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James Lucietti ♭, Sakura Schäfer-Nameki ♯ and Aninda Sinha ♭

♭DAMTP, University of Cambridge

Wilberforce Road, Cambridge CB3 OWA, U.K.
♯II. Institut für Theoretische Physik, University of Hamburg

Luruper Chaussee 149, 22761 Hamburg, Germany

Abstract

The open-closed vertex in the maximally supersymmetric type IIB plane-wave light-cone
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their gauge theory duals. Methods of complex analysis are used to develop a systematic
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illustrated and their large-µ asymptotics are analysed.
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1. Introduction

The plane-wave limit of the AdS/CFT correspondence has been a fertile and active

area of research. In the most prominent variant, this limit relates string theory in the

plane-wave background obtained as a Penrose-limit of AdS5 × S5 [1,2] with a particular

sector of N = 4, d = 4 Super Yang-Mills theory [3]. This sector of the SYM theory is

known as the BMN sector. In this limit both the string theory and the gauge theory are

perturbative and thus are independently accessible to direct computations.

Understanding this duality in the presence of interactions is an important problem,

as it will provide more underpinning evidence for the correspondence. In order to study in-

teractions on the string theory side, one has to resort to light-cone superstring field theory,

as developed initially in [4,5] for flat space and extended to the plane-wave string theory in

[6,7,8,9]. When considering plane-waves with D-branes [10,11,12,13,14,15,16,17,18,19,20]

or orientifolds [21,22,23], open strings are naturally present and their interactions need to

be taken into account. This open-closed string theory is captured by seven basic interac-

tions that can occur. In addition to the free closed and open string Hamiltonians, Hcc and

Hoo, these open-closed interactions enter the Hamiltonian in the following manner

H = Hcc+Hoo+
√
gs(Ho↔oo+Ho↔c)+gs(Hc↔cc+Ho↔oc+Hoo↔oo+Ho↔o+Hc↔c) , (1.1)

where
√
gs and gs, denote the open and closed string coupling constants, respectively. The

first of the O(
√
gs) terms represents the cubic open string interaction, while the second

represents the open to closed transition. The Ho↔oo interaction was studied in [24,25] and

the large-µ limit of the open-closed interaction Ho↔c and its gauge theory implications

was the focus of [26].

Each term in the Hamiltonian can be computed in two steps. Firstly, one imposes

the geometrical continuity conditions on the coordinates and conjugate momenta, i.e.

the kinematical constraints. Secondly, one imposes that the Hamiltonian satisfies the

supersymmetry algebra. The first step of the calculation involves calculating the so-called

Neumann matrices, which follow from solving the continuity conditions written in terms

of the string modes. These Neumann matrices thus relate the various string modes and

form a crucial ingredient in determining the correction to the Hamiltonian. The second

step involves determining the so-called prefactor by imposing the supersymmetry algebra.

The prefactor is a polynomial in creation operators, which implements the dynamical
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constraints. Determining the prefactor depends on certain decomposition theorems, which

require the knowledge of the Neumann matrices.

In the plane-wave background the explicit determination of these Neumann matrices

is highly non-trivial, in particular due to their dependence on the background constant

Ramond-Ramond five-form flux µ. As the large-µ limit of the plane-wave string theory is

conjectured to correspond to the BMN sector of the N = 4 SYM theory, the Neumann

matrices in this limit have been of foremost interest and the only example so far of a

solution known for all values of µ has been the cubic closed string vertex [6,27,28].

In this paper, we will explicitly construct the Neumann matrices for the open-closed

transition vertex, which are valid for all µ. In particular, this allows to rigorously obtain

both the large-µ asymptotics as well as to reproduce the correct flat space limit. The

corresponding vertex in flat-space has been discussed in [4,29,30,31,32,33].

The open-closed vertex in the large-µ limit and its relation to the gauge theory was

discussed in [26]. Our analysis will determine the solution to the vertex equations for all

values of µ and then study the asymptotics for large µ. This stands in contrast to taking

the large-µ approximation of the vertex equations before solving them, which is what

has been proposed in [26]. The expressions obtained in this paper will yield, compared

to the naive approximation, the same large-µ asymptotics for one of the matrices, but

renormalized results for the other two. So, one has to treat such naive approximations

with a grain of salt and has to carefully analyse whether they are mathematically justified,

which generically they are not. This point shall be elaborated upon in due course.

In flat space the open-closed Neumann matrices [4] are constructed out of certain

functions um, which are defined as

um =
Γ(m+ 1/2)√
πΓ(m+ 1)

, (1.2)

where m represents the mode number. It will turn out that in the plane-wave background

these functions are replaced by certain “µ-deformed” generalizations; this will in particular

require the definition of two generalizations of the Gamma function, which we shall refer

to as µ-deformed Gamma functions.

In deriving the Neumann matrices, we will use methods of complex analysis in order

to rewrite certain infinite sums in terms of contour integrals on the complex plane, where

the complex variable will represent the mode number that is being summed over. The

pole and zero structure of the Neumann matrices will be motivated using this integral

2



representation of the sums. We illustrate this method in the flat space case. However, in

the plane-wave case certain subtleties in the method arise, which are due to the presence

of the mode numbers ωn = sgn(n)
√

n2 + µ2 and the thereby resulting square root branch

cuts. These points will be addressed in detail.

We shall determine the Neumann matrices for both Dirichlet and Neumann boundary

conditions of the open string. In flat space, these matrices are related by T-duality. In

the plane-wave background, statements about T-duality are more obscure. In our case it

will turn out that the Neumann matrices for Dirichlet and Neumann boundary conditions

differ by a µ-dependent factor, which goes to unity in the µ = 0 limit. In this limit, our

solutions are precisely equal to the flat space result. The implications of this need further

investigation.

The paper is organized as follows. In section 2, we shall derive the continuity con-

ditions to be imposed on the open-closed vertex and thereby derive the equations for the

Neumann matrices. In section 3, we will illustrate a procedure using methods of contour

integration to solve these constraints explicitly. Using this procedure we will re-derive the

known flat space solutions [4]. We elaborate on the subtleties arising from branch cuts

and branch point singularities in the plane-wave background and motivate the pole and

zero structure for the Neumann matrices. In section 4, we will solve the equations for the

Neumann matrices for all values of µ in the case of Neumann as well as Dirichlet boundary

conditions. This involves the definition of new µ-deformed Gamma-functions. In sections

5 and 6, we will analyse the large-µ asymptotics of the solutions and their behaviour will

be illustrated graphically. We conclude with discussions and open problems in section

6. Appendix A summarizes known identities relevant to the flat space analysis and an

example using the contour method to sum a series is provided. In appendix B, several

key properties and the asymptotics of the newly defined µ-deformed Gamma functions are

discussed.

2. The open-closed vertex

In this section, we will set up the notation and conventions to be used in the rest of

the paper. We will derive the continuity conditions to be imposed on the bosonic vertex

and the resulting constraint on the Neumann matrices.
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2.1. Neumann boundary conditions

We start with the calculation in the plane-wave of the open-closed vertex, with

Neumann boundary conditions on the open string. The corresponding discussion for the

flat space superstring can be found in [4]. The bosonic part of the world sheet action is

∫ π|α|

0

d2σ(∂X · ∂X + µ2X2) , (2.1)

where we have suppressed the spacetime vector index for convenience. The length of the

world-sheet is parametrized by |α| = |2p+α′|, which without loss of generality, we will take

to be unity for the purpose of this paper1. The equations of motion read

(−∂2τ + ∂2σ − µ2)X = 0 . (2.2)

The mode expansions for the closed string and open string with Neumann boundary con-

ditions, which satisfy the above equations of motion are

XI
closed(σ, τ) = xIc cosµτ + pIc

sinµτ

µ
+ i

∑

m 6=0

1

ω2m

(

αI
me

−i(ω2mτ+2mσ) + α̃I
me

−i(ω2mτ−2mσ)
)

.

(2.4)

XI
open(σ, τ) = xI0 cosµτ + pIo

sinµτ

µ
+ i

∑

m 6=0

1

ωm
βI
me

−iωmτ cosmσ , (2.3)

which at τ = 0 become

XI
closed(σ) = xIc + i

∑

m 6=0

1

ω2m

(

αI
me

−2imσ + α̃I
me

2imσ
)

XI
open(σ) = xIo + i

∞
∑

m=1

1

ωm
(βI

m − βI
−m) cosmσ .

(2.5)

We also define P I = ∂
∂τ
XI so that at τ = 0,

P I
closed(σ) = pIc +

∑

m 6=0

(

αI
me

−2imσ + α̃I
me

2imσ
)

P I
open(σ) = pIo +

∞
∑

m=1

(βI
m + βI

−m) cosmσ .

(2.6)

1 This is also the convention used in [26].
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The non-trivial commutation relations are

[βm, βn] = ωmδm,−n

[αm, αn] =
ω2m

2
δm,−n

[α̃m, α̃n] =
ω2m

2
δm,−n .

(2.7)

The conventions have been chosen such that

ωn = sgn(n)
√

n2 + µ2 , (2.8)

where µ is the RR-field strength and we have parametrized the string world-sheet to be of

length π. Note that the mode expansion and the commutation relations have the expected

flat space limit and coincide with the expressions given in [4]. For the open-closed vertex,

the following relation has to be satisfied by the fields at τ = 0

XI(σ)open = XI(σ)closed , P I(σ)open + P I(σ)closed = 0 , (2.9)

which results in terms of the modes in

1

ω2n
(αn − α̃−n)−

∞
∑

m=1

1

ωm
cnm(βm − β−m) = 0 (2.10)

(αn + α̃−n) +
∞
∑

m=1

cnm(βm + β−m) = 0 . (2.11)

These equations are understood as holding upon the vertex |V 〉 and the constants cnm are

given by

cnm =
1

π

∫ π

0

dσ e2inσ cos(mσ) =















1

2
(δm,−2n + δm,2n) m even,

4in

π(4n2 −m2)
m odd .

(2.12)

The relations (2.10) and (2.11) are equivalent to the following conditions (derived by

combining the n and −n versions of the equations)

αn + α̃n + β−2n = 0 , (2.13)

and

αn− α̃n−
in

π

∞
∑

m=0

1

(m+ 1/2)2 − n2

((

1− ω2n

ω2m+1

)

β2m+1 +

(

1 +
ω2n

ω2m+1

)

β−2m−1

)

= 0 .

(2.14)
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These equations reduce precisely to the relations in [4] for µ = 02. (2.13) implies that the

vertex |V 〉 = exp(∆)|Ω〉 has to have a decomposition ∆ = ∆1 +∆2, where

∆1 = −
∞
∑

m=1

√
2

ω2m
β−2mα

I
−m , (2.15)

and where we defined
√
2αI/II = α ± α̃, so that αII

0 = 0. In order to solve (2.14), we

further make the ansatz

∆2 =
∞
∑

m,n=0

Amnβ−2m−1α
II
−n +

1

2
Bmnβ−2m−1β−2n−1 +

1

2
Cmnα

II
−mα

II
−n . (2.16)

The resulting generalizations of the equations (7.15)-(7.18) in [4]3 are

−2
√
2in

π

∞
∑

m=0

1

ω2m+1 − ω2n
Amk = δn,k (2.17)

−
∞
∑

m=0

Bmk

ω2m+1 − ω2n
=

1

(ω2n + ω2k+1)ω2k+1
(2.18)

4
√
2in

πω2n

∞
∑

m=0

1

ω2m+1 + ω2n
Amp =Cnp (2.19)

4
√
2in

πω2n

( ∞
∑

m=0

1

ω2m+1 + ω2n
Bmp +

1

(ω2p+1 − ω2n)ω2p+1

)

=Apn . (2.20)

The fact that the open string must join smoothly at its end points imposes the additional

condition for A that ∞
∑

m=0

Amk = 0 , (2.21)

and another condition for B ∞
∑

m=0

Bmk =
1

ω2k+1
. (2.22)

For µ → 0 these reduce to the correct flat space relations. When we consider the limit

µ → ∞, naively from equation (2.17) it seems that A must be of order O(1/µ) and from

equations (2.18), (2.19) that B,C must be O(1/µ3). Considering equation (2.20) and

2 Note that there is a slight convention mismatch in [4], in that the mode expansion in (2.11)

in [4] together with the definition of the cnm do not give rise to (7.10,11). This can be remedied

by choosing the opposite sign for σ in the exponentials in (2.11).
3 Note that there is a factor of 2 missing on the LHS of equation (7.15) in [4].
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neglecting the B term, we see that the large-µ asymptotics of A by this naive analysis is

given by

Apn =
1

πµ

8in
√
2

(2p+ 1)2 − (2n)2
+O

(

1

µ3

)

. (2.23)

As we will see in the section on the large-µ asymptotics, the naive approximations differ

for B and C from the actual results.

2.2. Dirichlet boundary conditions

In the case of Dirichlet boundary conditions, the open string mode expansion is

XI
open(σ, τ) = (zero modes) +

∑

m 6=0

1

ωm
βI
me

−iωmτ sinmσ . (2.24)

The presence of zero-modes is dependent on what type of D-brane is being considered.

In particular, for class I branes, the zero modes vanish, however for class II and oblique

branes, the zero modes are in fact σ-dependent [16,18,20,17]4. For class I branes the vertex

equations take the form

i
1

ω2n
(αn − α̃−n)−

∞
∑

m=1

1

ωm
čnm(βm + β−m) = 0 (2.25)

i(αn + α̃−n) +

∞
∑

m=1

čnm(βm − β−m) = 0 , (2.26)

where

čnm =
1

π

∫ π

0

dσ e2inσ sin(mσ) =















i

2
(δm,2n − δm,−2n) m even,

− 1

π

2m

(4n2 −m2)
m odd ,

(2.27)

which correspond to the Fourier modes of sin(mσ) that appear in the Dirichlet open string.

The resulting vertex equations are then

αn − α̃n − β−2n = 0 (2.28)

αn + α̃n − i
2

π

∞
∑

m=0

(2m+ 1)

ω2m+1

(

β2m+1

(ω2n + ω2m+1)
+

β−2m−1

(ω2n − ω2m+1)

)

= 0 . (2.29)

4 In particular, for the class I D7-brane, considered in [26], there are no zero-modes for the

open string.

7



In general, the zero modes for the Dirichlet open strings, for instance the D-instanton of

[18,17], are σ-dependent. This leads to a subtlety in the continuity condition since the

Fourier modes of these terms will be non-vanishing for the non-zero modes. One can take

this into account by redefining αI and αII in the following manner
(

αI
n

)

new
=
(

αI
n

)

old
+

i

2
√
2
ω2n(fn + f−n) (2.30)

(

αII
n

)

new
=
(

αII
n

)

old
+

i

2
√
2
ω2n(fn − f−n) , (2.31)

where

fn =
1

π

∫ π

0

dσ (zero modes) e2inσ . (2.32)

With this redefinition, one would need to define the vacuum in terms of these new oscilla-

tors5. The analysis will now be the same as that for the case of vanishing zero modes.

The key point is again to solve for the part of the vertex involving odd open string

modes. The ansatz for the vertex is

∆̌2 =
∞
∑

m=0,n=1

Ǎmnβ−2m−1α
I
−n +

1

2

∞
∑

m,n=0

B̌mnβ−2m−1β−2n−1 +
1

2

∞
∑

m,n=1

Čmnα
I
−mα

I
−n ,

(2.33)

for which (2.29) imposes the following conditions

i

√
2

π

∞
∑

m=0

(2m+ 1)

ω2m+1 − ω2n
Ǎmk = δn,k (2.34)

∞
∑

m=0

(2m+ 1)

ω2m+1 − ω2n
B̌mk =

(2k + 1)

(ω2n + ω2k+1)ω2k+1
(2.35)

i
2
√
2

πω2n

∞
∑

m=0

(2m+ 1)

ω2m+1 + ω2n
Ǎmk = Čnk (2.36)

i
2
√
2

πω2n

( ∞
∑

m=0

(2m+ 1)

ω2m+1 + ω2n
B̌mk −

(2k + 1)

(ω2k+1 − ω2n)ω2k+1

)

= Ǎkn . (2.37)

(X(0)−X(π))|V 〉 = 0 is autmatic for the non-zero modes and so does not impose additional

constraints. For µ → 0 these reproduce the flat space equations of [33]. Again, one can

study a naive approximation of the solutions as µ→ ∞, which yields, e.g.,

Ǎkn = − 4i
√
2(2k + 1)

π((2k + 1)2 − (2n)2)µ
+O

(

1

µ3

)

. (2.38)

We shall determine the solutions and in particular this will show that they are closely

related by a µ-dependent factor to the solutions in the Neumann case.

5 Explicitly, if (αn)new = (αn)old + cn, where cn are c-numbers, then |Ω〉new =

exp
(

−
∑

∞

1
2 cn

ω2n
(α−n)old

)

|Ω〉old. Clearly then (αn)new|Ω〉new = 0 for n > 0.
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3. Summation technique for solving the vertex equations

3.1. Contour integration method

Let us consider the system of equations (2.17)-(2.22) in flat space, i.e. when µ = 0.

In order to try and solve these we employ the following technique. Let f(z) be analytic

except for possibly poles, which will be at positions zk. Suppose f(z) is zero, when z is a

negative integer. Then by Cauchy’s theorem we have

∞
∑

n=0

f(n) +
∑

k

Resz=zkπ cot(πz)f(z) = lim
R→∞

∮

CR

dz

2πi
π cot(πz)f(z) , (3.1)

where CR is the contour given by a circle of radius R centred on the origin, which does

not intersect any poles of the integrand (so in particular R 6= 1, 2, 3...). The contour is

depicted in figure 1.

Figure 1 Contour CR.

In order for our technique to be useful we require that the RHS of the above equation

vanishes, which leaves us with an expression for
∑∞

0 f(n). This will impose a condition

on the behaviour of f(z) at infinity, which we will now deduce. Fortunately this turns

out to be easy since | cot(πz)| is bounded on CR as R → ∞. Therefore it is sufficient to

require that |zf(z)| → 0 on CR as R → ∞. Thus the problem can be reformulated as:

given
∑∞

0 f(n) find an f(z) which has the correct asymptotic behaviour. This will then

provide us with a solution for f(n). At this stage it is not obvious under what conditions

the solutions are unique and we shall return to this point below. It is important to note

that if f(z) were to have no poles, it would be analytic everywhere and thus due to the

asymptotic property would be bounded; hence by Liouville’s theorem a constant, which

must equal zero. Thus we conclude that f(z) must have poles. An explicit example of this

method is provided in appendix A.2 for proving a well known identity.
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Note that given the behaviour at infinity, the pole and zero structure (i.e. positions

and multiplicities of all the poles and zeroes) may be sufficient to determine f(z) uniquely.

To do this we employ deeper results on holomorphic functions, namely, if h(z) is analytic

everywhere in C, has no zeroes and is of order zero, then it is a constant. An analytic

function is of order zero, if logM(R) = O(Rǫ) for ǫ > 0, where M(R) is the maximum of

|h(z)| on circles of radius R (centred on the origin). We may now apply this to our case.

Suppose we have two possibilities for f(z), call them f1(z) and f2(z), with the same pole

and zero structure. Consider f1(z)/f2(z). This is analytic everywhere with no zeroes. If

f2(z) ∼ z−β where β > 1 then f1(z)/f2(z) = O(zk) where k ≥ β − 1. Thus we see that

for f1/f2 we have logM(R) = O(logR) and hence it is of order zero. We deduce that

f1/f2 = A, a constant. Techniques of complex analysis similar to these used above can be

found, e.g., in [34].

3.2. Flat space case

As a warm-up for the plane-wave case, we shall use the above contour method to

explicitly construct the known solutions to the flat space open-closed vertex equations.

These were obtained in [4] by using the identities given in appendix A. Firstly, consider

the flat space limit µ = 0 of the equations (2.17)-(2.22) for A and C

∞
∑

m=0

Amn = 0, (3.2)

∞
∑

m=0

Amk

2m+ 1− 2n
= − πδnk

2
√
2in

, (3.3)

i
√
2

π

∞
∑

m=0

Amp

m+ 1/2 + n
= Cnp . (3.4)

In order to solve these equations, we first convert the sums into contour integrals using

the method of the previous section, i.e., by introducing the complex function A(m, k) of

m ∈ C such that it coincides with Amn, when m is a non-negative integer. The idea will be

to determine the poles and zeroes of A and reconstruct the function using this information.

For example the contour integral for the LHS of (3.3) takes the form

∮

C

dm cos(πm)Γ(−m)Γ(m+ 1)
A(m, k)

m+ 1/2− n
, (3.5)

where C is the contour which encloses only the positive integers. We will send the contour

to infinity assuming that A has the asymptotic behaviour, such that the integrand tends to
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zero at infinity. From (3.2) we can deduce that A(m, k) will have at most simple poles at

half integer values of m (since they will cancel with the zeroes of cos(πm)), if we assume no

relative cancellations between residues of A(m, k) 6. Also we see that A(m, k) must have

zeroes at negative integers (again assuming no relative cancellations occur) since otherwise

Γ(m + 1) would give non-zero contributions. Further, setting n = k in (3.3) implies that

there must be a simple pole at m = k − 1/2. Thus A(m, k) must be of the form

A(m, k) =
f(m, k)

m+ 1/2− k
, (3.6)

where f(m, k) is inversely proportional to Γ(m + 1). Now consider equation (3.4). If

f(m, k) had no further poles, then following the line of reasoning above, Cnp would vanish,

which is ruled out by physical considerations. Thus f(m, k) must have further poles atm =

−n − 1/2, for each n = 0, 1, · · ·. Equation (3.2) immediately tells us that these should be

simple poles. Thus f(m, k) must be proportional to
∏∞

n=0 1/(m+ n+ 1/2). The product

is divergent as it stands, but can be made convergent by using the Weierstrass form of the

Gamma function as in appendix A. Thus f(m, k) is proportional to Γ(m+1/2)/Γ(m+1),

which in the notation of [4] is defined as
√
πum. As there cannot be further zeroes or

poles in A(m, k), we have determined A(m, k) up to an unknown function in m, with

neither zeroes nor poles. Using the theorem in the previous section we can show that if

this function is holomorphic and has the required asymptotic behaviour for the contour

method to work, then it must be a constant. The constant of proportionality can now be

easily determined by considering equation (3.3) with n = k. The complete answer for Amk

is thus

Amk = i
√
2

umuk
2m+ 1− 2k

. (3.7)

We should emphasise that we have proven that the above expression for Amk is the only

meromorphic function in m with the given poles and zeroes, which solves (3.2) and (3.3)

with the forementioned asymptotic property. Using this solution in equation (3.4), we

can now easily derive the solution for Cnk using the contour integration technique. The

non-trivial residues of relevance in the integration are at m = −n − 1/2. The solution

works out to be

Cnk =
unuk
n+ k

. (3.8)

6 In fact it seems that this must be the case, for Amk must satisfy two separate sums and

thus if the residues cancelled in one they would not in the other.
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In a manner that is identical to deriving the solution for Amk as illustrated above, it can

be shown that the solution for Bmk is given by

Bmk =
umuk

2m+ 2n+ 2
. (3.9)

The so-derived solutions for A,B,C are precisely as given in the literature [4].

3.3. Subtleties in the plane-wave case

We now turn to the plane-wave open-closed vertex equations and their solutions.

This section provides a discussion of various subtleties, which arise in generalizing the

contour method to the plane-wave case. The reader interested only in the solution to the

vertex equations may therefore turn directly to the next section, where the full solution

will be presented and proven.

The main strategy in solving (2.17)-(2.22) will be to proceed as in the flat space

case, i.e., to analyze the structure of poles and zeroes. Again, we assume that there are no

relative cancellations of residues. Consider for definiteness the equation for Bmk, (2.18).

The relevant contour integral is

∮

dm cot(πm)
B(m, k)

ω2m+1 − ω2n
. (3.10)

In order to satisfy (2.18) for all values of n, B(m, k) cannot have poles in m at positive

half-integers. This can be seen as follows. (2.22) implies that B has to have a pole at one

negative integer value. The integral for (2.18) obtains precisely a residue at this integer

as well (since the only extra factor in the integrand compared to (2.22) has a pole at

m = n− 1/2) and the value of the residue is precisely the LHS of (2.18). Now, assume B

had a pole for a positive half-integer, p+1/2. If the denominator term 1/(ω2m+1−ω2n) has

no other poles at p + 1/2, then due to the cot-factor the corresponding residue vanishes.

However, since (2.18) has to hold for all n, for p = n, there would be an additional non-zero

residue. So we conclude that B cannot have poles at positive half-integer values. However,

B can have poles at negative half-integers, as these are again cancelled by the cot(πm)

factor; in fact it must due to (2.20) . Further B has to have zeroes inm at negative integers

(cancelling the poles of the cot(πm)), except for m = −k − 1, where there has to be a

non-trivial residue of the above integral, which gives rise to the RHS of (2.18). This yields

the following ansatz

B(m, k) =
g(m, k)

(ω2m+1 + ω2k+1)
, (3.11)

12



where g(m, k) has poles at negative half-integers and zeroes at negative integers. From

these constraints alone one may be led to choose g(m, k) = umuk, however at this point

the following subtlety, characteristic for the plane-wave case, presents itself.

The key problem arises through contributions to the contour integral from the square

root branch cut of ω2m+1. The branch points are located at m± = −1
2
± iµ

2
. Writing

ω2m+1 =
√
2m+ 1− iµ

√
2m+ 1 + iµ, and choosing the cuts for the square root factors

to extend from m− to i∞ and m+ to i∞, respectively, we obtain a branch line extending

from m− to m+. This choice of cut is suitable, as it ensures that when restricted to the

integers, sgn(n) is automatically incorporated in ωn, i.e., to the right of the cut the phase

of the square root is chosen to be +1 and to the left (in particular for all negative integers)

it is −1. The important point to note now, is that in the contour method, one has to take

the contributions from the integral around the cut (depicted blue in figure 2) into account.

These come from the two line integrals along L1 and L2, as well as the integrals around

the branch points, K1,2. We have also set µ± = ±iµ/2.

Figure 2 Contribution from the branch cut.

In crossing the branch cut, the square root picks up the following phases. Along L1

the argument of the
√
2m+ 1 + iµ-factor is π/4 and of the

√
2m+ 1− iµ is −π/4, whereas

along L2 the arguments are π/4 and 3π/4. Thus, by crossing from L1 to L2, ω2m+1 picks

up a minus sign. In particular, a term
∫

L1

dm[...]
1

(ω2m+1 + ω2n)(ω2m+1 + ω2k)
,

will go over into
∫

L2

dm[...]
1

(−ω2m+1 + ω2n)(−ω2m+1 + ω2k)
.

The most natural way to circumvent this problem is to demand that each of the line

integrals above vanish individually. In order for this to happen, note that cot π
(

−1
2 + iy2

)
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is an odd function in y ∈ IR, thus if in the remaining part of the integrand, the dependence

on m led to an even function in Im(m) then the integral would vanish along each branch.

This is possible if the µ and m dependence was packaged together in the form ω2m+1.

This is natural in light of the plane-wave mode expansions. One can also anticipate that

whenever an index couples to a closed string mode αk, the k and µ dependence is packaged

into ω2k. With m = −1/2+ iy/2, we see that ω2m+1 becomes ±
√

−y2 + µ2, which is even

in y. In addition one has to ensure that the contour integrals around the two branch points,

m±, denoted by K1,2 in figure 2, vanish as well. The solutions that we shall present in the

next section will be shown to satisfy both these requirements.

4. Solution for the plane-wave open-closed vertex

4.1. Neumann boundary conditions

In order to solve the plane-wave vertex equations, the following generalized Gamma-

functions will be of key importance. We define 7 the µ-deformed Gamma-functions of the

first and second kind 8

ΓI
µ(z) = e−γω2z/2

(

1

z

) ∞
∏

n=1

(

ω2n

ω2z + ω2n
eω2z/2n

)

(4.1)

ΓII
µ (z) = e−γ(ω2z−1+1)/2

(

2

ω2z−1 + ω1

) ∞
∏

n=1

(

ω2n

ω2z−1 + ω2n+1
e(ω2z−1+1)/2n

)

, (4.2)

which we shall abbreviate by ΓI ,ΓII , if this does not cause any ambiguities. By comparison

with the Weierstrass form of the standard Gamma function (see appendix B), these satisfy

ΓI
µ=0(z) = Γ(z) , ΓII

µ=0(z) = Γ(z) . (4.3)

Various properties of these µ-deformed Gamma-functions are discussed in appendix B.

These modified Gamma-functions satisfy generalized reflection identities

ΓI
µ(z)Γ

I
µ(−z) = − α

z sin(πz)
(4.4)

ΓII
µ (1 + z)ΓII

µ (−z) = − α

sin(πz)
, (4.5)

7 In version 1 and 2 of the preprint, the “zero-mode” part of ΓI in the case of Neumann

boundary conditions was erroneous, as it would have resulted in the non-vanishing contributions

from the branch cuts.
8 To the best of our knowledge, these Gamma functions are not related to the q-deformed

Gamma functions and have not been previously investigated in the literature.
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where α = 2 sinh(πµ/2)/µ and α→ π as µ→ 0.

Further we define the generalizations of the functions

um =
Γ(m+ 1/2)√
π Γ(m+ 1)

, (4.6)

which appear in the flat space solutions of the vertex. Let

vIm =
(2m+ 1)

ω2m+1

ΓI(m+ 1/2)√
π ΓII (m+ 1)

(4.7)

vIIm =
2

ω2m

ΓII (m+ 1/2)√
π ΓI(m)

, (4.8)

which both reduce to um in the flat space limit µ → 0. Note that vIz has branch points

at −1/2± iµ/2, whereas vIIz has branch points at ±iµ/2. Invoking the reflection formulae

for the modified Gamma functions, we compute

Resm=−n−1/2 v
I
m = vIIn /π . (4.9)

Note that the µ-dependent constant α cancels.

First, we summarize the solutions to the vertex equations with Neumann boundary

conditions, (2.17)-(2.22), and then provide the proofs thereof. The coefficients for the

open-closed vertex are given by

Amk = i
√
2

vImv
II
k

(ω2m+1 − ω2k)
(4.10)

Bmk =
vImv

I
k

(ω2m+1 + ω2k+1)
(4.11)

Cmk = 2
vIIm vIIk

(ω2m + ω2k)
. (4.12)

These solutions can be motivated by noting that the new functions vI and vII have the

same pole and zero structure as the u functions in flat space, to which they further reduce

in the µ = 0 limit. Moreover, according to the observation in the previous section, there

are no contributions from the line integrals around the branch cut. This relies on the fact

that vI−1/2+iy is an even function in y. We will also demonstrate that the branch point

singularities in vI and vII will not affect the calculation.

In order to use the contour method discussed in section 3.1, it is also crucial to show

that A,B,C have the correct asymptotics. Using the results derived in appendix B.3, we
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see that A,B,C are all O(1/z3/2) which is the same as in flat space. Thus we are indeed

justified to use the contour method. Note also, that by comparison with [4] these solutions

have the correct flat space behaviour.

To prove the assertions, we first consider Bmk. Using the summation technique

described previously, we easily see that,

∞
∑

m=0

Bmk

ω2m+1 − ω2n
= −Resm=−k−1

π cot(πm)Bmk

ω2m+1 − ω2n
. (4.13)

A direct computation yields

Resm=−k−1
π cot(πm)Bmk

ω2m+1 − ω2n

= − πvIk
ω2k+1 + ω2n

lim
m→−k−1

(

cot(πm)vIm
)

Resm=−k−1

(

1

ω2k+1 + ω2m+1

)

=
1

(ω2k+1 + ω2n)ω2k+1
,

(4.14)

where the last equality follows after using the reflection identities for both types of Gamma

function, one of which is required to evaluate the limit limm→−k−1[cot(πm)vIm].

Using the solution for Bmk as well as (2.20), the solution for Amk can now be deter-

mined. First, note that

∞
∑

m=0

Bmk

ω2m+1 + ω2n
= −Resm=−k−1

π cot(πm)Bmk

ω2m+1 + ω2n
−Resm=−n−1/2

π cot(πm)Bmk

ω2m+1 + ω2n
. (4.15)

We see that the first term on the RHS is essentially identical to the previous calculation

and thus we have

Resm=−k−1
π cot(πm)Bmk

ω2m+1 + ω2n
=

1

(ω2k+1 − ω2n)ω2k+1
. (4.16)

The second term can be computed as follows

Resm=−n−1/2
π cot(πm)Bmk

ω2m+1 + ω2n
=

vIkπ

ω2k+1 − ω2n
Resm=−n−1/2

cot(πm)vIm
ω2m+1 + ω2n

=

(

vIk π

ω2k+1 − ω2n

)(−πω2n

4n

)

Resm=−n−1/2v
I
m

=

(

vIk v
II
n

ω2k+1 − ω2n

)(−πω2n

4n

)

.

(4.17)
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Thus, defining

Amk =
√
2i

(

vIm vIIk
ω2m+1 − ω2k

)

, (4.18)

the equation (2.20) is satisfied. Now we check the remaining equations satisfied by Amk.

Since, cot(πm)Amk only has poles at m = 0, 1, 2, · · ·, we see immediately that
∞
∑

m=0

Amk = 0. (4.19)

To check the other equation we note that,
∞
∑

m=0

Amk

ω2m+1 − ω2n
= −δnk Resm=n−1/2

π cot(mπ)Amn

ω2m+1 − ω2n
. (4.20)

The residue is computed to be

Resm=n−1/2
π cot(mπ)Amn

ω2m+1 − ω2n

= i
√
2πvIIn vIn−1/2 lim

m→n−1/2

cot(πm)

ω2m+1 − ω2n
Resm=n−1/2

1

ω2m+1 − ω2n
= − iπ

2
√
2n

,

(4.21)

and therefore we have verified (2.17).

Finally we may compute Cmk using (2.19). We are led to

Resm=−n−1/2
Amkπ cot(πm)

ω2m+1 + ω2n
=

i
√
2vIIk π

ω2n + ω2k
Resm=−n−1/2

vIm cot(mπ)

ω2m+1 + ω2n

=

(

i
√
2vIIk vIIn

ω2n + ω2k

)

πω2n

4n
.

(4.22)

Thus,

Cmk = 2

(

vIIk vIIm
ω2m + ω2k

)

, (4.23)

will ensure (2.19) as well as having the correct flat space limit.

As pointed out in section 3.2, there can be contributions from the integrals around the

branch points m±, which were depicted as K1 and K2 in figure 2. Thus, we need to show

that these integrals do in fact vanish in order for the contour argument to hold. Consider

Amk for example. Let m = −1/2 + iµ/2 + ǫeiθ/2; this implies that ω2m+1 = O(ǫ1/2) and

thus Amk = O(ǫ−1/2). Therefore,
∮

K1,K2

dmAmk = O(ǫ1/2) , (4.24)

where the extra factor of ǫ comes from the integration measure of course. Hence as ǫ→ 0

we see that the integral around the branch point does indeed vanish as required. Proofs

for the other sum with Amk and the ones with Bmk are entirely analogous.

This completes the proof, that (4.10)-(4.12) solve the plane-wave open-closed vertex

equations (2.17)-(2.22).
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4.2. Dirichlet boundary conditions

Using the above line of thought one can also determine the solution for the vertex

with Dirichlet boundary conditions on the open string. To this effect we introduce the

µ-deformed Gamma-function

Γ̌I
µ(z) = e−γω2z/2

(

2

ω2z + µ

) ∞
∏

n=1

(

ω2n

ω2z + ω2n
eω2z/2n

)

, (4.25)

which differs from ΓI
µ(z) only in the “zero-mode” part. This Gamma-function has again

the key property that it satisfies a reflection identity

Γ̌I
µ(z)Γ̌

I
µ(−z) = − α

z sin(πz)
, (4.26)

which is proven in the same manner as provided in Appendix B for ΓI
µ(z). Further we

introduce generalizations of the functions um

v̌Im =
(2m+ 1)

ω2m+1

Γ̌I(m+ 1/2)√
π ΓII(m+ 1)

, v̌IIm =
2

ω2m

ΓII(m+ 1/2)√
π Γ̌I(m)

. (4.27)

Note that v̌I−1/2+iy is an odd function of y, which in the Dirichlet case is needed for the

integrals along the cuts to vanish. The functions v̌I,II are related to vI,II by a µ-dependent

factor, which tends to 1 as µ→ 0. The coefficients for the open-closed vertex in this case

are

Ǎmk = −i
√
2

v̌Imv̌
II
k

(ω2m+1 − ω2k)
(4.28)

B̌mk =
v̌Imv̌

I
k

(ω2m+1 + ω2k+1)
(4.29)

Čmk = 2
v̌IIm v̌IIk

(ω2m + ω2k)
. (4.30)

These can be verified in the same manner as in the Neumann case. Consider e.g. the

equation for Ǎ, (2.34). The contour method implies
∞
∑

m=0

Ǎmk
(2m+ 1)

ω2m+1 − ω2n
= −δnk Resm=n−1/2

π cot(mπ)(2m+ 1) Ǎmn

ω2m+1 − ω2n
, (4.31)

where the residue is evaluated as

Resm=n−1/2(2m+ 1)
π cot(mπ)Ǎmn

ω2m+1 − ω2n

= −i2
√
2nπ v̌IIn v̌In−1/2 lim

m→n−1/2

cot(πm)

ω2m+1 − ω2n
Resm=n−1/2

1

ω2m+1 − ω2n
= i

π√
2
,

(4.32)

and therefore we have verified (2.34). The other equations can be proven to hold in a

similar manner.
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5. Large-µ asymptotics

5.1. Neumann boundary conditions

In this section we will analyse the large-µ asymptotics of the solutions that we have

determined. We shall consider µ > 0. One can find the bulk of the details in Appendix B,

where in particular we give the asymptotics of vIm and vIIm . Consider equation (4.10) now

Amk = i
√
2

vImv
II
k

(ω2m+1 − ω2k)
. (5.1)

We find using the asymptotic formulas that

Amk =
i
√
2

π

4k(ω2m+1 + ω1)

ω2m+1ω2k(ω2m+1 − ω2k)(ω2k + ω1)

(

ω2k + µ

ω2m+1 + µ

)1/2

+O
(

e−µ
)

. (5.2)

From the above we see that the leading asymptotic behaviour of Amk is

Amk ∼ 1

πµ

4i
√
2(2k)

(2m+ 1)2 − (2k)2
, (5.3)

which agrees with the naive approximation in (2.23). For completeness we also give

Bmk =
eγ+2a1(ω2m+1 + ω1)(ω2k+1 + ω1)

πω2m+1ω2k+1(ω2m+1 + ω2k+1)(ω2m+1 + µ)1/2(ω2k+1 + µ)1/2
+O

(

e−µ
)

,

Cmk = 2
e−γ−2a1(16mk)(ω2m + µ)1/2(ω2k + µ)1/2

πω2mω2k(ω2m + ω2k)(ω2m + ω1)(ω2k + ω1)
+O

(

e−µ
)

.

(5.4)

We deduce that

Bmk ∼ eγ+2a1

πµ2
, (5.5)

as well as

Cmk ∼ 8mke−γ−2a1

πµ4
. (5.6)

For the reader’s convenience we give Amk to O(1/µ5) more explicitly,

Amk =
8i
√
2k

π(−(2k)2 + (2m+ 1)2)

(

1

µ
− (12k2 + (2m+ 1)2)

8µ3

)

+O

(

1

µ5

)

. (5.7)

As we have emphasised the naive approximation leads one to conclude that B,C behave as

O(1/µ3), whereas the analysis above disagrees with this. One can think of this discrepancy

as arising from a renormalisation due to the higher modes [8]. We have thus determined

the Neumann matrices A,B,C up to O(e−µ). One should note the similarity of these

expression to the ones for the large µ Neumann matrices in [27].
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5.2. Dirichlet boundary conditions

Similarly, one obtains the asymptotics of the Neumann coefficients in the case of

Dirichlet boundary conditions. They are given by

Ǎmk = − i2
√
2

π

(2m+ 1)(ω2m+1 + ω1)(ω2k + µ)3/2

ω2m+1ω2k(ω2k + ω1)(ω2m+1 + µ)3/2(ω2m+1 − ω2k)
+O

(

e−µ
)

B̌mk =
eγ+2a1(2m+ 1)(2k + 1)(ω2m+1 + ω1)(ω2k + ω1)

πω2m+1ω2k+1(ω2m+1 + µ)3/2(ω2k+1 + µ)3/2(ω2m+1 + ω2k+1)
+O

(

e−µ
)

,

Čmk =
8e−γ−2a1(ω2m + µ)3/2(ω2k + µ)3/2

πω2mω2k(ω2m + ω1)(ω2k + ω1)(ω2m + ω2k)
+O

(

e−µ
)

.

(5.8)

In particular, the first terms in the asymptotic expansion are thus

B̌mk ∼ eγ+2a1(2m+ 1)(2k + 1)

4πµ4
, (5.9)

as well as

Čmk ∼ 8e−γ−2a1

πµ2
, (5.10)

and Ǎmk to O(1/µ5) is given by

Ǎmk = − 4i
√
2(2m+ 1)

π((2m+ 1)2 − (2k)2)

(

1

µ
− 3(2m+ 1)2 + (2k)2

8µ3
+O

(

1

µ5

))

. (5.11)

The first order term in this expansion is again in agreement with the gauge theory analysis

in [26]. However, the asymptotics for B̌ and Č differ again from the naive approximation.

6. Discussion

In this paper, we constructed the solutions for the Neumann matrices of the open-

closed vertex in the plane-wave light-cone string field theory for all values of µ. Complex

analytic methods were invoked in order to derive these solutions and along the way, we

were led to define a set of new, µ-deformed Gamma functions. In summary, the exact

bosonic vertex for Neumann boundary conditions was shown to be

|V 〉 = exp(∆1 +∆2)|Ω〉 , (6.1)
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where

∆1 = −
∞
∑

m=1

√
2

ω2m
β−2mα

I
−m , (6.2)

and

∆2 =
∑

m,n

Amnβ−2m−1α
II
−n +

1

2
Bmnβ−2m−1β−2n−1 +

1

2
Cmnα

II
−mα

II
−n . (6.3)

The Neumann matrices A,B,C were determined to be

Amk = i
√
2

vImv
II
k

(ω2m+1 − ω2k)

Bmk =
vImv

I
k

(ω2m+1 + ω2k+1)

Cmk = 2
vIIm vIIk

(ω2m + ω2k)
,

(6.4)

where vIm and vIIm are the µ-deformed generalizations of the corresponding functions in flat

space, um. A similar expression for the Dirichlet case was obtained. In contrast to flat

space, the Neumann and Dirichlet solutions differ. It would be interesting to understand

this from the point of view of T-duality in plane-wave backgrounds [35,36].

Figures 3, 4 and 5 show the behaviour of the Neumann coefficients for Dirichlet

boundary conditions, Ǎmk, B̌mk and Čmk, for fixed m, k as a function of µ. It is clear

from the behaviour of Čmk that there appears to be a maximum for a particular value of

µ, the physical significance of which still needs to be elucidated. It is also clear from the

asymptotic behaviour of the graphs that Ǎ falls off the slowest followed by Č and then B̌.

This is consistent with the large-µ asymptotics analysed in the previous section.

In the light of the BMN correspondence, we discussed the large-µ asymptotics of

the Neumann matrices and found the results for A and Ǎ to agree in both the Dirichlet

and Neumann case with [26], where the corresponding result was computed in the gauge

theory. Note however that our results for B and C in both Neumann and Dirichlet case

differ from the naive approximation. It would be very interesting to check the next to

leading order corrections on the gauge theory side to confirm the accuracy of our results.

Using the exact Neumann matrices for the bosonic part of the vertex, it should

now be straightforward to determine the prefactor exactly and extend our results to the

complete superstring vertex. It would be interesting to study the µ-dependence of the

scattering amplitudes that can be exactly computed.
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Finally, in view of the analytic methods applied in this paper, it may be possible to

simplify the derivation of the exact Neumann coefficients for the cubic vertex [27].
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Appendix A. Collection of useful formulae

In this appendix we collect some useful formulae (cf. [37], [4]). Stirling approximation

Γ(z) ∼z→∞
√
2π zz−1/2e−z , |argz| < π . (A.1)

The reflection identity is given by

Γ(z)Γ(1− z) =
π

sin(πz)
. (A.2)

Some useful identities relevant to the flat space section are collected here. Defining

un =
Γ(n+ 1

2 )√
πΓ(n+ 1)

, (A.3)

it can be shown that the un’s satisfy the following identity which can be readily verified

using the contour integration technique explained in the paper.

∞
∑

m=0

um
m+ a+ 1

=

√
πΓ(a+ 1)

Γ(a+ 3
2
)

. (A.4)

Using this it can be shown that

∞
∑

m=0

um

m− n+ 1
2

= 0, n = 1, 2, · · ·

∞
∑

m=0

umun
m+ n+ 1

=
1

n+ 1
2

, n = 0, 1, 2, · · ·

∞
∑

m=0

um

m+ n+ 1
2

= πun, n = 0, 1, 2, · · ·

∞
∑

m=0

umup

(m− n+ 1
2 )(m− p+ 1

2 )
=
π

n
δnp, n, p = 1, 2, · · · .

(A.5)
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A.1. Sample application of the contour method

As a warm-up and to illustrate the contour method of section 3, we shall provide a

proof of (D.3) in [4]
∞
∑

m=0

um
m− n+ 1/2

= 0 , (A.6)

using the above method. Consider thus the following integral

∮

C1

dq cos(πq) Γ(−q)Γ(q + 1/2)
1

q − n+ 1/2
, (A.7)

which has residues at q ∈ IN and q = n− 1/2. The contour is depicted in figure 6.

Figure 6 Contour C1.

The first type of residues, i.e., q ∈ IN, will reproduce the sum in (A.6). The latter

residue vanishes for all n ∈ IN. Thus we are left with the evaluation of the contour integral

in order to show (A.6). Using Stirling’s formula, the integrand behaves like q−3/2 for large

modulus of q. Thus, the contour can be deformed to infinity, i.e., CR and this integral can

be shown to vanish. This completes the proof.

Appendix B. µ-deformed Gamma functions

B.1. Definitions and identities

Here we define two functions, each of which reduce to the Gamma function as µ→ 0.

First recall that the standard Gamma function may be defined by its Weierstrass product

1

Γ(z)
= zeγz

∞
∏

n=1

(

1 +
z

n

)

e−z/n , (B.1)
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where γ is the Euler constant. Now let us define the following µ-deformed Gamma-function

1

ΓI
µ(z)

= zeγω2z/2
∞
∏

n=1

(

ω2n + ω2z

ω2n

)

e−ω2z/2n . (B.2)

We will define this to be the µ-deformed Gamma function of the first kind. Note that ωz =
√

z2 + µ2, where we choose the finite branch cut for the square root so that ω−z = −ωz.

This implies ωn = sgn(n)
√

n2 + µ2, for n ∈ ZZ. In order to show that ΓI
µ(z) is indeed

well-defined, one can use similar arguments as those for Γ(z) (see [38] p. 235-236). For

completeness we give an argument. Observe that the factors in the infinite product go as

1 +O(1/n2) for sufficiently large n; this implies the infinite product converges absolutely

and uniformly 9. Notice that ΓI
µ(z) has simple poles at z = −1,−2, · · ·, and branch points

at z = ±iµ/2 and a branch cut on [iµ/2,−iµ/2].
Next we will derive a generalisation of the reflection identity (A.2). Note that

1

ΓI
µ(z)Γ

I
µ(−z)

= zeγω2z/2
∞
∏

n=1

(

1 +
ω2z

ω2n

)

e−ω2z/2n(−z) e−γω2z/2
∞
∏

n=1

(

1− ω2z

ω2n

)

eω2z/2n

= −z2
∞
∏

n=1

(

(2n)2 − (2z)2

(2n)2 + µ2

)

= −z sin(πz) µ

2 sinh(πµ/2)
,

(B.3)

where the nice formula sin(πz) = πz
∞
∏

n=1
(1− z2

n2 ) has been used. Thus the reflection identity

takes the form

ΓI
µ(z)Γ

I
µ(−z) = − α

z sin(πz)
, (B.4)

where we have defined α = 2 sinh(πµ/2)/µ. It is easy to see that it reduces to the usual

identity when µ → 0. One can use this identity to calculate the residues of this new

function. For n 6= 0

Resz=−nΓ
I
µ(z) = lim

z→−n
(z + n)ΓI

µ(z)

= lim
z→−n

α(z + n)

−z sin(πz)ΓI
µ(−z)

=
α

π

(−1)n

nΓI
µ(n)

.

(B.5)

9 Recall that
∏

n

(1 + an) converges absolutely iff
∑

n
an converges absolutely.
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Finally, one more crucial property of this function needs to be mentioned. ΓI
µ(iy) is an

odd function of y, on both sides of the branch cut, albeit not the same function on either

side!

For the solution of the plane-wave open-closed vertex, we shall need an additional

kind of µ-deformed Gamma-function. Define the µ-deformed Gamma function of the

second kind as follows

1

ΓII
µ (z)

=

(

ω2z−1 + ω1

2

)

eγ(ω2z−1+1)/2
∞
∏

n=1

(

ω2z−1 + ω2n+1

ω2n

)

e−(ω2z−1+1)/2n , (B.6)

which obviously satisfies ΓII
µ=0(z) = Γ(z). Note that in this definition it is not obvious that

the infinite product converges. However we can prove that it does, although convergence

relies crucially on the exponential factors. The argument runs as follows; for large n
(

ω2z−1 + ω2n+1

ω2n

)

e−(ω2z−1+1)/2n =
ω2n+1

ω2n

(

1 +
ω2z−1

ω2n+1

)(

1− ω2z−1 + 1

2n
+O

(

1

n2

))

=

(

1 +
1

2n

)(

1 +O

(

1

n2

))(

1 +
ω2z−1

2n+ 1
+O

(

1

n2

))(

1− ω2z−1 + 1

2n
+O

(

1

n2

))

=

(

1 +
1

2n

)(

1− 1

2n
− ω2z−1

2n(2n+ 1)
+O

(

1

n2

))

= 1 +O

(

1

n2

)

,

(B.7)

and hence the infinite product converges absolutely and uniformly. The function ΓII
µ (z)

has simple poles at z = 0,−1,−2, · · ·, branch points at 1/2 ± iµ/2 and a branch cut on

[1/2− iµ/2, 1/2 + iµ/2]. Interestingly a reflection identity exists for this function as well

ΓII
µ (1 + z)ΓII

µ (−z) = − α

sin(πz)
. (B.8)

Finally we should emphasise that ΓII
µ (1/2 + iy) is even in y on both sides of the branch

cut.

For the solution to the vertex with Dirichlet boundary conditions we further introduce

a µ-deformed Gamma function

1

Γ̌I
µ(z)

=

(

ω2z + µ

2

)

eγω2z/2
∞
∏

n=1

(

ω2n + ω2z

ω2n

)

e−ω2z/2n , (B.9)

which differs from ΓI
µ(z) only in the “zero-mode” term. It is straightforward to prove that

this satisfies the same reflection identitiy as ΓI
µ(z). Note however, that Γ̌I

µ(iy) is an even

function of y on both sides of the branch cut. This is the key difference to ΓI
µ, and ensures

that in the derivation of the Neumann coefficients, the integrals along each of the branch

cuts vanish for the case of Dirichlet boundary conditions.

Note that generalisations of the identity Γ(z + 1) = zΓ(z) have not been found for

any of the µ-deformed Gamma-functions.
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B.2. Large-µ asymptotics

In this section we will develop the necessary tools to calculate the large-µ asymptotics

of certain combinations of our new functions. Namely we are interested in the behaviour

of vIm and vIIm , which are defined as

vIm =
(2m+ 1)

ω2m+1

ΓI(m+ 1/2)√
π ΓII (m+ 1)

vIIm =
2

ω2m

ΓII (m+ 1/2)√
π ΓI(m)

.

(B.10)

Using the definitions of our Gamma functions we can be more explicit

vIm =
eγ/2√
π

ω2m+1 + ω1

ω2m+1

∞
∏

n=1

(

ω2m+1 + ω2n+1

ω2m+1 + ω2n

)

e−1/2n

vIIm =
2

ω2m

e−γ/2

√
π

2m

ω2m + ω1

∞
∏

n=1

(

ω2m + ω2n

ω2m + ω2n+1

)

e1/2n ,

(B.11)

and we see that it is sufficient to study the following infinite product

eSz ≡
∞
∏

n=1

(

ωz + ω2n+1

ωz + ω2n

)

e−1/2n . (B.12)

Taking the logarithmic derivative of this infinite product with respect to µ we get

∂Sz

∂µ
=

µ

ωz

∞
∑

n=1

1

ω2n+1
− 1

ω2n
. (B.13)

Let

R =

∞
∑

n=1

1

ω2n+1
− 1

ω2n
, (B.14)

and differentiating with respect to µ, we get

∂R

∂µ
=

∞
∑

n=1

− µ

ω3
2n+1

+
µ

ω3
2n

, (B.15)

and thus we see that all we need now is the asymptotic behaviour of

∞
∑

n=1

1

ω3
2n

,

∞
∑

n=1

1

ω3
2n+1

, (B.16)
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which can be worked out as follows. One may obtain an integral representation of the first

sum using the integral definition of Γ(3/2), i.e., making use of

Γ(z) = xz
∞
∫

0

e−xttz−1dt , (B.17)

which holds for Re(z) > 0 and Re(x) > 0. Thus we can write

∞
∑

n=1

1

ω3
2n

=
2√
π

∫ ∞

0

dt t1/2e−µ2t
∞
∑

n=1

e−4n2t , (B.18)

and we see that we have something related to a theta function in the integrand. In fact

we have
∑∞

n=1 e
−4n2t = (ψ(4t/π)− 1)/2 where ψ(t) =

∑∞
n=−∞ e−n2πt, which has the nice

transformation law ψ(t) = 1√
t
ψ(1/t). Now if we change variables to s = µ2t it is easy to

deduce ∞
∑

n=1

1

ω3
2n

= − 1

2µ3
+

1

µ3
√
π

∫ ∞

0

ds s1/2e−sψ(4s/(πµ2))

= − 1

2µ3
+

1

2µ2

∫ ∞

0

ds e−sψ(µ2π/4s) ,

(B.19)

where we have used the transformation law for ψ(t) in the second equality. Now since

limt→∞ ψ(t) = 1 we deduce that

∞
∑

n=1

1

ω3
2n

∼ 1

2µ2
, (B.20)

for µ→ ∞. In fact we have a much stronger result. This is easily derived from our integral

representation as follows. We have10

∞
∑

n=1

1

ω3
2n

= − 1

2µ3
+

1

2µ2

∫ ∞

0

ds e−sψ(µ2π/4s)

=
1

2µ2
− 1

2µ3
+

1

2µ2

∫ ∞

0

ds e−s(ψ(µ2π/4s)− 1)

=
1

2µ2
− 1

2µ3
+

1

2µ2+N

∫ ∞

0

dr e−r/µN

(ψ(µ2+Nπ/4r)− 1)

=
1

2µ2
− 1

2µ3
+O

(

1

µ2+N

)

=
1

2µ2
− 1

2µ3
+O

(

e−µ
)

,

(B.21)

10 Related asymptotics have been discussed in [27].
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where we have used the change of variables r = µNs in the third equality and N can be

any positive integer, in particular as large as we like 11. In a similar manner the integral

representation of Γ(3/2) can be used to deal with the second sum too. We easily show that

∞
∑

n=1

1

ω3
2n+1

= − 1

µ3
+

1√
π

∫ ∞

0

dt t1/2e−µ2tθ2(4it/π) , (B.22)

where θ2(τ) = 2
∑∞

0 eiπτ(n+1/2)2 is one of the theta functions. Using the modular trans-

formation property
√
−iτθ2(τ) = θ4(−1/τ), it then follows that

∞
∑

n=1

1

ω3
2n+1

=
1

2µ2
− 1

µ3
+

1

2µ2

∫ ∞

0

ds e−s(θ4(−µ2π/(4is))− 1) , (B.23)

where θ4(τ) =
∑∞

−∞(−1)neiπτn
2

. If we make the change of variables in the integral on the

RHS r = µNs, it is easy to see that this term is O(1/µN+2) for any positive integer N ; we

have thus derived the useful result

∞
∑

n=1

1

ω3
2n+1

=
1

2µ2
− 1

µ3
+O

(

e−µ
)

. (B.24)

Using this together with (B.21) allows us to deduce that

∂Sz

∂µ
= − 1

2ωz
+O

(

e−µ
)

, (B.25)

and therefore

eSz =
ea1

√
µ+ ωz

+O
(

e−µ
)

, (B.26)

where a1 is a constant. A priori it seems that a1 could depend on z, however it can be

proven it does not. To see this take the logarithmic derivative with respect to z of (B.26)

and then the limit µ→ ∞ and compare with the exact expression for ∂Sz

∂z . The hard part

is now done! We can now straightforwardly find the expansions for vIm and vIIm . We get

vIm =
eγ/2+a1

√
π ω2m+1

ω2m+1 + ω1

(ω2m+1 + µ)1/2
+O

(

e−µ
)

vIIm =
e−γ/2−a1

√
π ω2m

4m(ω2m + µ)1/2

ω2m + ω1
+O

(

e−µ
)

.

(B.27)

11 Recall that f(x) = O(g(x)) if there exists a constant C such that |f(x)| < C|g(x)| for all x

greater than some x0.
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Similarly the expansions for the v̌Im and v̌IIm as defined in (4.27) are computed to be

v̌Im =
eγ/2+a1(2m+ 1)√

π ω2m+1

ω2m+1 + ω1

(ω2m+1 + µ)3/2
+O

(

e−µ
)

v̌IIm =
2e−γ/2−a1

√
π ω2m

(ω2m + µ)3/2

ω2m + ω1
+O

(

e−µ
)

.

(B.28)

B.3. More asymptotics

In this section we provide the asymptotics, which will ensure that the integrals of

the circle at infinity, that arise in the contour method, do indeed vanish. Consider eSz .

Taking the logarithmic derivative with respect to z we get

∂Sz

∂z
=

z

ωz

∞
∑

n=1

(

1

ωz + ω2n+1
− 1

ωz + ω2n

)

. (B.29)

Let us define

Kz =

∞
∑

n=1

(

1

ωz + ω2n+1
− 1

ωz + ω2n

)

, (B.30)

so that
∂Kz

∂z
=

z

ωz

∞
∑

n=1

1

(ωz + ω2n)2
− 1

(ωz + ω2n+1)2
. (B.31)

We will now find an integral representation for each of the sums on the RHS. We will

denote

S1(a) =

∞
∑

n=1

1

(a+ ω2n)2
,

S2(a) =
∞
∑

n=1

1

(a+ ω2n+1)2
.

(B.32)

First consider evaluating S1(a), for which we will again use complex methods. We have (if

Re(a) > 0 12)

S1(a) = −
∮

C

dz

2πi

π cot(πz)

(a+ ω2z)2
, (B.33)

where C is the contour depicted in figure 7, which runs along the imaginary axis (avoiding

the pole in cot(πz) to the right) just to the right of the finite branch cut due to the ω2z

and closes to the right in a semi-circle of radius R enclosing the whole of the right hand

12 For Re(a) < 0 we close in the left hand side of the plane and run along the left hand side

of the branch cut. This will give the same answer.
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Figure 7 Contour C.

plane as R → ∞. We split the contour up C as comprising of C± = (±iµ/2,±i∞),

Cǫ = {ǫeiθ| − π/2 ≤ θ ≤ π/2} and CR = {Reiθ| − π/2 ≤ θ ≤ π/2} and of course the line

integrals along the branch cut (depicted in blue in figure 4), however these vanish due to

the integrand being odd.

Thus the relevant path is C+∪CR ∪C−∪Cǫ. We traverse the contour in a clockwise

direction, hence the minus in the integral above. It is easy to see that the integral along

CR tends to zero as R→ ∞. Also we have

lim
ǫ→0

∮

Cǫ

dz

2πi

π cot(πz)

(a+ ω2z)2
=

1

2(a+ µ)2
. (B.34)

Finally noting that ω2z is
√

µ2 − 4y2 along C+ and −
√

µ2 − 4y2 along C−, we arrive at,

∮

C+∪C−

dz

2πi

π cot(πz)

(a+ ω2z)2
= −2a

∫ ∞

µ/2

dy
coth(πy)

√

4y2 − µ2

(a2 − µ2 + 4y2)2
. (B.35)

All this means is that

S1(a) = − 1

2(a+ µ)2
+ 2a

∫ ∞

µ/2

dy
coth(πy)

√

4y2 − µ2

(a2 − µ2 + 4y2)2
. (B.36)

By a completely analogous method one may show that

S2(a) = − 1

(a+ ω1)2
+ 2a

∫ ∞

µ/2

dy
tanh(πy)

√

4y2 − µ2

(a2 − µ2 + 4y2)2
. (B.37)

By writing coth(πy) = 1+2/(e2πy − 1) and tanh(πy) = 1− 2/(e2πy +1) one may convince

oneself that the remaining integrals in our expression for S1(a) − S2(a) are O(1/a3) and

hence that

S2(a)− S1(a) = − 1

2a2
+O

(

1

a3

)

. (B.38)
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Therefore we get

Kz = − 1

2z
+O

(

1

z2

)

, (B.39)

since the integration constant must be zero. Finally we have

Sz = −1

2
log z + c3 +O

(

1

z

)

, (B.40)

thus proving that vIm and vIIm have the same asymptotics as um which is of course crucial

in order to justify the contour method.
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