7.3b)

V (τ) := V
(

x, z(τ)
)

, (7.3c)

in which x is kept fixed. These functions will all be ex-
pressed as Taylor expansions about τ = τ̄ , with τ̄ defined
by x̄ := z(τ̄ ). We also define

s2 := gᾱβ̄σᾱσβ̄ = 2σ(x, x̄), (7.4)

the squared geodesic distance between x and x̄. Notice
that r = σ̇(u) and radv = −σ̇(v), in which an overdot
indicates differentiation with respect to τ . We define

∆− := u− τ̄ , ∆+ := v − τ̄ , (7.5)

with ∆− < 0 and ∆+ > 0; these parameters are collec-
tively denoted ∆.
The ∆ parameters are determined by writing σ(u) = 0

or σ(v) = 0 as a Taylor expansion about τ̄ :

0 = σ + σ̇∆+
1

2
σ̈∆2 +

1

6
˙̇σ̇∆3 +

1

24
σ(4)∆4

+
1

120
σ(5)∆5 +O(ǫ6), (7.6)

in which σ and its derivatives are evaluated at τ = τ̄ .
This equation is then solved for ∆. The derivatives of
σ(τ) are given by

σ =
1

2
s2, (7.7a)

σ̇ = σᾱu
ᾱ = 0, (7.7b)

σ̈ = σᾱβ̄u
ᾱuβ̄ + σᾱa

ᾱ

= −1− 1

3
Ruσuσ +

1

12
Ruσuσ;σ + σᾱa

ᾱ +O(ǫ4), (7.7c)

˙̇σ̇ = σᾱβ̄γ̄u
ᾱuβ̄uγ̄ + 3σᾱβ̄u

ᾱaβ̄ + σᾱȧ
ᾱ

= −1

4
Ruσuσ;u −Ruσaσ + σᾱȧ

ᾱ +O(ǫ3), (7.7d)

σ(4) = σᾱβ̄γ̄δ̄u
ᾱuβ̄uγ̄uδ̄ + σᾱβ̄γ̄

(

5uᾱaβ̄uγ̄ + uᾱuβ̄aγ̄
)

+ σᾱβ̄
(

3aᾱaβ̄ + 4uᾱȧβ̄
)

+ σᾱä
ᾱ

= Ruauσ − a2 + σᾱä
ᾱ +O(ǫ2), (7.7e)

σ(5) = σᾱβ̄γ̄δ̄ǭu
ᾱuβ̄uγ̄uδ̄uǭ + σᾱβ̄γ̄δ̄

(

aᾱuβ̄uγ̄uδ̄ + 6uᾱaβ̄uγ̄uδ̄ + 2uᾱuβ̄aγ̄uδ̄ + uᾱuβ̄uγ̄aδ̄
)

+ σᾱβ̄γ̄
(

8aᾱaβ̄uγ̄ + 6uᾱaβ̄aγ̄ + aᾱuβ̄aγ̄ + 9uᾱȧβ̄uγ̄ + uᾱuβ̄ȧγ̄
)

+ σᾱβ̄
(

10aᾱȧβ̄ + 5uᾱäβ̄
)

+ σᾱ ˙̇ȧ
ᾱ

= −5aᾱȧ
ᾱ +O(ǫ). (7.7f)
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These results rely on the standard expansion

σᾱβ̄(x, x̄) = gᾱβ̄ − 1

3
Rᾱµ̄β̄ν̄σ

µ̄σν̄

+
1

12
Rᾱµ̄β̄ν̄;λ̄σ

µ̄σν̄σλ̄ +O(ǫ4), (7.8)

which can be differentiated with respect to x̄α to produce
expansions for σᾱβ̄γ̄ and so on. We use the HP notation
for the components of the Riemann tensor; for example
Ruσuσ := Rᾱµ̄β̄ν̄u

ᾱσµ̄uβ̄σν̄ , Ruσaσ := Rᾱµ̄β̄ν̄u
ᾱσµ̄aβ̄σν̄ ,

and Ruσuσ;u := Rᾱµ̄β̄ν̄;λ̄u
ᾱσµ̄uβ̄σν̄uλ̄. We have defined

aµ :=
Duµ

dτ
, ȧµ :=

Daµ

dτ
, äµ :=

Dȧµ

dτ
, (7.9)

and so on, and used the identities uµa
µ = 0, uµȧ

µ =
−a2 := aµa

µ, and uµä
µ = −3aµȧ

µ.
Substitution of these expansions within Eq. (7.6) and

solving for ∆ returns an expansion of the form

∆ = ∆1ǫ+∆2ǫ
2 +∆3ǫ

3 +∆4ǫ
4 +O(ǫ5). (7.10)

The explicit expressions for ∆1, ∆2, ∆3, and ∆4 are too
large to be displayed here, but we may mention that
∆+

1 = s and ∆−
1 = −s.

With ∆ determined, r and radv can be calculated as
Taylor expansions. Since r = σ̇(u) and radv = −σ̇(v), we
have that

r = σ̈∆− +
1

2
˙̇σ̇∆2

− +
1

6
σ(4)∆3

− +
1

24
σ(5)∆4

−

+O(ǫ5), (7.11a)

radv = −σ̈∆+ − 1

2
˙̇σ̇∆2

+ − 1

6
σ(4)∆3

+ − 1

24
σ(5)∆4

+

+O(ǫ5). (7.11b)

At leading order r = s+O(ǫ2) and radv = s+O(ǫ2), but
the complete expansions for r−1 and r−1

adv are too large
to be displayed here.
Expressions for U(x, x′) and U(x, x′′) are obtained in

a similar way. We write

U(x, x′) = U + U̇∆− +
1

2
Ü∆2

− +
1

6
˙̇U̇∆3

−

+O(ǫ4), (7.12a)

U(x, x′′) = U + U̇∆+ +
1

2
Ü∆2

+ +
1

6
˙̇U̇∆3

+

+O(ǫ4), (7.12b)

in which U(τ) and its derivatives are evaluated at τ = τ̄ .
These quantities are given by

U = 1 +
1

12
Rσσ − 1

24
Rσσ;σ +O(ǫ4), (7.13a)

U̇ = U;ᾱu
ᾱ

=
1

6
Ruσ +

1

24
Rσσ;u − 1

12
Ruσ;σ +O(ǫ3), (7.13b)

Ü = U;ᾱβ̄u
ᾱuβ̄ + U;ᾱa

ᾱ

=
1

6
Ruu +

1

6
Raσ +

1

6
Ruσ;u −

1

12
Ruu;σ

+O(ǫ2), (7.13c)

˙̇U̇ = U;ᾱβ̄γ̄u
ᾱuβ̄uγ̄ + 3U;ᾱβ̄a

ᾱuβ̄ + U;ᾱȧ
ᾱ

=
1

2
Rau +

1

4
Ruu;u +O(ǫ). (7.13d)

To evaluate the tail integral we expand V (τ) as V (τ̄ )+

(τ − τ̄ )V̇ (τ̄ ) + O(ǫ2) and integrate with respect to τ be-
tween u = τ̄ +∆− and v = τ̄ +∆+. The result is

∫ v

u

V (x, z) dτ = V (∆+ −∆−) +
1

2
V̇ (∆2

+ −∆2
−)

+O(ǫ3), (7.14)

in which V := V (x, x̄) and V̇ := V;ᾱu
ᾱ. These are given

by the expansions

V =
1

12
R̄− 1

24
R;ᾱσ

ᾱ +O(ǫ2), (7.15)

and

V̇ =
1

24
R;ᾱu

ᾱ +O(ǫ). (7.16)

To obtain Eq. (7.15) we rely on standard expansion tech-
niques. The two-point function is required to satisfy the
wave equation �V = 0 as well as the light-cone equation

V;ασ
α +

1

2
(σαα − 2)V =

1

2
�U, (7.17)

which is evaluated at σ(x, x̄) = 0. The solution is ex-
pressed as an expansion

V (x, x̄) =
∞
∑

n=0

Vn(x, x̄)σ
n, (7.18)

and the wave equation gives rise to a sequence of equa-
tions which determine Vn from Vn−1; the light-cone equa-
tion determines V0. Because σ = O(ǫ2), V = V0 to order
ǫ, and this can be obtained by inserting the expansion

V = V 0 + V 0
ᾱσ

ᾱ +O(ǫ2) (7.19)

within the light-cone equation. We use the fact that
σαα = 4 + O(ǫ2), and to compute �U we start with
Eq. (7.13b) and rely on the expansions

σᾱα = −gᾱα +O(ǫ2), gᾱα;β = O(ǫ); (7.20)

we eventually arrive at

�U =
1

6
R̄− 1

6
R;ᾱσ

ᾱ +O(ǫ2). (7.21)

The end result of the computation is Eq. (7.15).
Putting all the ingredients together, we eventually ar-

rive at the following expansion for GS
3:

GS

3(x, x̄) =
1

s

{

1 + ψ0
ᾱσ

ᾱ +
1

2
ψ0
ᾱβ̄σ

ᾱσβ̄
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+
1

6
ψ0
ᾱβ̄γ̄σ

ᾱσβ̄σγ̄ +O(ǫ4)

+ s2
[

ψ1 + ψ1
ᾱσ

ᾱ +O(ǫ2)
]

}

, (7.22)

with

ψ0
ᾱ =

1

2
aᾱ, (7.23a)

ψ0
ᾱβ̄ =

3

4
aᾱaβ̄ +

1

6
Rᾱβ̄ − 1

3
uµ̄uν̄Rµ̄ᾱν̄β̄ , (7.23b)

ψ0
ᾱβ̄γ̄ =

15

8
aᾱaβ̄aγ̄ −

3

2
aᾱu

µ̄uν̄Rµ̄β̄ν̄γ̄ +
1

4
aᾱRβ̄γ̄

+
1

4
uµ̄uν̄Rµ̄ᾱν̄β̄;γ̄ −

1

4
Rᾱβ̄;γ̄ (7.23c)

and

ψ1 = −1

8
aµ̄aµ̄ +

1

12
uµ̄uν̄Rµ̄ν̄ −

1

12
R̄, (7.24a)

ψ1
ᾱ = − 5

16
aµ̄aµ̄aᾱ +

1

8
äᾱ +

1

8
aᾱu

µ̄uν̄Rµ̄ν̄ −
1

24
R̄aᾱ

+
1

8
uµ̄aν̄uλ̄Rµ̄ν̄λ̄ᾱ +

1

12
aµ̄Rµ̄ᾱ +

1

12
uµ̄uν̄Rᾱµ̄;ν̄

− 1

24
uµ̄uν̄Rµ̄ν̄;ᾱ +

1

24
R;ᾱ. (7.24b)

The actual expression for ψ0
ᾱβ̄γ̄

is obtained from what ap-

pears above by symmetrizing over all three indices; this
operation was suppressed to keep the notation unclut-
tered.
Noting that the vector σᾱ has a vanishing time com-

ponent when x and x̄ are simultaneous events, we may
re-express Eq. (7.22) as

GS

3(x, x̄) =
1

s

{

1 + ψ0
āσ

ā +
1

2
ψ0
āb̄σ

āσb̄

+
1

6
ψ0
āb̄c̄σ

āσb̄σc̄ +O(ǫ4)

+ s2
[

ψ1 + ψ1
āσ

ā +O(ǫ2)
]

}

. (7.25)

And with the results derived in Sec. II, the expansion
coefficients become

ψ0
ā =

1

2
Aā, (7.26a)

ψ0
āb̄ = −1

2
Aā|b̄ +

1

4
AāAb̄ +

1

6
Rāb̄, (7.26b)

ψ0
āb̄c̄ =

1

2
A(ā|b̄c̄) −

3

4
A(āAb̄|c̄) +

1

8
AāAb̄Ac̄

+
1

4
A(āRb̄c̄) −

1

4
R(āb̄|c̄). (7.26c)

and

ψ1 =
1

4
Aā|ā +

1

8
AāAā −

1

12
R̄, (7.27a)

ψ1
ā = −1

8
Ac̄|c̄ā −

1

8
Ac̄Ac̄|ā +

1

8
Ac̄|c̄Aā +

1

16
Ac̄Ac̄Aā

− 1

24
R̄Aā +

1

24
R|ā. (7.27b)

Comparing Eq. (7.26) with (5.9), and Eq. (7.27) with
(5.13), we observe that the expansion coefficients of GS

3

and GH
3 are in precise agreement. This allows us to con-

clude that

GS

3(x, x̄) = GH

3 (x, x̄) +O(ǫ3) (7.28)

for a static spacetime.

B. Electromagnetic field

We next turn to the three-dimensional version of the
Detweiler-Whiting singular Green’s function for a static
electromagnetic field in a static spacetime. By virtue of
Eq. (3.44), we have that the vector potential of a point
charge e situated at z is given by

ΦS

t (x) = −eN(z)GS

3(x, z), (7.29)

with GS
3(x, z) denoting the three-dimensional version of

the Detweiler-Whiting electromagnetic Green’s function.
And according to Sec. 18.2 of Ref. [1], we have that the
vector potential is given

ΦS

α(x) =
e

2r
Uαβ′(x, x′)uβ

′

+
e

2radv
Uαβ′′(x, x′′)uβ

′′

− e

2

∫ v

u

Vαµ(x, z)u
µ dτ, (7.30)

in which Uαµ(x, z), Vαµ(x, z) are the two-point functions
that appear in the construction of the four-dimensional
Green’s function.
To calculate ΦS

t and obtain GS
3 we once more follow the

methods of Haas and Poisson (HP) [32], as outlined in
the scalar case. We thus define the world-line functions

σ(τ) := σ
(

x, z(τ)
)

, (7.31a)

Uα(τ) := Uαµ
(

x, z(τ)
)

uµ(τ), (7.31b)

Vα(τ) := Vαµ
(

x, z(τ)
)

uµ(τ), (7.31c)

in which x is kept fixed. These functions are all scalars
with respect to their dependence upon z(τ). As in the
scalar case they are expressed as Taylor expansions about
τ = τ̄ , at which z = x̄, and the results are converted into
explicit expressions for r, radv, Uαβ′uβ

′

, Uαβ′′uβ
′′

, and
the tail integral. The results for r and radv appear in
Eq. (7.11).

To compute Uαβ′uβ
′

and Uαβ′′uβ
′′

we write

Uαβ′uβ
′

= Uα + U̇α∆− +
1

2
Üα∆

2
− +

1

6
˙̇U̇α∆

3
−

+O(ǫ4), (7.32a)

Uαβ′′uβ
′′

= Uα + U̇α∆+ +
1

2
Üα∆

2
+ +

1

6
˙̇U̇α∆

3
+

+O(ǫ4), (7.32b)

in which Uα(τ) and its derivatives are evaluated at τ = τ̄ .
These quantities are given by
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Uα = Uαᾱu
ᾱ

= gαᾱu
ᾱ

(

1 +
1

12
Rσσ − 1

24
Rσσ;σ +O(ǫ4)

)

, (7.33a)

U̇α = Uαᾱ;β̄u
ᾱuβ̄ + Uαᾱa

ᾱ

= gαᾱ

[

1

2
Rᾱuuσ − 1

6
Rᾱuuσ;σ + uᾱ

(

1

6
Ruσ +

1

24
Rσσ;u − 1

12
Ruσ;σ

)

+ aᾱ
(

1 +
1

12
Rσσ

)

+O(ǫ3)

]

, (7.33b)

Üα = Uαᾱ;β̄γ̄u
ᾱuβ̄uγ̄ + Uαᾱ;β̄

(

uᾱaβ̄ + 2aᾱuβ̄
)

+ Uαᾱȧ
ᾱ

= gαᾱ

[

1

3
Rᾱuuσ;u +

1

2
Rᾱuaσ +Rᾱauσ + uᾱ

(

1

6
Ruu +

1

6
Ruσ;u − 1

12
Ruu;σ +

1

6
Raσ

)

+ aᾱ
(

1

3
Ruσ

)

+ ȧᾱ +O(ǫ2)

]

, (7.33c)

˙̇U̇α = Uαᾱ;β̄γ̄δ̄u
ᾱuβ̄uγ̄uδ̄ + Uαᾱ;β̄γ̄

(

3aᾱuβ̄uγ̄ + 2uᾱaβ̄uγ̄ + uᾱuβ̄aγ̄
)

+ Uαᾱ;β̄
(

3aᾱaβ̄ + 3ȧᾱuβ̄ + uᾱȧβ̄
)

+ Uαᾱä
ᾱ

= gαᾱ

[

1

2
Rᾱuau + uᾱ

(

1

2
Rau +

1

4
Ruu;u

)

+ aᾱ
(

1

2
Ruu

)

+ äᾱ +O(ǫ)

]

. (7.33d)

The expansions involve components of the Riemann ten-
sor such as Rᾱuuσ := Rᾱ

µ̄β̄ν̄
uµ̄uβ̄σν̄ and components of

the Ricci tensor such as Rσσ := Rᾱβ̄σ
ᾱσβ̄ . They involve

also gαᾱ(x, x̄), the parallel propagator from x̄ to x. To
arrive at these results we rely on the expansion of the
two-point function Uαᾱ(x, x̄) given by

Uαᾱ = gαᾱ

(

1+
1

12
Rµ̄ν̄σ

µ̄σν̄ − 1

24
Rµ̄ν̄;λ̄σ

µ̄σν̄σλ̄+O(ǫ3)

)

;

(7.34)
this is derived, for example, in Appendix B of Ref. [33].
Another useful expansion is

gαᾱ;β̄ = gαγ̄

(

1

2
Rγ̄

ᾱβ̄µ̄
σµ̄ − 1

6
Rγ̄

ᾱβ̄µ̄;ν̄
σµ̄σν̄ +O(ǫ3)

)

.

(7.35)
These are differentiated repeatedly with respect to x̄α,
and the results are inserted within the expressions for
Uα and its derivatives.
To evaluate the tail integral we expand Vα(τ) as

Vα(τ̄ ) + (τ − τ̄)V̇α(τ̄ ) +O(ǫ2) and integrate with respect
to τ between u = τ̄ +∆− and v = τ̄ +∆+. The result is

∫ v

u

Vαµu
µ dτ = Vα(∆+ −∆−) +

1

2
V̇α(∆

2
+ −∆2

−)

+O(ǫ3), (7.36)

in which Vα = Vαᾱu
ᾱ and V̇α = Vαᾱ;β̄u

ᾱuβ̄ + Vαᾱa
ᾱ. To

compute these quantities we rely on the expansion

V αᾱ = gαγ̄

[

−1

2

(

Rγ̄ᾱ − 1

6
δγ̄ᾱR̄

)

+
1

12
Rγ̄ ;µ̄

ᾱµ̄β̄
σβ̄

+
1

4

(

Rγ̄
ᾱ;β̄

− 1

6
δγ̄ᾱR̄;β̄

)

σβ̄ +O(ǫ2)

]

, (7.37)

which leads to

Vα = gαᾱ

[

−1

2
Rᾱu +

1

4
Rᾱu;σ +

1

12
Rᾱ ;µ̄

uµ̄σ

+ uᾱ
(

1

12
R̄− 1

24
R̄;σ

)

+O(ǫ2)

]

, (7.38a)

V̇α = gαᾱ

[

−1

4
Rᾱu;u +

1

12
Rᾱ ;µ̄

uµ̄u − 1

2
Rᾱa

+
1

24
uᾱR̄;u +

1

12
aᾱR̄+O(ǫ)

]

. (7.38b)

Here we make use of the notation Rᾱa := Rᾱ
β̄
aβ̄, Rᾱu;σ :=

Rᾱ
β̄;γ̄
uβ̄σγ̄ , and Rᾱ ;µ̄

uµ̄u := Rᾱ ;µ̄

β̄µ̄γ̄
uβ̄uγ̄ . In addition, R̄

is the Ricci scalar evaluated at x̄, and R̄;u := R̄;β̄u
β̄.

To obtain Eq. (7.37) we rely on standard expansion
techniques. The two-point function is required to satisfy
the wave equation

�V αᾱ −RαβV
β
ᾱ = 0 (7.39)

as well as the light-cone equation

V αᾱ;βσ
β +

1

2
(σββ − 2)V αᾱ =

1

2

(

�Uαᾱ −RαβU
β
ᾱ

)

, (7.40)

which is evaluated at σ(x, x̄) = 0. The solution is ex-
pressed as the expansion

V αᾱ(x, x̄) =
∑

n=0

V αnᾱ(x, x̄)σ
n, (7.41)

and the wave equation gives rise to a sequence of equa-
tions which determine V αnᾱ(x, x̄) from V αn−1ᾱ; the light-
cone equation determines V α0ᾱ. Because σ = O(ǫ2),
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V αᾱ = V α0ᾱ to order ǫ, and this can be obtained by in-
serting the expansion

V α0ᾱ = gαγ̄

[

Aγ̄ᾱ +Aγ̄
ᾱβ̄
σβ̄ +O(ǫ2)

]

(7.42)

within the light-cone equation. We use the fact that

σββ = 4 + O(ǫ2) and to compute �Uαᾱ we rely on the
expansion

gαᾱ;β = gαγ̄g
β̄
β

[

1

2
Rγ̄

ᾱβ̄µ̄
σµ̄ − 1

3
Rγ̄

ᾱβ̄µ̄;ν̄
σµ̄σν̄ +O(ǫ3)

]

;

(7.43)

we eventually arrive at

�Uαᾱ = gαγ̄

[

1

6
δγ̄ᾱR̄− 1

6
δγ̄ᾱR̄;ν̄σ

ν̄ +
1

3
Rγ̄ ;µ̄

ᾱµ̄ν̄ σν̄ +O(ǫ2)

]

.

(7.44)
The end result is Eq. (7.37).
Putting all the ingredients together, we eventually ar-

rive at the following expansion for ΦS
α(x):

ΦS

α(x) =
e

s
g λ̄
α (x, x̄)

{

φ0λ̄ + φ0λ̄ᾱσ
ᾱ +

1

2
φ0λ̄ᾱβ̄σ

ᾱσβ̄

+
1

6
φ0λ̄ᾱβ̄γ̄σ

ᾱσβ̄σγ̄ +O(ǫ4)

+ s2
[

φ1λ̄ + φ1λ̄ᾱσ
ᾱ +O(ǫ2)

]

}

, (7.45)

with

φ0λ̄ = uλ̄, (7.46a)

φ0λ̄ᾱ =
1

2
uλ̄aᾱ, (7.46b)

φ0λ̄ᾱβ̄ = uλ̄

(

3

4
aᾱaβ̄ +

1

6
Rᾱβ̄ − 1

3
uµ̄uν̄Rµ̄ᾱν̄β̄

)

, (7.46c)

φ0λ̄ᾱβ̄γ̄ = uλ̄

(

15

8
aᾱaβ̄aγ̄ −

3

2
aᾱu

µ̄uν̄Rµ̄β̄ν̄γ̄ +
1

4
uµ̄uν̄Rµ̄ᾱν̄β̄;γ̄ +

1

4
aᾱRβ̄γ̄ −

1

4
Rᾱβ̄;γ̄

)

(7.46d)

and

φ1λ̄ = uλ̄

(

− 1

8
aµ̄aµ̄ +

1

12
uµ̄uν̄Rµ̄ν̄ −

1

12
R̄

)

+
1

2
ȧλ̄ +

1

2
uµ̄Rλ̄µ̄, (7.47a)

φ1λ̄ᾱ = uλ̄

(

− 5

16
aµ̄aµ̄aᾱ +

1

8
äᾱ +

1

8
aᾱu

µ̄uν̄Rµ̄ν̄ −
1

24
R̄aᾱ +

1

8
uµ̄aν̄uρ̄Rµ̄ν̄ρ̄ᾱ +

1

12
aµ̄Rµ̄ᾱ

+
1

12
uµ̄uν̄Rᾱµ̄;ν̄ −

1

24
uµ̄uν̄Rµ̄ν̄;ᾱ +

1

24
R;ᾱ

)

+ aλ̄

(

1

2
ȧᾱ +

1

6
uµ̄Rᾱµ̄

)

+
3

4
ȧλ̄aᾱ +

1

4
uµ̄aν̄Rλ̄µ̄ν̄ᾱ

+
1

2
uν̄aµ̄Rλ̄µ̄ν̄ᾱ +

1

6
uµ̄uν̄uρ̄Rλ̄µ̄ν̄ᾱ;ρ̄ −

1

12
uµ̄∇ρ̄Rλ̄µ̄ρ̄ᾱ +

1

4
uµ̄Rλ̄µ̄aᾱ − 1

4
uµ̄Rλ̄µ̄;ᾱ. (7.47b)

The actual expression for φ0
λ̄ᾱβ̄γ̄

is obtained from what

appears above by symmetrizing over the last three in-
dices; this operation was suppressed to keep the notation
uncluttered.
From Eq. (7.45) we wish to obtain a more explicit ex-

pression for ΦS
t , and this requires a computation of the

operator of parallel transport. Our considerations near
Eq. (2.5) imply that its components are given by

gtt̄ =
N(x̄)

N(x)
, gab̄ = hab̄, (7.48)

in which ha
b̄
is the operator of parallel transport in the

three-dimensional space; the mixed components gtā and
gat̄ vanish. Noting that the vector σᾱ has a vanishing

time component when x and x̄ are simultaneous events,
and making use of the results derived in Sec. II, we may
re-express Eq. (7.45) as

ΦS

t (x) = −e
s
N(x)

{

1 + φ0āσ
ā +

1

2
φ0āb̄σ

āσb̄

+
1

6
φ0āb̄c̄σ

āσb̄σc̄ +O(ǫ4)

+ s2
[

φ1 + φ1āσ
ā +O(ǫ2)

]

}

, (7.49)

with

φ0ā =
1

2
Aā, (7.50a)
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φ0āb̄ = −1

2
Aā|b̄ +

1

4
AāAb̄ +

1

6
Rāb̄, (7.50b)

φ0āb̄c̄ =
1

2
A(ā|b̄c̄) −

3

4
A(āAb̄|c̄) +

1

8
AāAb̄Ac̄

+
1

4
A(āRb̄c̄) −

1

4
R(āb̄|c̄). (7.50c)

and

φ1 = −1

4
Aā|ā +

1

8
AāAā −

1

12
R̄, (7.51a)

φ1ā =
1

8
Ac̄|c̄ā −

1

8
Ac̄Ac̄|ā −

1

8
Ac̄|c̄Aā +

1

16
Ac̄Ac̄Aā

− 1

24
R̄Aā +

1

24
R|ā. (7.51b)

From Eq. (7.29) and (7.49) we see that the
three-dimensional Green’s function involves the ratio
N(x)/N(x̄). This can be expressed as an expansion
about x = x̄ by making use of the generalized Taylor
series

N(x) = N(x̄)−N|āσ
ā +

1

2
N|āb̄σ

āσb̄ − 1

6
N|āb̄c̄σ

āσb̄σc̄

+O(ǫ4), (7.52)

which leads to

N(x)

N(x̄)
= 1− Aāσ

ā +
1

2

(

Aā|b̄ +AāAb̄
)

σāσb̄

− 1

6

(

Aā|b̄c̄ + 3AāAb̄|c̄ +AāAb̄Ac̄
)

σāσb̄σc̄

+O(ǫ4). (7.53)

With this we finally arrive at

GS

3(x, x̄) =
1

s

{

1 + ψ0
āσ

ā +
1

2
ψ0
āb̄σ

āσb̄

+
1

6
ψ0
āb̄c̄σ

āσb̄σc̄ +O(ǫ4)

+ s2
[

ψ1 + ψ1
āσ

ā +O(ǫ2)
]

}

, (7.54)

with

ψ0
ā = −1

2
Aā, (7.55a)

ψ0
āb̄ =

1

2
Aā|b̄ +

1

4
AāAb̄ +

1

6
Rāb̄, (7.55b)

ψ0
āb̄c̄ = −1

2
A(ā|b̄c̄) −

3

4
A(āAb̄|c̄) −

1

8
AāAb̄Ac̄

− 1

4
A(āRb̄c̄) −

1

4
R(āb̄|c̄). (7.55c)

and

ψ1 = −1

4
Aā|ā +

1

8
AāAā −

1

12
R̄, (7.56a)

ψ1
ā =

1

8
Ac̄|c̄ā −

1

8
Ac̄Ac̄|ā +

1

8
Ac̄|c̄Aā −

1

16
Ac̄Ac̄Aā

+
1

24
R̄Aā +

1

24
R|ā. (7.56b)

We notice that the expansion coefficients can be obtained
from Eqs. (7.26) and (7.27) by making the replacement
Aa → −Aa; this was expected since Eq. (3.35) for the
electromagnetic Green’s function differs from Eq. (3.10)
for the scalar Green’s function by the sign of Aa.
A comparison between Eq. (7.54) and Eq. (5.15) allows

us to conclude that

GS

3(x, x̄) = GH

3 (x, x̄) +O(ǫ3) (7.57)

for a static charge in a static spacetime.

VIII. EQUALITY OF G
S
3 AND G

H
3 : A

CONJECTURE

A. Scalar field

The result of Eq. (7.28) suggests that the equality
between the Hadamard and singular Green’s functions
might be exact, holding to all orders in ǫ. We re-express
Eq. (7.2) as

GS

3(x, x̄) =
1

s
W S(x, x̄) (8.1)

with

W S(x, x̄) :=
1

2

[

s

r
U(x, x′) +

s

r
U(x, x′′)

− s

∫ v

u

V
(

x, z(τ)
)

dτ

]

, (8.2)

and conjecture that W S = WH, where WH is the two-
point function introduced in Eq. (4.2). We recall that
s2 := 2σ(x, x̄) is the squared geodesic distance between
x and the simultaneous event x̄, x′ := z(u) is the re-
tarded point on the (static) world line, x′′ := z(v) is

the advanced point, r := σα′uα
′

is the retarded distance,
radv := −σα′′uα

′′

is the advanced distance, and U(x, z),
V (x, z) are the two-point functions that appear in the
construction of the four-dimensional Green’s function.
As in Sec. VIA above, a proof of equality would in-

volve three essential steps. First, the function W S must
be shown to satisfy the same differential equation asWH,
as displayed in Eq. (4.3); this property follows immedi-
ately from the fact that GS

3 is known to satisfy Eq. (3.10),
just like GH

3 . Second, W S must be shown to satisfy the
boundary condition of Eq. (4.4); this property was estab-
lished previously and can be seen directly from Eq. (7.25).
Third, the function W S must be shown to be smooth at
x = x̄, by which we mean that the function must be C∞

when viewed as a function of x with x̄ fixed; this property
ensures that W S admits an expansion in powers of σ as
displayed in Eq. (4.5), which is known to be convergent
and unique. The expansion being unique, smoothness
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therefore ensures that W S = WH. Evidence that W S is
smooth to order ǫ4 is provided by Eq. (7.25).
Of the ingredients involved in the make-up of W S, the

two-point functions U(x, z) and V (x, z) are known to be
smooth, but s, r, radv, u, and v are not. Nevertheless,
we conjecture that the combinations

s/r, s/radv, s(v − u) (8.3)

are in fact smooth at x = x̄. The first two are directly
involved in Eq. (8.2), and the third one also is involved
by virtue of the mean-value theorem, which allows us to
write the integral as

s

∫ v

u

V (x, z) dτ = V (x, x∗)s(v − u), (8.4)

with x∗ := z(τ∗) (u < τ∗ < v) representing a middle
point on the world line. Establishing that s/r, s/radv,
and s(v − u) are smooth is sufficient to prove that W S

itself is smooth.
Some insight can be gained by examining these quan-

tities in Fermi normal coordinates (t, xa) attached to the
static world line. With results collected from Sec. 11 of
Ref. [1], we have that

s =
√

δabxaxb, (8.5a)

r = s

[

1 +
1

2
aax

a − 1

8

(

aax
a
)2 − 1

8
ȧts

2

+
1

6
Rtatbx

axb +O(s3)

]

, (8.5b)

radv = r +O(s4), (8.5c)

u = t− s

[

1− 1

2
aax

a +
3

8

(

aax
a
)2

+
1

24
ȧts

2

− 1

6
Rtatbx

axb +O(s3)

]

, (8.5d)

v = t+ s

[

1− 1

2
aax

a +
3

8

(

aax
a
)2

+
1

24
ȧts

2

− 1

6
Rtatbx

axb +O(s3)

]

, (8.5e)

in which aa, ȧt, and Rtatb respectively represent compo-
nents of the acceleration vector, its covariant derivative,
and the Riemann tensor evaluated on the static world
line, at which xa = 0; terms involving ȧa were discarded
because these components vanish for a static world line
in a static spacetime. These results reveal that s, r, radv,
u, and v are indeed not smooth at xa = 0. But they do
show that r/s, radv/s, and

s(v − u) = 2s2
[

1− 1

2
aax

a +
3

8

(

aax
a
)2

+
1

24
ȧts

2

− 1

6
Rtatbx

axb +O(s3)

]

(8.6)

are smooth to leading orders in an expansion in powers
of xa.

We now proceed with a sketch of what might consti-
tute a general proof. The method of proof relies on formal
power series, which are all assumed to converge in a suf-
ficiently small domain. This rather strong assumption is
the main limitation of our argument, and the reason why
we present it as a conjecture and not a proof. It would
be desirable to either establish the convergence property,
or to devise an alternative method of proof. This shall
be left for future work.
We return to Eq. (7.6) and observe that the odd terms

in the expansion vanish by time-reversal invariance: σ̇,
˙̇σ̇, and all other odd derivatives of σ(τ) must vanish
on a static world line in a static spacetime. We recall
that σ(τ) := σ(x, z(τ)) with x fixed, and state that each
derivative of σ(τ) is smooth at x = x̄. Equation (7.6)
can therefore be written as

s2 = ∆2
∞
∑

n=0

pn(∆
2)n, (8.7a)

pn :=
2

(2n+ 2)!

(

−σ(2n+2)
)

, (8.7b)

in which a bracketed number attached to σ indicates the
number of differentiations with respect to τ ; each expan-
sion coefficient pn is smooth at x = x̄. Time-reversal
invariance implies that ∆± = ±

√
∆2 := ±∆, and the

expansions of Eq. (7.11) can be expressed as

r = radv = ∆

∞
∑

n=0

qn(∆
2)n, (8.8a)

qn :=
1

(2n+ 1)!

(

−σ(2n+2)
)

, (8.8b)

with qn smooth at x = x̄. Combining these results, we
have that

r

s
=
radv
s

=

∑∞
n=0 qn(∆

2)n
√

∑∞
n=0 pn(∆

2)n
. (8.9)

As stated previously, each sum in this expression is as-
sumed to converge for ∆2 sufficiently small.
We now wish to reverse the expansion of Eq. (8.7).

According to Sec. 3.6.25 of Ref. [34], if y = ax + bx2 +
cx3 + · · · , then x = Ay +By2 + Cy3 + · · · with aA = 1,
a3B = −b, a5C = 2b2−ac, and an algorithm is known to
generate all remaining expansion coefficients. The power
series can thus be reversed when a 6= 0. In our case
a = p0 = −σ̈ is indeed nonzero, and a−1 is smooth at
x = x̄. The reversed series can then be written as

∆2 = s2
∑

n=0

an(s
2)n, (8.10)

for some coefficients an that are known to be smooth at
x = x̄. Because s2 is itself smooth, the assumed conver-
gence of the sum for sufficiently small s2 ensures that ∆2

is smooth at x = x̄. Making the substitution in Eq. (8.9),
we find that r/s and radv/s can be expressed as

r

s
=
radv
s

=

∑∞
n=0 bn(s

2)n
√

∑∞
n=0 cn(s

2)n
(8.11)
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for some coefficients bn and cn that are smooth at x = x̄.
This reveals that r/s and radv/s are smooth at x = x̄.
We next turn to s(v − u) = 2s∆, which is given by

s(v − u) = s2
√

∑∞
n=0 an(s

2)n (8.12)

and is also seen to be smooth at x = x̄.
With the stated assumption on the convergence of for-

mal power series, we have shown that r/s, radv/s, and
s(v − u) are all smooth at x = x̄. This implies that W S

is smooth, and establishes the statement that GS
3 and GH

3

are strictly equal.

B. Electromagnetic field

The result of Eq. (7.57) suggests that the equality
between the Hadamard and singular Green’s functions
might also be exact in the case of the electromagnetic
field. A proof of this statement would involve the same
steps as in the scalar case, and the modifications required
for the electromagnetic Green’s functions are too modest
to merit a separate discussion. As in the scalar case, the
essential element is the proof s/r, s/radv, and s(v − u)
are all smooth at x = x̄. If this can be established, then
we can claim immediately that GS

3 and GH
3 are indeed

equal to all orders.

IX. EQUALITY OF G
S
3 AND G

H
3 FOR

ULTRASTATIC SPACETIMES

A. Scalar field

In this section we return to the theme explored in
Sec. VIII and provide a complete proof of equality be-
tween the Hadamard construction GH

3 and the three-
dimensional version of the Detweiler-Whiting Green’s
function GS

3 in the case of ultrastatic spacetimes. These
spacetimes have the property that N = 1, so that their
metric is

ds2 = −dt2 + habdx
adxb, (9.1)

a special case of Eq. (2.1). The geometrical quantities
associated with ultrastatic spacetimes can be obtained
from the equations displayed in Sec. II by setting Aa :=
∂a lnN = 0.
The geodesics of ultrastatic spacetimes are described

by the equation t(λ) = t(0)+ ṫ(0)λ, in which λ is an affine
parameter and an overdot indicates differentiation with
respect to λ, as well as the statement that xa(λ) describes
geodesics of the spatial metric hab. This implies that the
world function is necessarily given by

σ(x, x′) = −1

2
(t− t′)2 + σ3(x,x

′), (9.2)

in which σ3(x,x
′) is the three-dimensional version of the

world function, defined with respect to the spatial metric.

The simplicity extends to the two-point function
U(x, x′) that enters the Detweiler-Whiting construction.
We may show, in particular, that U has no dependence
on the time coordinates, so that

U = U(x,x′). (9.3)

This statement is a consequence of the defining properties
of the two-point function (see Sec. 14.2 of Ref. [1]), that
it must satisfy the differential equation

2σα∂αU +
(

σαα − 4
)

U = 0 (9.4)

in the ultrastatic spacetime, together with the coinci-
dence limit U(x′, x′) = 1. With the stated properties of
the world function, this becomes

(t− t′)∂tU + σa3∂aU +
1

2

(

σ a
3 a − 3

)

U = 0. (9.5)

The differential equation can be integrated along any
spacetime geodesic that originates at x′. We may, in par-
ticular, choose a time-directed geodesic with no spatial
displacement, such that t(λ) = t′ + λ and xa(λ) = xa

′

.
For such a geodesic we have that σa3 = 0 and σ a

3 a =
σ a
3 a(x

′,x′) = 3, and the differential equation reduces to
(t − t′)∂tU = 0. This implies that the two-point func-
tion cannot depend on t, and since its dependence on t′

can only be through the combination t − t′, it cannot
depend on t′. We have, therefore, established the stated
property.
The absence of a dependence upon t implies that the

two-point function satisfies the purely spatial differential
equation

σa3∂aU +
1

2

(

σ a
3 a − 3

)

U = 0 (9.6)

together with the boundary condition U(x′,x′) =
1. These are precisely the defining relations for the
Hadamard functionW0(x,x

′), as stated in Eqs. (4.6) and
(4.7). We conclude, therefore, that

U(x,x′) =W0(x,x
′) (9.7)

for ultrastatic spacetimes.
Next we turn our attention to the two-point function

V (x, x′), and prove that it admits the expansion

V (x, x′) =
∞
∑

n=0

Vn(x,x
′)σn, (9.8)

in which the coefficients Vn are smooth and time-
independent; the expansion involves the four-dimensional
world function, and it is known to converge within a suffi-
ciently small neighborhood of x′. The proof of the state-
ment relies on the recurrence relations satisfied by the
expansion coefficients [30],

σα∂αV0 +
1

2

(

σαα − 2
)

V0 =
1

2
�U

∣

∣

∣

∣

σ=0

(9.9)
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when n = 0, and

σα∂αVn +
1

2

(

σαα + 2n− 2
)

Vn = − 1

2n
�Vn−1 (9.10)

when n > 0.
We begin with an examination of V0. In ultrastatic

spacetimes its differential equation becomes

(t− t′)∂tV0 + σa3∂aV0 +
1

2

(

σ a
3 a − 1

)

V0 =
1

2
∇2U. (9.11)

Once more this equation can be integrated along any
spacetime geodesic that originates at x′, and once more
we choose a time-directed geodesic. In this case we have

(t− t′)∂tV0 + V0 =
1

2
∇2U

∣

∣

∣

∣

x=x
′

=
1

12
R(x′), (9.12)

in which R(x′) is the spatial Ricci scalar evaluated at x′,
obtained from the known expression for ∇2U evaluated
in the coincidence limit (see Sec. 14.2 of Ref. [1]). The
general solution to this equation is V0 = 1

12R(x
′) + c(t−

t′)−1 where c is a constant, and we see that V0 fails to
be smooth at x = x′ unless c = 0. We conclude that V0
cannot depend on time.
Turning next to Vn, we proceed by induction. We as-

sume that Vn−1 is known to be time-independent, and
prove that Vn must in turn be time-independent. We
begin with the differential equation

(t−t′)∂tVn+σa3∂aVn+
1

2

(

σ a
3 a+2n−1

)

Vn = − 1

2n
∇2Vn−1,

(9.13)
which we integrate along a time-directed geodesic. The
equation reduces to

(t− t′)∂tVn + (n+ 1)Vn = − 1

2n
∇2Vn−1

∣

∣

∣

∣

x=x
′

, (9.14)

and we find that the general solution contains a term
c(t − t′)−(n+1) that fails to be smooth at x = x′ unless
c = 0. This allows us to conclude that Vn cannot depend
on time, and we have established Eq. (9.8).
We may now demonstrate the equality of the Green’s

functions. The four-dimensional version of the Detweiler-
Whiting singular Green’s function is

GS

4(x, x
′) =

1

2
U(x, x′)δ(σ)− 1

2
V (x, x′)Θ(σ), (9.15)

in which Θ is the Heaviside step function and δ the
Dirac distribution. According to Eq. (3.16), the three-
dimensional version is

GS

3(x,x
′) =

∫

GS

4(x, x
′) dt′ (9.16)

when N(x′) = 1. With U independent of time and σ
factorized as

σ = −1

2

(

∆t−
√
2σ3

)(

∆t+
√
2σ3

)

(9.17)

with ∆t = t− t′, we find that the integral becomes

GS

3(x,x
′) =

U(x,x′)√
2σ3

− 1

2

∫

√
σ3

−√
σ3

V (x, x′) d∆t. (9.18)

In this we insert Eq. (9.8), integrate term by term using

∫

√
σ3

−√
σ3

σn d∆t =

(

−1

2

)n ∫
√
σ3

−√
σ3

(

∆t2 − 2σ3
)n
d∆t

=

√
πΓ(n+ 1)

2nΓ(n+ 3
2 )

(2σ3)
n+ 1

2 , (9.19)

and simplify. Our final expression for the singular
Green’s function is

GS

3(x,x
′) =

W S(x,x′)√
2σ3

(9.20)

with

W S(x,x′) = U(x,x′)

−
∞
∑

n=1

(n− 1)!

(2n− 1)!!
Vn−1(x,x

′)(2σ3)
n. (9.21)

These equations reveal that GS
3 does admit a three-

dimensional Hadamard form, and that we may make the
identifications

W S

0 (x,x
′) := U(x,x′) (9.22)

as in Eq. (9.7), and

W S

n(x,x
′) := − (n− 1)!

(2n− 1)!!
Vn−1(x,x

′). (9.23)

These coefficients satisfy the recursion relation of
Eq. (4.6), as can be seen by invoking Eqs. (9.9) and
(9.10), and are therefore the same coefficients that appear
in Eq. (4.5). The proof of equality between GS

3(x,x
′)

and GH
3 (x,x

′) in ultrastatic spacetimes is complete, and
the calculations have revealed the relationship between
U and W0, and between Vn and Wn.

B. Electromagnetic field

The proof of equality between the Hadamard con-
struction GH

3 and the three-dimensional version of the
Detweiler-Whiting Green’s function GS

3 for ultrastatic
spacetimes proceeds along the same lines as in the scalar
case. In fact, the calculational details are strictly iden-
tical, because the two-point functions U t′

t (x, x′) and

V t′

t (x, x′) that are involved in the relevant component
of the electromagnetic Green’s function,

GS t′

t (x, x′) =
1

2
U t′

t (x, x′)δ(σ)− 1

2
V t′

t (x, x′)Θ(σ), (9.24)
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are strictly identical to their scalar counterparts: U t′

t =

U and V t′

t = V . The first equality follows from the gen-

eral relation U β′

α = g β′

α U — see Eqs. (14.8) and (15.9)

in Ref. [1] — together with the property that g t
′

t = 1 for
ultrastatic spacetimes. The second equality follows from
the fact that if V β′

α is expanded as

V β′

α =
∑

n=0

V β′

nα σn, (9.25)

then the recursion relations satisfied by V t′

n t are strictly
identical to those satisfied by Vn. The results of
Sec. IXA, therefore, allow us to state that for ultrastatic
spacetimes, GH

3 = GS
3 in the electromagnetic case also.

X. SELF-FORCE IN SPHERICAL SPACETIMES

A. Scalar field

We consider the self-force acting on a static scalar
charge q in a static and spherically-symmetric spacetime.
The metric is written as

ds2 = −e2ψ dt2 + f−1dr2 + r2
(

dθ2 + sin2 θ dφ2
)

, (10.1)

in which ψ and f are functions of r. In this notation
N = eψ and Ar = ψ′ is the only nonvanishing component
of the vector Aa. The potential Φ generated by the point
scalar charge is a solution to

∇2Φ +Aa∂aΦ = −4πqδ3(x, z), (10.2)

which is obtained from Eqs. (3.2) and (3.21).
In order to integrate the field equation we decompose

the potential and source in spherical harmonics:

Φ(t, θ, φ) =
∑

ℓm

Φℓm(r)Yℓm(θ, φ) (10.3)

and

δ3(x, z) =
f
1/2
0

r20
δ(r − r0)

∑

ℓm

Y ∗
ℓm(θ0, φ0)Yℓm(θ, φ),

(10.4)
in which (r0, θ0, φ0) represent the spherical coordinates
of the particle’s position z, and f0 := f(r0). With-
out loss of generality we may place the particle along
the polar axis (θ0 = 0) and exploit the property

Yℓm(0, φ) =
√

(2ℓ+ 1)/(4π)δm,0 of spherical-harmonic
functions. Substitution within the field equation then
produces

r2Φ′′
ℓ0 +

(

2 +
rf ′

2f
+ rψ′

)

rΦ′
ℓ0 −

ℓ(ℓ+ 1)

f
Φℓ0

= −4πq

√

2ℓ+ 1

4π
f
−1/2
0 δ(r − r0), (10.5)

in which a prime indicates differentiation with respect to
r. The modes with m 6= 0 necessarily vanish.
The self-force acting on the scalar charge is given by

Fα = q(gαβ + uαuβ)∇βΦ
R, in which ΦR := Φ − ΦS is

the difference between the actual potential Φ and the
Detweiler-Whiting singular field ΦS; the regular potential
is known to be smooth at x = z. In a static situation
the self-force has a vanishing time component, and its
spatial components are given by F a = qhab∂bΦ

R. In a
spherically-symmetric spacetime the angular components
vanish, and the radial component is

F r = qf0∂rΦ
R(r0, θ0, φ0). (10.6)

Recalling the spherical-harmonic decomposition of the
potential, we may express this as

F r = qf0 lim
x→z

∑

ℓ

[

(

∂rΦ
)

ℓ
−
(

∂rΦ
S
)

ℓ

]

, (10.7)

in which

(

∂rΦ
)

ℓ
:=

ℓ
∑

m=−ℓ
Φ′
ℓm(r)Yℓm(θ, φ) (10.8)

are the multipole coefficients of ∂rΦ, while (∂rΦ
S)ℓ are

those of the singular potential ΦS. Recalling the relation
of Eq. (3.22) between the potential and the scalar Green’s
function, we may write this in the form

F r = q2f0 lim
x→z

∑

ℓ

[

q−1
(

∂rΦ
)

ℓ
−
(

∂rG
S

3

)

ℓ

]

, (10.9)

in which GS
3(x, z) is the three-dimensional version of the

Detweiler-Whiting singular Green’s function introduced
in Sec. VII A.
The limit in Eq. (10.9) can be taken by setting r =

r0 + ∆, θ = θ0, φ = φ0, and letting ∆ → 0 (from either
direction). With this choice, we shall show below that

(

∂rG
S

3

)

ℓ
= A

(

ℓ+ 1
2

)

+B +
C

(

ℓ+ 1
2

) +
D

(

ℓ− 1
2

)(

ℓ+ 3
2

)

+O(ℓ−3), (10.10)

in which the regularization parameters A, B, C, and
D depend on r0 but are independent of ℓ; explicit ex-
pressions will be presented below. Inserting Eq. (10.10)
within Eq. (10.9) provides a practical method of com-
puting the self-force by means of a regularized mode sum
that converges to the correct answer. With the particle
placed on the polar axis (θ0 = 0), the multipole coeffi-
cients reduce to

(

∂rΦ
)

ℓ
=

√

2ℓ+ 1

4π
Φ′
ℓ0(r0 +∆). (10.11)

To establish the relation of Eq. (10.10) and calculate
the regularization parameters we follow the method de-
scribed in Sec. V of Haas and Poisson (HP) [32], which
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we adapt to the situation at hand. In HP the motion of
the particle was geodesic and the spacetime was that of
a Schwarzschild black hole; here the particle is kept in
place in any static, spherically-symmetric spacetime. In
HP the motion was taking place in the equatorial plane,
and a transformation of the angular coordinates was im-
plemented to put the particle momentarily on the polar
axis; here the particle is kept on the axis at all times, and
the transformation is not required. Following Sec. III of
HP, the singular Green’s function of Eq. (7.25) is ex-
pressed as an expansion in powers of the coordinate dis-
placements wa := xa − x̄a, in which x̄ := z denotes
the particle’s position. As in Sec. V of HP we express
the angular separations wθ and wφ in terms of functions
Q :=

√
1− cos θ, sinφ, and cosφ that are globally well-

defined on the sphere. In this case of static motion, the
squared-distance function introduced in Eq. (5.22) of HP
reduces to

ρ2 = f−1
0 ∆2 + 2r20Q = 2r20

(

δ2 + 1− cos θ
)

, (10.12)

where

δ2 =
∆2

2r20f0
(10.13)

with ∆ := wr = r − r0. Following the steps outlined in
Sec. VE of HP, we obtain an expansion for ∂rG

S
3 that

takes the schematic form of

∂rG
S

3 =
(

∂rG
S

3

)

−2
+
(

∂rG
S

3

)

−1
+
(

∂rG
S

3

)

0
+
(

∂rG
S

3

)

1

+O(ǫ2), (10.14)

in which a subscript attached to enclosing brackets indi-
cates the scaling with powers of ǫ. The various terms are
schematically given by

(

∂rG
S

3

)

−2
=M−2(∆/ρ

3), (10.15a)
(

∂rG
S

3

)

−1
=M−1(1/ρ) +O(∆2/ρ3)

+O(∆4/ρ5), (10.15b)
(

∂rG
S

3

)

0
= O(∆/ρ) +O(∆3/ρ3) +O(∆5/ρ5)

+O(∆7/ρ7), (10.15c)
(

∂rG
S

3

)

1
=M1ρ+O(∆2/ρ) +O(∆4/ρ3) + O(∆6/ρ5)

+O(∆8/ρ7) +O(∆10/ρ9). (10.15d)

The terms involving the coefficients M−2, M−1, and M1

are those giving rise to the regularization parameters; all
other terms are unimportant.
The multipole decomposition of ∂rG

S
3 is next carried

out with the help of Eq. (A19) of Haas and Poisson; be-
cause the expressions are all φ-independent (by virtue of
the axial symmetry of the problem), there is no need to
perform the φ-average described by Eq. (A13). We make
use of the relations

(∆/ρ3)ℓ =
(

ℓ+ 1
2

)f
1/2
0

r20
sign(∆) +O(∆), (10.16a)

(1/ρ)ℓ =
1

r0
+O(∆), (10.16b)

(ρ)ℓ = − r0
(

ℓ− 1
2

)(

ℓ+ 3
2

) +O(∆) (10.16c)

and arrive at the expression of Eq. (10.10) with A =

M−2f
1/2
0 r−2

0 sign(∆), B = M−1/r0, C = 0, and D =
−M1r0. The detailed computation reveals that

A = − 1

r2
f−1/2 sign(∆), (10.17a)

B = − 1

2r2
(

1 + rψ′), (10.17b)

C = 0, (10.17c)

D = − 1

16r2

[

(

1 + rψ′)−
(

1 + rψ′ + 3r2ψ′2 + r3ψ′3

− 6r2ψ′′ − 2r3ψ′′′)f +
(

1 + 4rψ′ + 3r2ψ′′)rf ′

+
(

1 + rψ′)r2f ′′
]

, (10.17d)

in which all functions are to be evaluated at r = r0.
These are the regularization parameters for a static scalar
charge in any static, spherically-symmetric spacetime.

B. Electromagnetic field

We next consider the self-force acting on a static elec-
tric charge e in a static and spherically-symmetric space-
time with the metric of Eq. (10.1). The vector potential
Φt generated by the point charge is a solution to

∇2Φt −Aa∂aΦt = 4πeN(z)δ3(x, z), (10.18)

which is obtained from Eqs. (3.29) and (3.43).
As in the scalar case we decompose the potential and

source in spherical harmonics and place the particle along
the polar axis (θ0 = 0). Substitution within the field
equation then produces

r2Φ′′
t ℓ0 +

(

2 +
rf ′

2f
− rψ′

)

rΦ′
t ℓ0 −

ℓ(ℓ+ 1)

f
Φt ℓ0

= 4πe

√

2ℓ+ 1

4π
eψ0f

−1/2
0 δ(r − r0), (10.19)

in which f0 := f(r0), ψ0 := ψ(r0), and a prime indicates
differentiation with respect to r. The modes with m 6= 0
necessarily vanish.
The self-force acting on the scalar charge is given by

Fα = eF α
R βu

β, in which F α
R β := Fαβ − F α

S β is the
difference between the actual electromagnetic field and
the Detweiler-Whiting singular field; the regular field is
known to be smooth at x = z. In a static situation the
self-force has a vanishing time component, and in spher-
ical symmetry its radial component is

F r = ee−ψ0f0∂rΦ
R

t (r0, θ0, φ0). (10.20)
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We express this as

F r = ee−ψ0f0 lim
x→z

∑

ℓ

[

(

∂rΦt
)

ℓ
−
(

∂rΦ
S

t

)

ℓ

]

, (10.21)

in which

(

∂rΦt
)

ℓ
:=

ℓ
∑

m=−ℓ
Φ′
t ℓm(r)Yℓm(θ, φ)

=

√

2ℓ+ 1

4π
Φ′
t ℓ0(r0 +∆) (10.22)

are the multipole coefficients of ∂rΦt, while (∂rΦ
S
t )ℓ are

those of the singular potential. Recalling the relation of
Eq. (3.44) between the potential and the scalar Green’s
function, we may write this in the form

F r = e2f0 lim
x→z

∑

ℓ

[

e−1e−ψ0

(

∂rΦt
)

ℓ
+
(

∂rG
S

3

)

ℓ

]

, (10.23)

in which GS
3(x, z) is the three-dimensional version of the

Detweiler-Whiting singular Green’s function introduced
in Sec. VII B.
The limit in Eq. (10.9) is taken by setting r = r0 +

∆, θ = θ0 = 0, and φ = φ0 = 0 and letting ∆ → 0
(from either direction). With this choice, the multipole
coefficients of the singular Green’s function take the same
form as in Eq. (10.10). In this case, however, because of

the different sign in front of Aa in the Poisson equation
for Φt, the regularization parameters are given by

A = − 1

r2
f−1/2 sign(∆), (10.24a)

B = − 1

2r2
(

1− rψ′), (10.24b)

C = 0, (10.24c)

D = − 1

16r2

[

(

1− rψ′)−
(

1− rψ′ + 3r2ψ′2 − r3ψ′3

+ 6r2ψ′′ + 2r3ψ′′′)f +
(

1− 4rψ′ − 3r2ψ′′)rf ′

+
(

1− rψ′)r2f ′′
]

, (10.24d)

in which all functions are to be evaluated at r = r0.
These are the regularization parameters for a static elec-
tric charge in any static, spherically-symmetric space-
time. The computations that lead to Eq. (10.24) involve
the same steps as those described in Sec. XA.
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