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Abstract

T he periodic bounce con gurations responsible for quantum tunneling are
obtained explicitly and are extended to the nite energy case for m nisuper-
space m odels of the Universe. A s a comm on feature of the tunneling m odels
at nie energy considered here we cbserve that the period of the bounce
Increases w ith energy m onotonically. T he periodic bounces do not have bifur-
cations and m ake no contrbution to the nuclation rate exospt the one w ith
zero energy. T he sharp rst order phase transition from quantum tunneling
to them al activation is veri ed w ith the general criterions.
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I. NTRODUCTION

Quantum tunneling at nite energy and tem perature, the so-called them ally assisted
tunneling, has attracted considerable attention recently in the study of the crossover from
the quantum tunneling dom ain to the them al activation (hopping) region. T he instanton
m ethod playsa centralrole in these studies. T he probability oftunneling at zero tem perature
can be cbtained from am icro-cannonicalensamble and has a path integralrepresentation I;].
In the one loop approxin ation the probability isP = Ae ° where the preexponential factor
A arses from G aussian functional Integration over sm all uctuations around the instanton
solution and S is the Euclidean action of an instanton w ith zero energy.

T here are tw o kinds oftunneling, one ofw hich istunneling betw een degenerate vacua induced
by instantons which are stablk Euclidean eld solutions with nontrivial topological charge.
The instanton can be viewed as an extended particke existing in the barrer Interpolating
between degenerate vacua El]. A (vacuum ) bounce is, however, an unstable solution of a
Euclidean eld equation with zero topological charge and was well known already decades
ago £,3]. The mitialand end points ofa (vacuum ) bounce both term inate on a m etastable
ground state or false vacuum . T he tunneling Induced by such a bounce resuls in the decay
of the false vacuum {].

Quantum tunnelingat nite tem perature §1T isdom inated by periodic instantons (pounces)
which are periodic solutions of the Euclidean equation ofm otion with nite energy E [6,7]
and In the sam iclassical lim i the path Integral is expected to be saturated by a single
periodic instanton. W ith exponential accuracy the tunneling probability P E) at a given

energy E reduces to
PE) e"®l=e?0F 1)

Theperiod isrelated to theenergy E in the standardway E = S—S and S ( ) isthe action of
the periodic nstanton (pounce) per period. Such periodic Instantons (pounces) an oothly n—

terpolate between the zero tem perature instantons (pounces) and the static solition nam ed



sohaleron sitting at the top ofthe potentialbarrier. T he sohaleron is responsibble for them al
hopping. Peculiarly the study of explicit periodic instantons and their stability began only
about ten years ago B9]l.
W ith Increasing tem perature them al hopping becom es m ore and m ore In portant and be-
yond som e critical or crossover tem perature T, becom es the decisive m echanisn . In the
context of quantum m echanics it has been dem onstrated that the transition from the ther-
m alto the quantum regin e can be considered as a phase transition which is of second-order
with certain assum ptions about the shape of the potential [I(]. Later it was shown that
the situation is not generic and that the crossover from the them alto the quantum regime
can quite generally be lke that ofa rst-order phase transition f1]. The sharp rst-order
transition has been con m ed theoretically in several spin tunneling system s f12{14] and
triggered active reaserch in various elds in connection with tunneling. In the context of
eld theory not m uch work hasbeen done toward the study ofperiodic instantons. R ecently
there were interesting investigations to show that the crossover from the quantum to the
them al regin e in the vacuum decay with * models is essentially a rst-order phase tran—
sition in the thin wall lim it [1§,14]. I is therefore also a challenging problm to study the
crossover from quantum tunneling to them al actiation In the context of cosm ology [L7].
Here we Pollow the recent m odel investigations of the creation of Universe In the context of
the so-called m inisuperspace m odels [18], and extend the study of tunneling to nite energy
and tem perature.
T he characteristic way in which phase transitions appear In quantum m echanical tunneling
processes hasbeen worked out In ref.[l1]. In context of eld theory the crossover behaviour
has also been explined In a m ore transparent m anner 19]. A sharp rst order transition
is shown to appear as a bifircation in the plot of the instanton action S versus period
E ). The criterion ora rst order transition can be obtained by studying the Euclidean
tin e period In the neighbourhood of the sphaleron as advocated in ref.R0]. If the period
E ! Ug) of the periodic instanton (pounce) close to the barrier peak can be found, a

su cit condition to have the rst order transition isseen tobe E ! U g) s < Oor



12> 1 S, where U, denotes the barrer height and ¢ is the period of an all oscillation around
the sphalron. ! and !¢ are the corresponding frequencies. T he frequency ofthe spaleron !
is nothing but the frequency of an all oscillaton in the bottom of the inverted potential well.
A practically usefil ormula for the crterion ofthe st order transition is given in ref.R1]
and the w Inding num ber transition n O (3) m odelw ith and w ithoul Skym e term hasbeen
successfiilly analyzed w ith the crirerion P2]. In the ©llow ing the crossover behaviour in the
m inisuperspace m odel is investigated in tem s of the general criterion and we also explain
the physics underlying the crossover w hich m ay shed light on understanding the tim e evolu—
tion ofthe Universe In them odel. In Sec. 2 the quantum tunneling at zero energy isbrie y
reviewed. W e em phasize that the bounce starts and ends on the m etastable ground state
which corresponds to a static solution ofthe eld equation w ith zero radius and is therefore
m eaningfuil for the decay of the false vacuum . A s a prototype m odel of the creation of the
Universe at nite tem perature we discuss the sim ilar process of bubble nuclkation In Sec. 3.
T he crossover of the nucleation rate from the quantum to the classical regin e is studied In
term s of the general criterions for rst-order phase transitions. In Sec. 4 we apply a sin ilar

approach to the cosn ologicalm inisuperspace m odel.

II.THE PERIODIC BOUNCE AND QUANTUM TUNNELING AT ZERO

ENERGY

C ontam porary cosn ological m odels are based on the idea that the Universe is pretty
much the sam e everywhere  an idea som etin es known as the C opemican principle which
is related to two m ore m athem atically precise properties that the m anifold m ight have:
isotropy and hom ogeneity. W e begin w ith the sin plest m inisupersgpace m odelofthe Universe

fl§] de ned by the action:
z

S R
g =  gvE g

16 Gy

v @)

where , > 0 is a constant vacuum energy according to Ref. {[8] and thus plays the ok

of the cosm ological constant in eq. ) and m akes the space de Sitter or antide Sitter.



T he spacetin e to be considered isR where R represents the tin e direction and isa
hom ogeneous and isotropic N manifold with N = 2 or 3. The Universe is also assum ed to

be closed. W e therefore have:
ds’= df+ 2@md 2 3)

which is just the Robertson W alkerm etric ofthe closed case. The function (t) isknown as
the scale factorwhich tellsus \how big" the spacetine slice isattinet.d 2 isthemetric

on a unit N sphere. Substituting the m etric eq.(3) into eq.@) we obtain the Lagrangian
"N (I\I l) #
Pe——a 2 )

L= Sy "
N 16 Gy

where

Sv = —r3 ©)

is the surface ofthe unit N sohere. Ik iseasy to see that only orN = 3 is = 0 a static
solution ofthe equation ofm otion and thus can serve asthem etastable ground state or false

vacuum . The Lagrangian forN = 3 can be w rtten

1 2
L=-M ()= V() (6)
2
whereM ( )= m, isthe position dependent m assw ih my = ;—G.Thepotentjal
m g 3
Vv = —
() 2 (7)

isshown n Fig. 1 where = 2 2 . The classical solution of the equation ofm otion in real

tine is [i8]

© = 1 cosh t; = @)

2
m o
which shows that the space is the de Sitter space expandig at t> 0 from (= 0) = 1.

= 0 is an additional static solution with energy E = 0. The bounce con guration is
obtained from the Euclidean equation of m otion by the W ick rotation = it under the

barrier and is seen to be



1
b( )=—0o0s ; 2 > m od2 9)

W e see that the bounce is a perdodic solution. T he tra ectory of this periodic bounce for one
period is shown in Fig. la. The bounce starts from the alse vacuum ( = 0) at in agihary

tine = — and machesthetumihgpoint =< attine = 0 and then bounces back to

2

the false vacuum at = 5—. The period of the bounce is
= —: (10)

The Universe can then be considered to be created spontaneously from \nothing" ( = 0)
and to tunnel through the barrer Fig. 1) into the de Sitter space. T he tunneling rate or
decay rate out of the false vacuum can be evaluated In tem s of the action of the bounce

and is given by

PE=0) e"» 11)
w here
Z (=5)=0 3
Wy= d = 12
b . 2_)101%( ) 87 . 12)

Here p, denotes the m om entum of the bounce and is as usualevaluated from the Euclidean
version Ly ofthe Lagrangian eq.(§), ie.

Ly
= @E3=b=mm 13)

Po

Tt m ay be noted that the bounce here is periodic even though the energy of the false vacuum
is taken to be zero. This is quite unlke the usual case of the bounce at zero energy as,
for exam pl, In the case of the well studied bounce of the inverted double-well potential 4]
where the period of the bounce tends to In nity. The periodic bounce with nite period

exists only at nite energy f7].

W e now tum to bubble nucleation In the thin wall case as a com parison. W hen a eld

con guration is trapped In a m etastable state, bubbles of the true vacuum state nucleate



In the surmounding false vacuum and begin to grow spherically. T he process of bubble nu—
cleation is In m any ways analogous to the nuckation of the Universe. Under a num ber of
sim plifying assum ptions the nuclkating bubble can be adequately described by a m nisuper-
space m odelw ith a single degree of freedom  [1§], the bubblk radius r (t) . T he Lagrangian of

1+ N dim ensions is
L= Sy ; 72 'a A & 14)

Here isthetension ofthewal,N = 2;3,and denotesthedi erence in the vacuum energy

on both sides ofthe wall. The canonicalm om entum conjuigate to the variable r is
15)

and the H am iltonian is

H = 2 202 20 1)% S LN
= p°'+ °Sy T 1e)

W e then obtain a point particlke lke Ham iltonian which is the starting point of our consid—
erations. T he energy is conserved In the process of bubble nuclkation. For zero energy the

equation H = 0 can be rew ritten as

PP+U@=0 17)
w ith the e ective potential
18)

where ry, = ¥~ . W e see that rboth N = 2 and 3 the vanishing radius r = 0 is a static
solution ofthe equation ofm otion w ith zero energy, nam ely, the vacuum ofourpoint particle

like system . Besides the static solution r= 0 the solution in realtine is
ri)= @@+ ) 19)

It is shown I Ref. {1§] that this solution eq. (19) is the sam e de Sitter space eq. @)



it
r® = r,ocosh(—) (20)
o

in the new tin e coordate twith

t
t= 1y shh — (21)
o

In the new In aghary tin e coordinate ~ = I the in agihary tim e solution existing in the
barrier is jist the periodic bounce of eq.(d), ie.

~ ~

L, (~) = 1B oos—; — — — mod2 (22)
o 2 o 2
w ith the nite period
= 23)
T he action of the bounce is
Zr(=3~)=O (%rg; for N=2
Wy= } Podr = (24)
r(= 3z)=0 72 r3 for N=3

N

W e see that the bubble nucleation is indeed sin ilar to the creation of the Universe.

IIT.CROSSOVER FROM QUANTUM TUNNELING TO THERMAL

ACTIVATION BUBBLE NUCLEATION

A s a prototype for the nuckation of the Universe we reconsider the tam perature depen—
dence of the bubble nuclkation rate. H owever, we study the crossover from the quantum to
the classical regin e in tem s of the general criteria forphase transitions 23{22]. W e consider

the nucleation process at nite energy E . Then energy conservation H = E Jeads to
PP+U@mE)=0 @5)
w ith the e ective potential (see Fig. 2)

n #
U@E)= 252 | % D + —)? (@6)




The periodic bounce at nite energy E is an in agihary tim e solution which exists in the
barrer between two tuming pointsr (as shown in Fig. 2) which are static solutions of the

eld equation @5). The param eters in F ig. 2 are de ned by

o pP— E Slro
r =—(@1 1 )i =—; Up=
2 Uy 4

@7)

orN = 2. The bounce of eq.@) is recovered when the energy reduces to zero, E = 0. The

period of the bounce forN = 2 is [15]

E)=2KEK)+ r K K)] 28)

where K (k) and E (k) denote the com plkte ellpptic Integrals of the st and second kinds

respectively w ith m odulus

kKX=1 (29)

LYY

The period () Increases m onotonically w ith energy from itsm ininum value 2x, at zero
energy to them axinum value 1y atenergy E reaching the upperbound atE = Ugy. W hen
the bubbl wih radius r is soontaneously created it m ay decay through the barrier by
quantum tunneling. The tunneling rate is again calculated from the action of the bounce
i85 o =2

r (=2 2 Syr, B .
Wy = Z)pbdr= 3; - @+ r)EK) 2rK k) 30)
> 0

T he shape ofthe potential barrer variesw ith energy E asshown in Fig. 2. W hen the energy
reaches the upperbound U, the two static solutions r; ;jr i at the top ofthe barrier and

the solution is called the sohaleron

== 31
L= @1

which plays an in portant role in the crossover from quantum tunneling to them al activa—

tion.



Ourmain point here is to investigate the transition from the quantum to the classical
regin e. T he crossover is realized as a phase transition analogous to the Landau theory. To
thisend we start from a procedure sim ilar to that in Ref. [12] where the phase transition in

the tunneling rate of a soIn system is discussed. W e expand the bounce action W , around

the sphaleron E ! Ug; ! 1;k ! 0) and use the series expansions of the com plete elliptic
Integrals
K k)= — 1+}k2+ 2k4+ (32)
2 4 64
1
Ek= 1 zlk2 &k4+

De ninganew parameterh = 1 U% =1 , them odulusk ofthe com plte elliptic integrals

and the tuming points r are expressed In tem s ofh,

p_!
, 1 "n° rn P—
=1 —po oy =24 T (33)
1+ h 2

Substituting the expansion eq. 32) nto eq. @) the free energy ofthebounce, F = E+ TW ,

near the sphalron is then expanded as a power series ofh

L A (  1h ! H ! n’+ 0 hY) (34)
Up 8 64
where = Ti is the din ensionless tem perature with Ty = L and = 1 isthe period

of the sphalron. The analogy with the Landau theory of phase transitions described by
F=a?+b *+c ®where isthe order param eter is cbvious. The factor in front ofh
changes its sign at the phase transition tem perature T, . T he factor in front ofh? hasalways
the negative sign which indicates the rst-order phase transition [2].

R ecently the phase transition from quantum to classical regim e has been studied exten—
sively. A criterion of the rst-order phase transition has been form ulated for the crossover
from quantum tunneling to therm alactivation 20,2%]. T he key point in the procedure is to
nvestigate the quantum uctuation around the sohaleron. T he oscillation frequency around

the sphaleron can be expanded as a perturbation series P11]

=124 T L (35)



where !, = £ isthe frequency of the sphaleron and  denotes the perturbation param eter.

It is dem onstrated P1] that the criterion for the rstorder phase transition ,!% > 0
Jeads to a usefill nequality derived from the Euclidean equation ofm otion, ie., the bounce
trajctory 1], namely

1 3 1
VO @) @+ %H S AR ST %H MO m)i<o 36)

ar £ (r) .

where £ ®) (1) " 1-r, isde ned as the usual n-th partial derivative at the coordinate

of the sphaleron, and

M Y )+ VO () 3 V) + VO ()
W @ () T T @iz vom))

gL =

M (r) isthem assand isgenerally position dependent (as orexam pk in eq.{§)) . T he criterion
for the rst-order phase transition contains only the inform ation of the sphaleron. It is not
necessary to obtain the bounce con guration for the entire region ofenergy & = 0 to Uy).
W e now apply the criterion (36) to the problm ofbubbl nuckation forboth N = 2 and 3.

From the equation ofmotion £35) we derive

A\l E # 2
VgGE)= ——1r ¥+ —r 1;
Sy 1 N
h i
1] N
V(l)(x.")=2(N D" l=0.
sr ("Xl N 4 X)3 r
2N 1)°
VAR UE i
N2 1)
2N 1N + 1)
VAR 5
NZI'N 1)
20N 1)°N? 6N + 11)
V(4)(X ;") = .
> NN DF '
N + 1
Q= 17
A'N 1Iv
N +1
R = i;
zrNy LF
MY e)=M @) =0
wherex = >, and "= ﬁ are the dim ensionless coordinate and energy respectively.
N 1%p

11



Substituting the above expressions nto eq. {36) yields as the condition for the rst-order

phase transition
NN 1)+ i >0 (37)

which holds for any N . O f course, here only the cases N = 2 and 3 are rlkvant to the

tunneling and the criterion (37) ism eaningfiil.

IV.DE SITTER M INISUPERSPACE MODEL

W e considerthe tunneling case of N = 3 forthe cosm ologicalm odelofeq. ). htroducing

the energy by H = E , the coresponding integrated Euclidean equation ofm otion reads

1 2
SM ()2 V()= E (38)

The bounce con guration ,( ;E) at nite energy is obtained and plotted In Fig. 1b. The

period of the bounce at nite energy is given by
S " #
4 + i 2 i
— i+ —) ( ;k) —K k) 39)

i + +

&)=

where ( ?;k) denotes the com plete elliptic integral of the third kind w ith m odulus

2 + . k2 (+ )i

= < 0; = — (40)
+ 4 + O+ )
where ., and ; are the roots of the algebraic equation
; 1 E
— +—=0 41)
are the two tuming points shown in Fig. 1, and ; + . Theperod E ) again
Increases m onotonically with energy (@s shown in Fig. 3) from (= — forE = 0 to the
Sohaleron period ¢ = 925— atenergy E = Ug = 3?120 . The sphalron is
1
R 42)

12



T he num erically evaluated action of the periodic bounce is shown in Fig. 4 where Sy, = %
denotes the themm al action. Since the them al action is Jower than that of the bounce, the
creation rate is dom inated by the them al activation over the barrier sin ilar to the case
of bubbk nuclkation {15]. It is also evident that the shallow barriers Fig. 1 and 2) favor
the them al activation. W e now tum to the crossover from quantum tunneling to them al

activation. From the equation ofm otion 838) we nd

2 o
M®=m,; M @ = 0; l,= — = ;
q S
VYr)=0 V¥ )= 6meg; VO@m)=6; vVH@m=0;
S
= 0: S
g1 ’ D 6m

W ith the above data the condition for the rst-order phase transition 36) becom es
q__

6 myg< 0 43)

whith hodsaWways since > 0. The phase transition is therefore of rst-order, ie. the same
as that In the case of bubbl nucleation.
T he periodic bounce for the m inisuperspace m odel at hand does not possess a bifiircation
(e Fig. 4) sinilar to the O (3) -model in the ektroweak theory [13)22] and is di erent
from that of well studied spin tunneling where the sharp rst order phase transition is a
necessary result of bifircation in the plot of Instanton action versus period. To see the
crossover behaviour clearly we look at the them al rate (T) which is constructed from

P E) by averaging w ith the Boltzm ann exponential at tem perature T and so equals
24 24

= dEe TP E) O dEe " ®) T 44)

In the weak coupling lim it the integral over energy E can be calculated by the stespest
descent m ethod. O nly periodic instantons w ith the period equal to inverse tam perature can

dom nate the them al rate. This is called the saddlk point condition:

€)= 45)

H|



In our case the saddle point given by eg.(45) isam nimum . The action Increases m onoton—
ically when the period changes from  (E = 0) to the sphaleron period ¢ (sseFigd). The
curve Sy ( ) is convex downward and the them al rate eq.(44) is, therefore, saturated either

by E = Oorby E = Uy depending on tem perature,

_ U

e SbCE—O),, T < 0
SpE = 0)

Ug Up
eT ; T> — %
SpE = 0)

Figb5 (fat lne) shows the plot of n  versus tem perature T . The sharp st order phase
transition is cbvious, since the transition from quantum tunneling at zero energy Jum ps
directly to the them alhopping. T he periodic bounces w th nite energy do not contrbute

to the them al nucleation rate exoept the zero energy bounce.

V.CONCLUSIONS

T henuclkation rate ofthem inisuperspace m odels isdom nated eitherby quantum tunnel-
Ing at low tem perature orby them alactivation follow Ing the A rthenius law . T he transition
of the creation rate from the quantum to the classical region is always a phase transition of

the sharp rst-order.
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Figure C aptions:

Fig. 1: The potential of eq. §) and the trafctories of periodic bounces: @) The zero
energy bounce and () the bounce at nite energy.

Fig. 2: The potentialofeq. {6) and the periodic bounce at nite energy E

Fig. 3: The period of the bounce as a function ofenergy with = my= 1.

Fig. 4: The action of the bounce S, and the them al action Sg as functions of nverse
period, w ith the sam e scale as In F ig. 3.

Fig. 5: The logarithm ic them al nucleation rate as a function of tem perature.
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Fig. 4
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