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Abstract

The periodic bounce con�gurations responsible for quantum tunneling are

obtained explicitly and are extended to the �nite energy case form inisuper-

space m odelsofthe Universe.Asa com m on feature ofthe tunneling m odels

at �nite energy considered here we observe that the period ofthe bounce

increaseswith energy m onotonically.Theperiodicbouncesdo nothavebifur-

cationsand m ake no contribution to the nucleation rate exceptthe one with

zero energy. The sharp �rstorderphase transition from quantum tunneling

to therm alactivation isveri�ed with the generalcriterions.

PACS num bers:11.15.K c,03.65.Sq,05.70.Fh,98.80.Cq

�e-m ail:m ueller1@ physik.uni-kl.de

ycorresponding author

1

http://arxiv.org/abs/hep-th/9909142v1


I.IN T R O D U C T IO N

Quantum tunneling at �nite energy and tem perature,the so-called therm ally assisted

tunneling,hasattracted considerable attention recently in the study ofthe crossoverfrom

the quantum tunneling dom ain to the therm alactivation (hopping)region. The instanton

m ethodplaysacentralroleinthesestudies.Theprobabilityoftunnelingatzerotem perature

can beobtained from am icro-cannonicalensem bleand hasapath integralrepresentation [1].

In theoneloop approxim ation theprobability isP = Ae� S wherethepreexponentialfactor

A arisesfrom Gaussian functionalintegration oversm all
uctuationsaround the instanton

solution and S istheEuclidean action ofan instanton with zero energy.

Therearetwokindsoftunneling,oneofwhich istunnelingbetween degeneratevacuainduced

by instantonswhich arestable Euclidean �eld solutionswith nontrivialtopologicalcharge.

The instanton can be viewed as an extended particle existing in the barrier interpolating

between degenerate vacua [1]. A (vacuum ) bounce is,however,an unstable solution ofa

Euclidean �eld equation with zero topologicalcharge and waswellknown already decades

ago [2,3].Theinitialand end pointsofa (vacuum )bounceboth term inateon a m etastable

ground stateorfalsevacuum .Thetunneling induced by such a bounceresultsin thedecay

ofthefalsevacuum [4].

Quantum tunnelingat�nitetem perature[5]T isdom inatedbyperiodicinstantons(bounces)

which are periodic solutionsofthe Euclidean equation ofm otion with �nite energy E [6,7]

and in the sem i-classicallim it the path integralis expected to be saturated by a single

periodic instanton. W ith exponentialaccuracy the tunneling probability P(E) at a given

energy E reducesto

P(E )� e
� W (E ) = e

� S(�)� E � (1)

Theperiod � isrelated totheenergyE in thestandard way E = @S

@�
and S(�)istheaction of

theperiodicinstanton (bounce)perperiod.Such periodicinstantons(bounces)sm oothly in-

terpolatebetween thezero tem peratureinstantons(bounces)and thestaticsolution nam ed
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sphaleron sittingatthetop ofthepotentialbarrier.Thesphaleron isresponsiblefortherm al

hopping.Peculiarly thestudy ofexplicitperiodicinstantonsand theirstability began only

aboutten yearsago [8,9].

W ith increasing tem perature therm alhopping becom esm ore and m ore im portantand be-

yond som e criticalor crossover tem perature Tc becom es the decisive m echanism . In the

contextofquantum m echanicsithasbeen dem onstrated thatthetransition from thether-

m alto thequantum regim ecan beconsidered asa phasetransition which isofsecond-order

with certain assum ptions about the shape ofthe potential[10]. Later it was shown that

thesituation isnotgenericand thatthecrossoverfrom thetherm alto thequantum regim e

can quite generally be like thatofa �rst-orderphase transition [11]. The sharp �rst-order

transition has been con�rm ed theoretically in severalspin tunneling system s [12{14]and

triggered active reaserch in various �elds in connection with tunneling. In the context of

�eld theory notm uch work hasbeen donetoward thestudy ofperiodicinstantons.Recently

there were interesting investigations to show that the crossover from the quantum to the

therm alregim e in the vacuum decay with �4 m odelsisessentially a �rst-orderphase tran-

sition in the thin walllim it[15,16]. Itistherefore also a challenging problem to study the

crossover from quantum tunneling to therm alactivation in the contextofcosm ology [17].

Herewefollow therecentm odelinvestigationsofthecreation ofUniverse in thecontextof

theso-called m inisuperspacem odels[18],and extend thestudy oftunneling to �niteenergy

and tem perature.

Thecharacteristicway in which phasetransitionsappearin quantum m echanicaltunneling

processeshasbeen worked outin ref.[11].In contextof�eld theory thecrossoverbehaviour

hasalso been explained in a m ore transparentm anner[19]. A sharp �rstordertransition

is shown to appear as a bifurcation in the plot ofthe instanton action S versus period

�(E ). The criterion fora �rstordertransition can be obtained by studying the Euclidean

tim e period in the neighbourhood ofthe sphaleron asadvocated in ref.[20]. Ifthe period

�(E ! U0) ofthe periodic instanton (bounce) close to the barrier peak can be found,a

su�ciet condition to have the �rstordertransition isseen to be �(E ! U 0)� �s < 0 or
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!2 > !2
s,whereU0 denotesthebarrierheightand �s istheperiod ofsm alloscillation around

thesphaleron.! and !s arethecorrespondingfrequencies.Thefrequency ofthespaleron !s

isnothing butthefrequency ofsm alloscillaton in thebottom oftheinverted potentialwell.

A practically usefulform ula forthecriterion ofthe�rstordertransition isgiven in ref.[21]

and thewindingnum bertransition in O (3)� m odelwith and withoultSkyrm eterm hasbeen

successfully analyzed with thecrirerion [22].In thefollowing thecrossoverbehaviourin the

m inisuperspace m odelisinvestigated in term softhe generalcriterion and we also explain

thephysicsunderlying thecrossoverwhich m ay shed lighton understanding thetim eevolu-

tion oftheUniversein them odel.In Sec.2 thequantum tunneling atzero energy isbrie
y

reviewed. W e em phasize thatthe bounce startsand endson the m etastable ground state

which correspondsto a staticsolution ofthe�eld equation with zero radiusand istherefore

m eaningfulforthe decay ofthe false vacuum .Asa prototype m odelofthe creation ofthe

Universeat�nitetem peraturewediscussthesim ilarprocessofbubblenucleation in Sec.3.

Thecrossoverofthenucleation ratefrom thequantum to theclassicalregim eisstudied in

term softhegeneralcriterionsfor�rst-orderphasetransitions.In Sec.4 weapply a sim ilar

approach to thecosm ologicalm inisuperspace m odel.

II.T H E P ER IO D IC B O U N C E A N D Q U A N T U M T U N N ELIN G AT ZER O

EN ER G Y

Contem porary cosm ologicalm odels are based on the idea that the Universe is pretty

m uch thesam e everywhere � an idea som etim esknown astheCopernican principle which

is related to two m ore m athem atically precise properties that the m anifold m ight have:

isotropyand hom ogeneity.W ebegin with thesim plestm inisuperspacem odeloftheUniverse

[18]de�ned by theaction:

S =

Z

d
1+ N

x
p
�g

�
R

16�G N

� �v

�

(2)

where �v > 0 is a constant vacuum energy according to Ref.[18]and thus plays the role

ofthe cosm ologicalconstant in eq. (2) and m akes the space de Sitter or anti-de Sitter.
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Thespacetim e to beconsidered isR � � where R representsthetim edirection and � isa

hom ogeneousand isotropicN �m anifold with N = 2 or3.TheUniverse isalso assum ed to

beclosed.W ethereforehave:

ds
2 = �dt

2 + �
2(t)d
2

N (3)

which isjusttheRobertson�W alkerm etricoftheclosed case.Thefunction �(t)isknown as

thescalefactorwhich tellsus\how big"thespacetim eslice�isattim et.d
 2
N isthem etric

on a unitN �sphere.Substituting them etriceq.(3)into eq.(2)weobtain theLagrangian

L = �SN �
N � 2

"
N (N � 1)

16�G N

(1� _�2)� �
2
�v

#

(4)

where

SN =
2�

N + 1

2

�(N + 1

2
)

(5)

isthe surface ofthe unitN �sphere. Itiseasy to see thatonly forN = 3 is� = 0 a static

solution oftheequation ofm otion and thuscan serveasthem etastableground stateorfalse

vacuum .TheLagrangian forN = 3 can bewritten

L =
1

2
M (�)_�2 � V (�) (6)

whereM (�)= m0� istheposition dependentm asswith m0 =
3�

2G
.Thepotential

V (�)=
m 0

2
� � ��

3 (7)

isshown in Fig.1 where� = 2�2�v.Theclassicalsolution oftheequation ofm otion in real

tim eis[18]

�(t)=
1



cosh
t; 
=

s

2�

m 0

(8)

which shows thatthe space isthe de Sitterspace expanding att> 0 from �(t= 0)= 1



.

� = 0 is an additionalstatic solution with energy E = 0. The bounce con�guration is

obtained from the Euclidean equation ofm otion by the W ick rotation � = it under the

barrierand isseen to be
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�b(�)=
1



cos
�;

�

�
�

2
� 
� �

�

2

�

m od2� (9)

W eseethatthebounceisaperiodicsolution.Thetrajectory ofthisperiodicbounceforone

period isshown in Fig.1a.The bounce startsfrom thefalse vacuum (� = 0)atim aginary

tim e� = � �

2

and reachestheturning point� = 1



attim e� = 0 and then bouncesback to

thefalsevacuum at� = �

2

.Theperiod ofthebounceis

� =
�



: (10)

The Universe can then be considered to be created spontaneously from \nothing" (� = 0)

and to tunnelthrough the barrier(Fig. 1)into the de Sitterspace. The tunneling rate or

decay rate outofthe false vacuum can be evaluated in term s ofthe action ofthe bounce

and isgiven by

P(E = 0)� e
� W b (11)

where

W b =

Z
�(�=

�

2

)= 0

�(�= �
�

2

)= 0

pb(�)d� =
3

8G 2�v
(12)

Herepb denotesthem om entum ofthebounceand isasusualevaluated from theEuclidean

version LE oftheLagrangian eq.(6),i.e.

pb =
@LE

@ _�
j�= �b = m 0

_�b (13)

Itm ay benoted thatthebouncehereisperiodiceven though theenergy ofthefalsevacuum

is taken to be zero. This is quite unlike the usualcase ofthe bounce at zero energy as,

forexam ple,in thecaseofthewellstudied bounceoftheinverted double-wellpotential[4]

where the period ofthe bounce tends to in�nity. The periodic bounce with �nite period

existsonly at�niteenergy [7].

W e now turn to bubble nucleation in the thin wallcase asa com parison. W hen a �eld

con�guration istrapped in a m etastable state,bubbles ofthe true vacuum state nucleate

6



in the surrounding false vacuum and begin to grow spherically. The processofbubble nu-

cleation isin m any waysanalogousto the nucleation ofthe Universe. Undera num berof

sim plifying assum ptionsthenucleating bubblecan beadequately described by a m inisuper-

spacem odelwith a singledegreeoffreedom [18],thebubbleradiusr(t).TheLagrangian of

1+ N dim ensionsis

L = �SN � 1

�

r
N � 1(1� _r2)

1

2� �
�

N
r
N

�

(14)

Here� isthetension ofthewall,N = 2;3,and � denotesthedi�erencein thevacuum energy

on both sidesofthewall.Thecanonicalm om entum conjugateto thevariabler is

p= �SN � 1

_rrN � 1

(1� _r2)
1

2

(15)

and theHam iltonian is

H =
h

p
2 + �

2
S
2

N � 1
r
2(N � 1)

i1
2

�
�SN � 1

N
r
N (16)

W ethen obtain a pointparticle like Ham iltonian which isthestarting pointofourconsid-

erations.The energy isconserved in the processofbubble nucleation. Forzero energy the

equation H = 0 can berewritten as

p
2 + U(r)= 0 (17)

with thee�ective potential

U(r)= �
2
S
2

N � 1
r
2(N � 1)

"

1�
r2

r20

#

(18)

where r0 =
N �

�
. W e see thatforboth N = 2 and 3 the vanishing radiusr = 0 isa static

solution oftheequation ofm otion with zeroenergy,nam ely,thevacuum ofourpointparticle

likesystem .Besidesthestaticsolution r= 0 thesolution in realtim eis

r(t)= (r2
0
+ t

2)
1

2 (19)

Itisshown in Ref.[18]thatthissolution eq.(19)isthesam edeSitterspaceeq.(8)
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r(~t)= r0cosh(
~t

r0
) (20)

in thenew tim ecoordinate~twith

t= r0sinh
~t

r0
(21)

In the new im aginary tim e coordinate ~� = i~tthe im aginary tim e solution existing in the

barrierisjusttheperiodicbounceofeq.(9),i.e.

rb(~�)= r0cos
~�

r0
;

�

�
�

2
�

~�

r0
�
�

2

�

m od2� (22)

with the�niteperiod

~� = �r0 (23)

Theaction ofthebounceis

W b =

Z
r(�=

~�

2
)= 0

r(�= �
~�

2
)= 0

pbdr=

( 4�

3
�r2

0
; for N = 2

�2

2
�r3

0
; for N = 3

(24)

W eseethatthebubblenucleation isindeed sim ilarto thecreation oftheUniverse.

III.C R O SSO V ER FR O M Q U A N T U M T U N N ELIN G T O T H ER M A L

A C T IVAT IO N � B U B B LE N U C LEAT IO N

Asa prototypeforthenucleation oftheUniversewereconsiderthetem peraturedepen-

denceofthebubblenucleation rate.However,westudy thecrossoverfrom thequantum to

theclassicalregim ein term softhegeneralcriteriaforphasetransitions[20{22].W econsider

thenucleation processat�niteenergy E .Then energy conservation H = E leadsto

p
2 + U(r;E )= 0 (25)

with thee�ective potential(seeFig.2)

U(r;E )= �
2
S
2

N � 1

"

r
2(N � 1)

� (
E

�SN � 1

+
rN

r0
)2
#

(26)
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The periodic bounce at�nite energy E is an im aginary tim e solution which exists in the

barrierbetween two turning pointsr� (asshown in Fig.2)which arestaticsolutionsofthe

�eld equation (25).Theparam etersin Fig.2 arede�ned by

r� =
r0

2
(1�

p
1� �); � =

E

U0

; U0 =
�S1r0

4
(27)

forN = 2.Thebounceofeq.(9)isrecovered when theenergy reducesto zero,E = 0.The

period ofthebounceforN = 2 is[15]

�(E )= 2[r+ E(k)+ r� K(k)] (28)

where K(k) and E(k) denote the com plete elliptic integrals ofthe �rst and second kinds

respectively with m odulus

k
2 = 1�

r2
�

r2+
(29)

The period �(E )increasesm onotonically with energy from itsm inim um value 2r0 atzero

energy to them axim um value�r0 atenergy E reaching theupperbound atE = U0.W hen

the bubble with radius r� is spontaneously created it m ay decay through the barrier by

quantum tunneling. The tunneling rate isagain calculated from the action ofthe bounce

[15](N = 2)

W b =

Z
r� (�=

�

2
)

r� (�= �
�

2
)

pbdr=
2�S1r+

3r0

h

(r2+ + r
2

� )E(k)� 2r2� K(k)
i

(30)

Theshapeofthepotentialbarriervarieswith energy E asshown in Fig.2.W hen theenergy

reachestheupperbound U0 thetwo staticsolutionsr+ ;r� join atthetop ofthebarrierand

thesolution iscalled thesphaleron

rs =
r0

2
(31)

which playsan im portantrole in the crossoverfrom quantum tunneling to therm alactiva-

tion.
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Ourm ain pointhere isto investigate the transition from the quantum to the classical

regim e.Thecrossoverisrealized asa phasetransition analogousto theLandau theory.To

thisend westartfrom a proceduresim ilarto thatin Ref.[12]wherethephasetransition in

the tunneling rate ofa spin system isdiscussed. W e expand the bounce action W b around

thesphaleron (E ! U0;� ! 1;k ! 0)and usetheseriesexpansionsofthecom pleteelliptic

integrals

K(k)=
�

2

�

1+
1

4
k
2 +

9

64
k
4 + � � �

�

(32)

E(k)=
�

2

�

1�
1

4
k
2
�

3

64
k
4 + � � �

�

De�ninganew param eterh = 1� E

U0

= 1� �,them odulusk ofthecom pleteellipticintegrals

and theturning pointsr� areexpressed in term sofh,

k
2 = 1�

 
1�

p
h

1+
p
h

! 2

; r� =
r0

2
(1�

p
h) (33)

Substitutingtheexpansion eq.(32)intoeq.(30)thefreeenergyofthebounce,F = E + TW ,

nearthesphaleron isthen expanded asa powerseriesofh

F

U0

= 1+ (� � 1)h �
1

8
�h

2
�

1

64
�h

3 + O (h4) (34)

where � = T

Ts
is the dim ensionless tem perature with Ts =

1

�s
and �s = �r0 is the period

ofthe sphaleron. The analogy with the Landau theory ofphase transitions described by

F = a 2 + b 4 + c 6 where  isthe orderparam eterisobvious. The factorin frontofh

changesitssign atthephasetransition tem peratureTs.Thefactorin frontofh
2 hasalways

thenegativesign which indicatesthe�rst-orderphasetransition [12].

Recently thephasetransition from quantum to classicalregim ehasbeen studied exten-

sively. A criterion ofthe �rst-orderphase transition hasbeen form ulated forthe crossover

from quantum tunneling to therm alactivation [20,21].Thekey pointin theprocedureisto

investigatethequantum 
uctuation around thesphaleron.Theoscillation frequency around

thesphaleron can beexpanded asa perturbation series[21]

!
2 = !

2

s + �� 1!
2 + �

2� 2!
2 + � � � (35)
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where!s =
2�

�s
isthefrequency ofthesphaleron and � denotestheperturbation param eter.

It is dem onstrated [21]that the criterion for the �rst-order phase transition � 2!
2 > 0

leadsto a usefulinequality derived from theEuclidean equation ofm otion,i.e.,thebounce

trajectory [21],nam ely

V
(3)(rs)(g1 +

g2

2
)+

1

8
V
(4)(rs)+ M

(1)(rs)(g1 +
3g2

2
)+

1

4
M

(2)(rs)!
2

s < 0 (36)

where f(n)(rs)�
dn f(r)

drn
jr= rs isde�ned astheusualn-th partialderivative atthecoordinate

ofthesphaleron,and

g1 = �
!2
sM

(1)(rs)+ V (3)(rs)

4V (2)(rs)
; g2 = �

3!2
sM

(1)(rs)+ V (3)(rs)

4[4M (rs)!
2
s + V (2)(rs)]

;

M (r)isthem assandisgenerallypositiondependent(asforexam pleineq.(6)).Thecriterion

forthe�rst-orderphasetransition containsonly theinform ation ofthesphaleron.Itisnot

necessary to obtain thebouncecon�guration fortheentire region ofenergy (E = 0 to U0).

W enow apply thecriterion (36)to theproblem ofbubblenucleation forboth N = 2 and 3.

From theequation ofm otion (25)wederive

V (r;E )=

"
E

�SN � 1

r
1� N +

�

N �
r

#� 2

� 1;

V
(1)(xs;")=

2
h

(N � 1)"x� N � 1
i

("x1� N + x)3
= 0;

V
(2)(xs;")= �

2(N � 1)3

N 2["(N � 1)]
4

N

;

V
(3)(xs;")=

2(N � 1)3(N + 1)

N 2["(N � 1)]
5

N

;

V
(4)(xs;")= �

2(N � 1)3(N 2 � 6N + 11)

N 2["(N � 1)]
6

N

;

g1 = �
N + 1

4["(N � 1)]
1

N

;

g2 =
N + 1

12["(N � 1)]
1

N

;

M
(1)(xs)= M

(2)(xs)= 0

where x = r

r0
,and "= E

�S N � 1r
N � 1

0

arethe dim ensionlesscoordinateand energy respectively.
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Substituting the above expressions into eq. (36)yieldsasthe condition forthe �rst-order

phasetransition

N (N � 1)+
19

4
> 0 (37)

which holds for any N . Ofcourse,here only the cases N = 2 and 3 are relevant to the

tunneling and thecriterion (37)ism eaningful.

IV .D E SIT T ER M IN ISU P ER SPA C E M O D EL

W econsiderthetunnelingcaseofN = 3forthecosm ologicalm odelofeq.(4).Introducing

theenergy by H = E ,thecorresponding integrated Euclidean equation ofm otion reads

1

2
M (�)_�2 � V (�)= �E (38)

The bounce con�guration �b(�;E )at�nite energy isobtained and plotted in Fig.1b.The

period ofthebounceat�niteenergy isgiven by

�(E )=
4




s
�+

�� + �i

"

(1+
�i

�+
)�(� 2

;k)�
�i

�+
K(k)

#

(39)

where�(� 2;k)denotesthecom pleteellipticintegralofthethird kind with m odulus

�
2 =

�� � �+

�� + �+
< 0; k

2 =
(�+ � �� )�i

�+ (�� + �i)
(40)

where�+ ,�� and ��i aretherootsofthealgebraicequation

�
3
�

1



� +

E

�
= 0 (41)

�� are the two turning pointsshown in Fig. 1,and �i � �+ � �� . The period �(E )again

increases m onotonically with energy (as shown in Fig. 3) from �0 =
�



forE = 0 to the

sphaleron period �s =
2�
p
3


atenergy E = U0 =
m 0

33=2

.Thesphaleron is

�s =
1

p
3


(42)
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Thenum erically evaluated action oftheperiodicbounceisshown in Fig.4 whereSth =
U0

T

denotesthe therm alaction.Since thetherm alaction islowerthan thatofthe bounce,the

creation rate is dom inated by the therm alactivation over the barrier sim ilar to the case

ofbubble nucleation [15]. Itisalso evidentthatthe shallow barriers(Fig. 1 and 2)favor

the therm alactivation. W e now turn to the crossoverfrom quantum tunneling to therm al

activation.From theequation ofm otion (38)we�nd

M
(1) = m 0; M

(2) = 0; !s =
2�

�s
=
p
3
;

V
(1)(rs)= 0; V

(2)(rs)= �

q

6�m 0; V
(3)(rs)= 6�; V

(4)(rs)= 0;

g1 = 0; g2 = �

s
�

6m 0

W ith theabovedata thecondition forthe�rst-orderphasetransition (36)becom es

� �

q

6�m 0 < 0 (43)

which holdsalwayssince� > 0.Thephasetransition isthereforeof�rst-order,i.e.thesam e

asthatin thecaseofbubblenucleation.

The periodic bounce forthe m inisuperspace m odelathand doesnotpossessa bifurcation

(see Fig. 4) sim ilar to the O (3)�-m odelin the eletroweak theory [19,22]and is di�erent

from that ofwellstudied spin tunneling where the sharp �rst order phase transition is a

necessary result ofbifurcation in the plot ofinstanton action versus period. To see the

crossover behaviour clearly we look at the therm alrate �(T) which is constructed from

P(E)by averaging with theBoltzm ann exponentialattem peratureT and so equals

�(T)=

Z
1

0

dE e
�

E

T P(E )�

Z
1

0

dE e
� W (E )�

E

T (44)

In the weak coupling lim it the integralover energy E can be calculated by the steepest

descentm ethod.Only periodicinstantonswith theperiod equalto inversetem peraturecan

dom inatethetherm alrate.Thisiscalled thesaddlepointcondition:

�(E )=
1

T
: (45)
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In ourcasethesaddlepointgiven by eq.(45)isa m inim um .Theaction increasesm onoton-

ically when the period changesfrom �(E = 0)to the sphaleron period �s (see Fig.4).The

curveSb(�)isconvex downward and thetherm alrateeq.(44)is,therefore,saturated either

by E = 0 orby E = U0 depending on tem perature,

�� e
� Sb(E = 0); T <

U0

Sb(E = 0)

�� e
U 0

T ; T >
U0

Sb(E = 0)

Fig.5 (fat line) shows the plot ofln� versus tem perature T.The sharp �rst order phase

transition is obvious,since the transition from quantum tunneling at zero energy jum ps

directly to thetherm alhopping.Theperiodicbounceswith �niteenergy do notcontribute

to thetherm alnucleation rateexceptthezero energy bounce.

V .C O N C LU SIO N S

Thenucleationrateofthem inisuperspacem odelsisdom inatedeitherbyquantum tunnel-

ingatlow tem peratureorby therm alactivation followingtheArrheniuslaw.Thetransition

ofthecreation ratefrom thequantum to theclassicalregion isalwaysa phasetransition of

thesharp �rst-order.
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Figure C aptions:

Fig. 1: The potentialofeq. (6) and the trajectories ofperiodic bounces: (a) The zero

energy bounceand (b)thebounceat�niteenergy.

Fig.2:Thepotentialofeq.(26)and theperiodicbounceat�niteenergy E .

Fig.3:Theperiod ofthebounceasa function ofenergy with � = m 0 = 1.

Fig. 4: The action ofthe bounce Sb and the therm alaction Sth as functions ofinverse

period,with thesam escaleasin Fig.3.

Fig.5:Thelogarithm ictherm alnucleation rateasa function oftem perature.
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