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In an earlier short paper [Phys. Rev. Lett. 120, 101301 (2018)], I argued that the horizon-
preserving diffeomorphisms of a generic black hole are enhanced to a larger three-dimensional Bondi-
Metzner-Sachs symmetry, which is powerful enough to determine the Bekenstein-Hawking entropy.
Here, I provide details and extensions of that argument, including a loosening of horizon boundary
conditions and a more thorough treatment of dimensional reduction and meaning of a “near-horizon
symmetry.”
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I. INTRODUCTION

The discovery by Bekenstein [1] and Hawking [2] that
black holes are thermodynamic objects has led to a host of
fascinating puzzles, from the information loss problem to
the question of what microscopic states are responsible for
black hole entropy. Here, I focus on one particular puzzle,
the “problem of universality” of black hole entropy. This
paper is an expanded version of a short article published in
2018 [3]; here, I discuss details and extend some of the
results.
The universality of black hole entropy has two aspects,

probably related but logically distinct. The first comes from
the simple form of the Bekenstein-Hawking entropy,

SBH ¼ Ahor

4Gℏ
; ð1:1Þ

where Ahor is the horizon area. If this were merely a
property of, say, uncharged static black holes, it would tell
us something important about the Schwarzschild solution.
But it is more. The same area law, with the same coefficient,
holds for black holes with any charges, any spins, in any
dimensions; it holds for black strings, black rings, black
branes, and black Saturns (black holes encircled by black
rings); it remains true for “dirty black holes” whose
horizons are distorted by nearby matter. The only known
way to change the entropy (1.1) is to change the Einstein-
Hilbert action, and even then the correction will be another

universal term [4]. Black hole entropy is not, it seems, a
property of specific solutions, but rather a generic charac-
teristic of horizons.
The second aspect of universality emerges when one

attempts to identify the microscopic states responsible for
this entropy. We do not yet have a full description of those
states; that would presumably require a complete quantum
theory of gravity. We do, however, have an assortment of
research programs working toward the quantization of
gravity, which allow partial computations of black hole
entropy. In string theory, black hole entropy can be
calculated from properties of weakly coupled strings and
branes, from the AdS=CFT correspondence, and (probably)
from an enumeration of horizonless “fuzzball” configura-
tions. In loop quantum gravity, entropy can be calculated
from a horizon Chern-Simons theory, from an analysis of
spin network reconnections in the interior, and from
conformal field theory at “punctures” of the horizon. In
induced gravity—an approach in which the Einstein-
Hilbert action is obtained by integrating out “heavy” fields
in the path integral—entropy can be calculated from the
properties of the heavy fields. In semiclassical gravity,
entropy can be calculated from either a single instanton
approximation or pair production. And, of course, entropy
can be calculated using Hawking’s original approach,
which involved only quantum field theory in a fixed black
hole background.
None of these methods is complete. String theory

calculations, for instance, are cleanest for near-extremal
black holes, while loop quantum gravity calculations may
depend on a new universal constant, the Barbero-Immirzi
parameter. But although they describe very different micro-
states, each of these methods, within its range of validity,
reproduces the standard Bekenstein-Hawking entropy. (For
a review and further references, see Ref. [5]).
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One might worry about a selection effect here: perhaps
models that give the “wrong” entropy are less likely to be
published. But even the elegant analysis of BPS black holes
in string theory [6], the first really successful microscopic
calculation of black hole entropy, illustrates the problem.
Given a spacetime dimension and a set of charges and
spins, one can calculate the entropy of a gas of strings and
branes at weak coupling, separately calculate the horizon
area of a black hole at strong coupling, and compare the
results. But although the final answer always matches the
Bekenstein-Hawking area law (1.1), each new choice of
dimension, spins, and charges requires a new computation.
Some underlying structure is clearly missing.
A first guess for this deeper structure is that the relevant

degrees of freedom live on the horizon [1]. But this is not
enough; while it could explain an area law for black hole
entropy, there is no obvious reason why the coefficient 1=4
should be universal. An elaboration of this idea, first
suggested (I believe) in Ref. [7], is that the entropy is
governed by a horizon symmetry. This is, of course, a very
strong requirement; symmetries can place some restrictions
on the density of states, but they are rarely strong enough to
actually determine the entropy. But we know one symmetry
that has the same kind of universal properties we see in
black hole entropy. As Cardy first showed in 1986 [8,9],
two-dimensional conformal symmetry is so restrictive that
it completely fixes the asymptotic density of states in terms
of a few parameters, independent of any of the fine details
of the theory. More recently, it has been shown that a related
symmetry, that of the three-dimensional Bondi-Metzner-
Sachs group (BMS3), exhibits the same universality [10].
The possibility of a connection with black hole entropy has
obvious appeal.
This connection was first confirmed for the (2þ 1)-

dimensional BTZ black hole in 1998 [11,12]. Attempts to
extend those results to higher dimensions soon followed
[13,14]. These efforts, which typically involve a search for
a suitable two-dimensional group of horizon symmetries,
have had significant success; see Ref. [15] for a review. But
they have been plagued by several problems:

(i) The symmetries are typically located either at
infinity or on a timelike “stretched horizon” just
outside the actual horizon (although with occasional
exceptions [16]). The physics at infinity is extremely
powerful, especially for asymptotically anti-de Sitter
spaces. Indeed, the BTZ black hole calculations
were among the first examples of the now famous
AdS=CFT correspondence. But the symmetries
alone are not enough; by themselves, for instance,
they cannot distinguish a black hole from a star with
the same mass.
The stretched horizon more directly captures the

local properties of the black hole. But the definition of
the stretched horizon is not unique, and different limits
can lead to different entropies [17,18]. Moreover,

while the entropy has a well-defined limit at the
horizon, other parameters in the symmetry algebra
typically blow up at the horizon [19–21] (again with
occasional exceptions [22]).

(ii) The approach fails in what should be the simplest
case, two-dimensional dilatongravity,where the zero-
dimensional boundary of a Cauchy surface simple
does not have “room” for the required central term in
the conformal algebra. There are ad hoc fixes—lifting
the theory to three dimensions [23] or artificially
introducing an integral over time [24]—but none of
them is very convincing.

(iii) In higher dimensions, the relevant symmetries are
those of the “r–t plane” picked out by the horizon.
But to obtain a well-behaved symmetry algebra, one
must introduce an extra ad hoc dependence on
angles, with no clear physical justification. This is
especially problematic for the Schwarzschild black
hole, for which the angular dependence breaks
spherical symmetry in a manner that seems quite
arbitrary.

Here (and in a shorter form in Ref. [3]), I describe an
approach that avoids these problems. A basic limitation of
past work, I argue, was the attempt to force the horizon
symmetry into the form of a two-dimensional conformal
symmetry. This was an understandable choice; until quite
recently, this was the only symmetry known to be powerful
enough to determine the asymptotic density of states. But
with the discovery that BMS3 symmetry also has this
universal property, the possibilities have expanded.
Starting with the intuitive idea that the relevant sym-

metries should lie in the r–t plane picked out by the null
generators of the horizon [13,19,22], I first show how to
reduce the problem to an effective two-dimensional model.
For spherically symmetric black holes, such a dimensional
reduction already appeared in some of the earliest work on
horizon symmetries [14,25], but I demonstrate that the
relevant near-horizon properties are far more general. I next
establish that the obvious horizon symmetries, the horizon-
preserving diffeomorphisms, are enhanced by a particular
shift invariance, as anticipated in Refs. [26,27]. This new
symmetry may be viewed as a generalization of the global
conformal symmetry found by Wall for horizon quantum
field theory on a fixed background [28]; it is exact at the
horizon, and, in a sense I explain, it can be made arbitrarily
close to exact near the horizon. Using covariant phase space
methods [19,29], I show that the generators of these
symmetries can be expressed as integrals along the horizon,
with no need to go to a stretched horizon. Finally, I confirm
that the resulting generators satisfy a centrally extended
BMS3 algebra that determines the correct Bekenstein-
Hawking entropy.

II. BMS3 SYMMETRY

Let us start with a brief review of BMS3 symmetry, along
with a discussion of the perhaps puzzling question of how a
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classical symmetry can determine the number of quantum
states.
The BMS3 algebra is described by two sets of generators

Ln and Mn (n ∈ Z) with Poisson brackets

ifLm; Lng ¼ ðm − nÞLmþn;

ifMm;Mng ¼ 0;

ifLm;Mng ¼ ðm − nÞMmþn þ cLMmðm2 − 1Þδmþn;0;

ð2:1Þ

where the possibility of a classical central charge cLM was
first noted by Barnich and Compere [30].1 This algebra can
be obtained as a contraction of the usual two-dimensional
conformal (Virasoro) algebra [30], and is also isomorphic
to the two-dimensional Galilean Conformal Algebra [31].
While the BMS3 algebra is not as thoroughly studied as the
conformal algebra, a fair amount is understood about its
properties and representations [32–36].
We shall see below that this algebra describes the classical

horizon symmetry of a generic black hole. Let us assume that
the same symmetry, perhaps deformed, is realized in the
quantum theory. We make the usual substitutions

f•; •g →
1

iℏ
½•; •�;

1

ℏ
L → L̂;

1

ℏ
M → M̂;

1

ℏ
c → ĉ; ð2:2Þ

where the factors of ℏ in L̂ and M̂ ensure that the operators
are dimensionless. (It is not always discussed explicitly in
quantum mechanics textbooks, but the same substitution is
used to go from the Poisson algebra of angular momentum
to the Lie algebra of rotations.) We thus obtain a quantum
operator algebra,

½L̂m;L̂n�¼ ðm−nÞL̂mþn;

½M̂m;M̂n�¼0;

½L̂m;M̂n�¼ ðm−nÞM̂mþnþ ĉLMmðm2−1Þδmþn;0: ð2:3Þ

Classical values of the zero modes L0 andM0 now become
eigenvalues hL ¼ L0=ℏ, hM ¼ M0=ℏ of the corresponding
operators. The true quantum symmetry may be a deforma-
tion of (2.3)—other central termsmay appear, for example—
but differences will be suppressed by factors of ℏ.
Now, it is well known that for a theory with a two-

dimensional conformal symmetry, the central charge
completely fixes the asymptotic behavior of the density
of states [8,9]. For the simplest case of free bosons and
fermions, the Cardy formula for the density of states is
just the Hardy-Ramanujan formula for partitions of an

integer [37]. For the general case, I know of no elementary
explanation; for a careful but not terribly intuitive deriva-
tion, see Ref. [38]. Roughly speaking, exact conformal
symmetry is powerful enough to prevent any exponential
growth in the number of states, which can occur only
because of the anomalous symmetry breaking characterized
by the central charge c.
The BMS3 symmetry (2.3) is not quite a conformal

symmetry, but as Bagchi et al. have shown [10], it has its
own version of the Cardy formula for the asymptotic
density of states. In hindsight, this is not so surprising,
since BMS3 can be obtained as a contraction of the two-
dimensional conformal algebra. The resulting entropy—the
logarithm of the density of states at fixed eigenvalues hL
and hM—has the asymptotic behavior

S ∼ 2πhL

ffiffiffiffiffiffiffiffiffi
ĉLM
2hM

s
¼ 2π

ℏ
L0

ffiffiffiffiffiffiffiffiffi
cLM
2M0

r
; ð2:4Þ

where L0, M0, and cLM in the last equality are the classical
values. Note that the factors of Planck’s constant combine
to give an overall 1=ℏ, an expected feature of an entropy
described in terms of a classical phase space.

III. REDUCTION TO TWO DIMENSIONS

The first step in our derivation of black hole entropy
will be to reduce the problem to two dimensions. To
understand this process, it is helpful to start with a rather
elaborate description of an ordinary Schwarzschild black
hole in D spacetime dimensions. The horizon Δ of such a
black hole is a Killing horizon, that is, a null (D − 1)-
manifold whose null normal coincides with a Killing
vector χ. The integral curves of χ on Δ are null geodesics,
the generators of Δ. Since χ is timelike outside the
horizon, it determines a preferred time coordinate, and
through that a foliation of Δ by (D − 2)-spheres Δ̂ of
constant time.
This structure allows us to identify two “preferred”

directions at any point p on Δ: the direction of the
Killing vector at p and the outward radial direction
transverse to Δ and normal to the slice Δ̂ containing p.
These determine a local “r–v plane,” where r is a radial
coordinate and v is a parameter along the null gen-
erators of the horizon. If we further choose coordinates
yμ on Δ̂, then ðv; r; yμÞ can be extended to form a
Gaussian null coordinate system near the horizon (see,
for instance, Appendix A of Ref. [39]). For the
Schwarzschild case, these coordinates are essentially
Eddington-Finkelstein coordinates, with r shifted so
that r ¼ 0 at the horizon. By spherical symmetry, each
slice Δ̂ at constant (v; r) is invariant under rotations,
so standard Kaluza-Klein methods can reduce the
Einstein-Hilbert action to that of two-dimensional dila-
ton gravity [40].

1Other central elements can also be added, but only cLM is
relevant in the present context.
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The reason I have given such a complicated description
of a relatively simple procedure is that most of the steps
generalize quite broadly. Let Δ be a nonexpanding horizon
[41,42], that is, a null (D − 1)-dimensional manifold with
null normal l such that:
(1) Δ has the topology ð0; 1Þ × Δ̂, where Δ̂ is usually

taken to be compact (a sphere for a black hole, a
torus for a black ring, etc.).

(2) The expansion θðlÞ of the null normal vanishes. If
the stress-energy tensor satisfies the null energy
condition for l, that is, TABlAlB ≥ 0, then this
condition further implies [42] that l has vanishing
shear and that

Llqab ¼ 0; ð3:1Þ

where L is the Lie derivative and qab is the (degenerate)
induced metric on Δ.
A nonexpanding horizon generalizes the notion of a

Killing horizon, dropping the requirement of a Killing
vector but retaining a time translation symmetry on the
horizon itself. As in the Schwarzschild case, the integral
curves of la on Δ are the null geodesic generators of Δ.
In the absence of a Killing vector, there is no preferred
time coordinate, but it may be shown that a generic non-
expanding horizon has a preferred foliation, a set of
“good cuts,” that generalize the constant time slices of
the Schwarzschild metric [43]. Hence, we can again
construct an r–v plane and a Gaussian null coordinate
system near Δ.
The main change from the Schwarzschild case is that the

cross section Δ̂ of a nonexpanding horizon need not have
any symmetries, so conventional Kaluza-Klein methods no
longer apply. As Yoon has shown, though, there is a
generalized Kaluza-Klein reduction even in the absence
of symmetries [44,45]. Start by writing the metric in the
general form

ds2 ¼ gABdzAdzB

¼ gabdxadxb þ ϕμνðdyμ þ Aa
μdxaÞðdyν þ Ab

νdxbÞ;
ð3:2Þ

where lowercase roman indices (a,b,…) run from 0 to 1,
lowercase greek indices (μ; ν;…) run from 2 to D − 1,
and uppercase roman indices (A; B;…) run from 0 to
D − 1. The “x” coordinates label our preferred two-
dimensional manifold, while the “y” coordinates are the
transverse directions. Define the Kaluza-Klein-like
derivatives

∂̂a ¼ ∂a − Aa
μ∂μ;

Daϕμν ¼ ∂̂aϕμν − ð∂μAa
ρÞϕρν − ð∂νAa

ρÞϕρμ; ð3:3Þ

connections

Γ̂a
bc ¼

1

2
gadð∂̂bgdc þ ∂̂cgdb − ∂̂dgbcÞ;

Γ̂ρ
μν ¼ 1

2
ϕρσð∂μϕσν þ ∂νϕσμ − ∂σϕμνÞ; ð3:4Þ

and curvatures

R̂ab ¼ ∂̂cΓ̂c
ab − ∂̂aΓ̂c

bc þ Γ̂c
abΓ̂d

cd − Γ̂c
adΓ̂d

bc;

Rμν ¼ ∂ρΓ̂
ρ
μν − ∂μΓ̂

ρ
νρ þ Γ̂ρ

μνΓ̂σ
ρσ − Γ̂ρ

μσΓ̂σ
νρ;

Fab
μ ¼ ∂̂aAb

μ − ∂̂bAa
μ;

R̂ ¼ gabR̂ab; R ¼ ϕμνRμν: ð3:5Þ

A straightforward calculation of the Einstein-Hilbert
action then gives

I ¼
Z

dD−2yI2 ð3:6Þ

with

I2 ¼
1

16πG

Z
d2x

ffiffiffiffiffiffi
−g

p ffiffiffiffi
ϕ

p �
R̂þ 1

4
gabgcdϕμνFac

μFbd
ν

þ 1

4
gabϕμνϕρσðDaϕμρDbϕνσ −DaϕμνDbϕρσÞ

þ 1

4
ϕμνgabgcdð∂μgac∂νgbd − ∂μgab∂νgcdÞ þR

�
;

ð3:7Þ

where g and ϕ are the determinants of gab and ϕμν.
The first two lines in (3.7) look like an ordinary Kaluza-

Klein reduction, and can in fact be viewed as the action of a
Kaluza-Klein theory whose gauge group is the group of
diffeomorphisms of the transverse manifold [44]. A two-
dimensional interpretation of the third line is less obvious.
We can cure this, though, with a partial gauge fixing. First,
we can always choose local coordinates in which

gab ¼
�−2h 1

1 0

�
: ð3:8Þ

Yoon calls this “Polyakov gauge,” after a similar choice in
two-dimensional field theories [46], while from the D-
dimensional point of view, it is essentially Bondi gauge
[47] or Gaussian null coordinates [39]. It is easy to see that
with this choice, even if h depends on the yμ,

ϕμνgabgcdð∂μgac∂νgbd − ∂μgab∂νgcdÞ ¼ 0: ð3:9Þ

For our purposes, Eq. (3.8) is too restrictive a gauge
choice—it hides a piece of the symmetry we are
trying to understand. But if we now allow an arbitrary
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two-dimensional coordinate transformation x → x̄ðxÞ, it
may be checked that the term (3.9) still vanishes.
The remaining term of concern in (3.7) is the transverse

curvature R. In D ¼ 4 dimensions, this term is essentially
trivial,

Z
d2y

ffiffiffiffi
ϕ

p
R ¼ 4πχ; ð3:10Þ

where χ is the Euler characteristic of the transverse
manifold. The transverse curvature thus merely contributes
an effective cosmological constant to the two-dimensional
action. For D ≠ 4, the situation is more complicated; the
transverse curvature couples only to

ffiffiffiffiffiffi−gp
, but it can give a

sort of position-dependent cosmological “constant.” This

should not affect the symmetries derived in Sec. VI, but a
deeper understanding would be helpful. (Note also that R
involves only y derivatives, while we have chosen a gauge
in which

ffiffiffiffiffiffi−gp
depends only on x, so by rescaling ϕμν by an

appropriate power of
ffiffiffiffiffiffi−gp

, we can actually remove the
coupling).
To make it easier to compare this formalism to other

work on dilaton gravity, it is convenient to separate out the
determinant ϕ from the transverse metric ϕμν, writing

ϕμν ¼ ϕ
1

D−2Φμν; det jΦμνj ¼ 1: ð3:11Þ

The determinant and Φμν then decouple in the kinetic term
in (3.7),

1

4
gabϕμνϕρσðDaϕμρDbϕνσ −DaϕμνDbϕρσÞ ¼

1

4
gabðΦ−1ÞμνðΦ−1ÞρσðDaΦμρDbΦνσ −DaΦμνDbΦρσÞ

−
D − 3

4ðD − 2Þϕ
−2gabDaϕDbϕ: ð3:12Þ

One more simplification is standard in dilaton gravity: by
rescaling the metric gab, we can eliminate the kinetic term
for ϕ. Specifically, if we set

ϕ ¼ φ2 ð3:13Þ

and let

gab ¼ φ−D−3
D−2ḡab; ð3:14Þ

the action (3.7) reduces to

I2¼
1

16πG

Z
d2x

ffiffiffiffiffiffi
−ḡ

p �
φR̄þ1

4
φ2ḡabḡcdΦμνFac

μFbd
ν

þ1

4
φḡabðΦ−1ÞμνðΦ−1Þρσ

×ðDaΦμρDbΦνσ−DaΦμνDbΦρσÞþφ
1

D−2R
�
; ð3:15Þ

which may be recognized as the action for a gauge field and
a nonlinear sigma model coupled to two-dimensional
dilaton gravity.
I have, of course, glossed over an essential feature: the

“two-dimensional” fields in (3.15) also depend on the
transverse coordinates y, which must still be integrated
over. This remnant of the higher-dimensional structure
appears in two places. First, the two-dimensional curvature
Rab in (3.5) involves convective derivatives ∂̂a ¼ ∂a−
Aa

μ∂μ, distinguishing it from the ordinary Ricci curvature
of the two-dimensional metric ḡab. Near a black hole
horizon Δ, though, one can choose corotating coordinates

in which Aa
μ vanishes on the horizon and remains small in

a neighborhood of Δ [39]. We will be interested in
symmetries in a small region around the horizon. In such
a region, to the order of approximation we will need,
these coordinates will allow us to replace R̄ in (3.15)
by the ordinary two-dimensional curvature scalar (see
Appendix B for details).
Second, the “matter” fields Fab

μ and Φμν in (3.15) also
depend on the transverse coordinates. In a symmetric
enough setting, we could expand these fields in modes
to create a Kaluza-Klein tower of states. In general, though
—for instance, for a black hole whose horizon is distorted
by surrounding matter—this will not be possible.
Fortunately, though, it is also not necessary. As Wall
showed for quantum fields on a black hole horizon [28],
the physics at different transverse positions decouples, and
each null generator can be treated separately. While I do not
know a rigorous generalization to the case of dynamical
gravity, we shall see that the relevant symmetries act
separately on each generator. Since these symmetries
govern the density of states, this density is also determined
independently on each generator, and the total entropy can
be obtained by integrating. This is the underlying reason for
an area law for entropy, although as we shall see, it gives
more, fixing the exact coefficient of the area.
Note that we have not yet imposed the existence of a

horizon. Even the use of Gaussian null coordinates requires
only the presence of a null surface, which need not have
vanishing expansion. In principle, it is possible to further
restrict the metric (3.2), but the resulting expressions are
complicated and unwieldy [48]. We will instead take a
shortcut, identifying horizons in the two-dimensional
action I2 to obtain a more tractable formulation.
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IV. DILATON GRAVITY WITH NULL DYADS

We now restrict our attention to the effective two-
dimensional action (3.15) at fixed transverse position
(fixed y). While this action will not reveal the full
symmetries of the higher-dimensional theory, any
y-independent symmetry of I2 will also be a symmetry
of the full theory.
To simplify notation, let us write

I ¼ 1

16πG

Z
M
ðφRþ V½φ; χ�Þϵ; ð4:1Þ

where ϵ is the volume two-form2 and χ denotes any further
fields in the problem (here Φ, A, and any additional matter
fields). The quantity φ is called the dilaton; as we have
seen, it is essentially the volume element of the transverse
metric. Note that while the potential V in (4.1) may be quite
complicated, it contains no x derivatives of φ.
The equations of motion coming from varying g and φ in

this action are

Eab ¼ ∇a∇bφ − gab□φþ 1

2
gabV ¼ 8πGTab; ð4:2aÞ

Rþ dV
dφ

¼ 0; ð4:2bÞ

where I have added a source stress-energy tensor.
Equation (4.2b) is not independent, but follows from the
divergence of (4.2a).
It is convenient to describe the geometry in terms of a

null dyad ðla; naÞ, with l2 ¼ n2 ¼ 0 and l · n ¼ −1. In
terms of such a dyad, the metric and volume form are

gab ¼ −ðlanb þ nalbÞ; ϵab ¼ ðlanb − nalbÞ: ð4:3Þ

When we later specialize to the case of a black hole
spacetime with horizon Δ, we will choose a dyad for which
l is the null normal to Δ and n is the induced volume
element.
To simplify later equations, we define derivatives

D ¼ la∇a; D̄ ¼ na∇a: ð4:4Þ

D is essentially the same D as in the Newman-Penrose
formalism. D̄ would ordinarily be denoted Δ in the
Newman-Penrose formalism, but we are already using Δ
to signify the horizon.
The dyad (l; n) is determined only up to local Lorentz

transformations,

la → eλla; na → e−λna: ð4:5Þ
We can partially fix this freedom by choosing na to have
vanishing acceleration, nb∇bna ¼ 0. This condition
implies that the integral curves of n are affinely para-
metrized null geodesics, which can be taken to start at the
horizonΔ. The symmetry (4.5) is still not completely fixed,
but the remaining transformations are restricted to those for
which D̄λ ¼ 0.
With this condition on na, it is easy to check that

∇alb ¼ −κnalb; ∇ala ¼ κ;

∇anb ¼ κnanb; ∇ana ¼ 0; ð4:6Þ
where κ will later be interpreted as the surface gravity
at a horizon. By (4.3), la is a conformal Killing vector.
Under variation of the dyad, Eq. (4.6) will be preserved as
long as

D̄ðlcδncÞ ¼ ðDþ κÞðncδncÞ;
δκ ¼ −DðncδlcÞ þ κlcδnc þ D̄ðlcδlcÞ: ð4:7Þ

Wewill later need to integrate by parts along the horizon.
For this, it will be useful to take advantage of the identity

ðdfÞa ¼ −Dfna − D̄fla for any function f; ð4:8Þ

where I am treating na and la as one-forms. Another
identity will also be helpful:

½D; D̄� ¼ −κD̄ ⇔ D̄D ¼ ðDþ κÞD̄: ð4:9Þ

By considering the commutator ½∇a;∇b�lb and recalling
that in two dimensions Rab ¼ 1

2
gabR, it is straightforward

to show from (4.6) that

R ¼ 2D̄κ: ð4:10Þ

The action (4.1) can thus be written as

I ¼ 1

8πG

Z
M

�
−κD̄φþ 1

2
V½φ; χ�

�
ϵ: ð4:11Þ

V. HORIZONS

Our next task will be to characterize a generic black hole
horizon in this two-dimensional setting, as a first step
toward analyzing its near-horizon symmetries. Spacetimes
containing black holes in two-dimensional dilaton gravity
have essentially the same Penrose diagrams as those in
higher dimensions [40], as illustrated in Fig. 1. As in higher
dimensions, the horizons are Killing horizons [50], and
form boundaries of trapped regions [51]. For simplicity,
Fig. 1 shows an asymptotically flat black hole. This
asymptotic behavior will be irrelevant for the main

2I am using the convention that the object one integrates over
an n-manifold is an n-form [49]. For our two-dimensional
manifold, the volume form is ϵab. For a null line with null
normal la, the volume one-form is na, a null vector normalized so
that l · n ¼ −1.
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argument of this paper, though; the analysis below will hold
equally well for asymptotically de Sitter or anti-de Sitter
black holes.
Let us choose our null dyad so that at the horizon l

coincides with the null normal to the horizon. This means l
is also tangent to the horizon—its inner product with the
normal (itself) is zero. Indeed, in any dimension, the null
normals to the horizon are the tangent vectors of the null
generators of the horizon. (See the beginning of Ref. [52]
for a nice review).
In two dimensions, this choice of dyad is straightfor-

ward. The lift to D dimensions, though, is ambiguous;
depending on coordinate choices, lA and lA may have
additional transverse components. Our philosophy here will
be that our preferred two-dimensional subspace traces the
generators of the horizon, that is, that each generator of the
horizon Δ has constant transverse coordinates y. This
means that l as a tangent vector lies in our two-dimen-
sional subspace; that is, lμ ¼ 0 but lμ need not vanish. We
will choose n so that nμ ¼ 0. This ensures that, even from
the higher-dimensional point of view, na is the volume
one-form along a horizon generator. As long as we stick to
the coordinates described at the end of Sec. III, in which
gμa ¼ 0 at the horizon, these choices will be largely
irrelevant, but they may be important in more general
coordinate systems.
We now need a way to determine that Δ is indeed

a horizon. This will require an appropriate generaliza-
tion of the “nonexpanding horizon” criteria of Sec. III.
From the D-dimensional point of view, the expansion
of Δ is

θ¼ðδABþlAnBÞ∇AlB¼ðδabþlanbÞ∇albþ∇μlμ¼laΓμ
aμ:

ð5:1Þ

In general, this will be a complicated expression, involv-
ing both the transverse metric ϕμν and the mixed compo-
nents Aa

μ. But recall that we have chosen coordinates in
which Aa

μ ≜ 0, where from now on I will use the symbol
≜ to mean “equal on the horizon.” Hence,

θ ¼ laΓμ
aμ ≜ 1

2
ϕμνla∂aϕμν ¼

1

φ
Dφ: ð5:2Þ

The condition for vanishing expansion is thus Dφ ¼ 0,
and we will use this as the means to locate the horizon.
Near the horizon, Dφ can then serve as a small expansion
parameter, indicating how far we have moved from Δ. The
interpretation of this parametrization in terms of Gaussian
null coordinates is described in Appendix B.
In higher dimensions, vanishing expansion is enough to

ensure that the whole horizon geometry is stationary as
well. In two dimensions, where the dilaton φ is now
separate from the transverse metric, this is no longer the
case, and we must separately require that DR ≜ 0. I will
also impose one more boundary condition at the horizon,
that the integration measure na remain fixed at Δ. This
restriction appears to be needed for the covariant canoni-
cal symplectic form of Sec. VII to be well behaved,
though further exploration would be interesting. In
Ref. [3], the condition laδla ¼ 0 was also imposed,
but while this simplifies the symplectic structure, it is not
really needed.
Our boundary conditions at Δ thus become

Dφ ≜ 0; ð5:3aÞ
DR ≜ 0; ð5:3bÞ

laδna ≜ naδna ≜ 0 ð5:3cÞ

(where, again, ≜ means “equal on Δ”). Our task is to find
the symmetries of the dilaton gravity action that are
compatible with these conditions.
Before proceeding further, one slightly subtle issue of

interpretation should be addressed. The approach here is
not to first choose a fixed submanifold Δ and then impose
(5.3a)–(5.3c). This is too strong a demand; it would forbid
variations that changedDφ on this fixed surface and would
prohibit transverse diffeomorphisms at Δ. The philosophy
is, rather, to use the condition Dφ ¼ 0 to determine the
location of the horizon, and to impose the remaining
conditions at that location. A variation that changes Dφ
is then understood as changing the location of the horizon,
and a suitable transverse diffeomorphism can be used to
“move it back.”

VI. HORIZON SYMMETRIES

The action (4.1) is, of course, invariant under two-
dimensional diffeomorphisms, including horizon “super-
translations” [53] generated by vector fields ξa ¼ ξla.
Such diffeomorphisms fail to respect condition (5.3c),
however, since laδξna ≠ 0. This is easily cured, by
supplementing each diffeomorphism with a local Lorentz
transformation δla ¼ ðδλÞla, δna ¼ −ðδλÞna with
δλ ¼ Dξ. From the discussion after (4.5), this requires that
D̄ξ ≜ 0. We thus have an invariance,

FIG. 1. Typical Penrose diagram for the exterior of a black
hole.
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δξla ¼ 0; δξna ¼ −ðDþ κÞξna;
δξgab ¼ ðDþ κÞξgab;
δξφ ¼ ξDφ; with D̄ξ ≜ 0: ð6:1Þ

Note that from (4.6),

δξκ ¼ DðDþ κÞξ: ð6:2Þ

As pointed out some time ago [26,27], for configura-
tions containing black holes, the action also has an
approximate invariance under certain shifts of the
dilaton near the horizon, with an approximation that
can be made arbitrarily good by restricting the trans-
formation to a small enough neighborhood of Δ. This is
not quite an ordinary invariance, since it holds only for a
restricted class of configurations, those with horizons. For
such configurations, though, it can be made arbitrarily
close to an exact symmetry (see Appendix C for more
details).

Specifically, consider a variation,

δ̂ηφ ¼ ∇aðηlaÞ ¼ ðDþ κÞη with D̄η ≜ 0: ð6:3Þ
(The hat on δ̂ distinguishes this variation from a diffeo-
morphism.) The action transforms as

δ̂ηI ¼
1

16πG

Z
M

�
Rþ dV

dφ

�
δ̂ηφϵ

¼ −
1

16πG

Z
M
η

�
DRþ d2V

dφ2
Dφ

�
ϵ: ð6:4Þ

But Dφ and DR both vanish at the horizon, so the variation
(6.4) can be made as small as one wishes by choosing η to
fall off fast enough away from Δ.
There is one subtlety, however. While the transformation

(6.3) does not directly act on the curvature, the change of φ
“moves the horizon”—that is, the locus Dφ ¼ 0 may
change under a shift of φ. In itself, this is not a problem,
but DR may no longer vanish at the new location. The
diffeomorphism needed to “move the horizon back” is
determined by the condition

ðδ̂η þ δζÞðDφÞ ¼ δ̂ηðDφÞ þ ζa∇aðDφÞ ≜ 0 ⇒ ζa ¼ ζ̄na ¼ −
Dðδ̂ηφÞ
D̄Dφ

na: ð6:5Þ

This change can be compensated with a “small” (orderDφ)
Weyl transformation of the metric to restore the condition
DR ≜ 0. Consider a transformation of the form

δ̂ηgab ¼ δ̂ωηgab ⇔ δ̂ηla ¼ δ̂ωηla; ð6:6Þ

where the second equality comes from the boundary
condition that δna ≜ 0. Define

δ̂ωη ¼ Xη
Dφ

D̄Dφ
: ð6:7Þ

Using identities from Sec. IV, it is not hard to see that R
transforms as

δ̂ηR ≜ 2ðDþ κÞXη: ð6:8Þ

The condition that DR remain zero on Δ is thus

ζ̄ D̄DRþ 2DðDþ κÞXη ≜ 0: ð6:9Þ

On shell—or, less restrictively, whenever the constraint
(4.2b) holds—a short calculation gives an explicit expres-
sion for Xη:

ζ̄ D̄DRþ 2DðDþ κÞXη ≜ d2V
dφ2

DðDþ κÞηþ 2DðDþ κÞXη ≜ 0 ⇒ Xη ≜ −
1

2

d2V
dφ2

η: ð6:10Þ

With this added transformation, the boundary condition

DR ≜ 0 is preserved. Like (6.3), the Weyl transformation
(6.7) changes the action only by terms proportional to ηDφ,
which can be made arbitrarily small by choosing η to fall
off fast enough away from the horizon.
We thus have two sets of transformations at the horizon,

diffeomorphisms δξ and shifts δ̂η, which preserve the action
(to an arbitrarily good approximation) as long as a horizon

actually exists. It is not too hard to check that these satisfy
an algebra,

½δξ1 ; δξ2 �f ≜ δξ12f with ξ12 ¼ ðξ1Dξ2 − ξ2Dξ1Þ;
½δ̂η1 ; δ̂η2 �f ≜ 0;

½δξ1 ; δ̂η2 �f ≜ δ̂η12f with η12 ¼ −ðξ1Dη2 − η2Dξ1Þ:
ð6:11Þ
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This may be recognized as a BMS3 algebra, or equivalently
a Galilean conformal algebra [31].
Given the rather atypical nature of this shift symmetry,

we should also check the variation of the equations of
motion (4.2a)–(4.2b). These are, of course, preserved by
diffeomorphisms, so we need only consider the trans-
formations (6.3) and (6.7). Since we are assuming that η
falls off rapidly away from the horizon, it is enough to
check the variations at Δ. By a straightforward computa-
tion, most of the equations of motion are preserved: up to
terms that are themselves proportional to the equations of
motion,

gabδ̂ηEab≜2ðDþκÞD̄δ̂ηφþ
dV
dφ

δ̂ηφ≜
�
RþdV

dφ

�
ðDþκÞη;

ð6:12aÞ

nanbδ̂ηEab ≜ D̄2δ̂ηφ − D̄φD̄δ̂ηω ≜ 1

2
D̄

�
Rþ dV

dφ

�
η;

ð6:12bÞ

δ̂η

�
Rþ dV

dφ

�
≜ δ̂ηRþ d2V

dφ2
δ̂ηφ; ð6:12cÞ

where I have used (4.9), (4.10), and the condition
D̄η ≜ 0.
The remaining variation, lalbδ̂ηEab, is not zero. But

this is actually a familiar occurrence in conformal field
theory. If we set Eab ¼ 8πGTab, we find that

lalbδ̂ηTab ≜ 1

8πG
ðD − κÞDðDþ κÞη; ð6:13Þ

which is essentially the usual anomaly for a conformal
field theory with a central charge proportional to 1=G
[54]. This is our first hint that the symmetry is
anomalous.
One might worry that this anomaly could spoil the

covariant phase space construction of Appendix A,
since the closure of the symplectic current (A2) relies
on the classical field equations. Fortunately, this is not
a problem; the only dangerous term in the exterior
derivative (A4) is proportional to nanbδgab, which
vanishes on Δ by virtue of the boundary condi-
tions (5.3c).

VII. SYMPLECTIC STRUCTURE AND
GENERATORS

To complete the analysis of the symmetries of
Sec. VI, we should ask whether the algebra (6.11) can
be realized—perhaps with a central extension—as a
Poisson algebra of canonical generators of the symmetries,
since this is the formulation that translates most directly
into quantum mechanics. We have so far avoided intro-
ducing explicit coordinates. We will continue to do so, by
employing the covariant canonical formalism reviewed in
Appendix A.
The symplectic form (A3) is defined as an integral over a

Cauchy surface Σ. To study horizon symmetries in the
covariant phase space formalism, we should incorporate Δ
as part of our Cauchy surface. Let us focus on the exterior
region of an asymptotically flat black hole, with a Penrose
diagram given by Fig. 1, and take Σ to be the union of the
future horizon Δ and future null infinity Iþ, with ends at
the bifurcation point B and spacelike infinity. As noted
earlier, the details ofIþ will be unimportant, since we will
be considering transformations that are nonvanishing only
in a small neighborhood of the horizon.
Applying the general relations (A2)–(A3) to the action

(4.11) for dilaton gravity and using the boundary condition
δna ≜ 0, it is straightforward to show that3

ΩΔ½ðφ; gÞ; δ1ðφ; gÞ; δ2ðφ; gÞ�

¼ 1

8πG

Z
Δ
½δ1φδ2κ − δ1ðD̄φÞlbδ2lb�na − ð1 ↔ 2Þ: ð7:1Þ

The full symplectic form will include an additional integral
alongIþ, but this will be irrelevant to our consideration of
near-horizon symmetries.
Two slightly tricky points remain, though, both related to

the fact that a variation of φ can move the horizon,
changing the locus of points Dφ ¼ 0. First, as discussed
in Appendix A, the symplectic form itself is independent of
the integration contour as long as the end points remain
fixed. But ΩΔ can change under variations that move the
ends of the Cauchy surface. To avoid this behavior, we will
require that δðDφÞ ¼ 0 at the bifurcation point B of Fig. 1,
a condition that will be used in Sec. VIII.
Second, while typical changes in the horizon locus will

not affect ΩΔ, they will change objects such as
Hamiltonians defined as integrals over Δ. We will account
for this effect by adding a transverse diffeomorphism to
“move the horizon back.” As in Sec. VI, such a diffeo-
morphism is determined by the condition that

ðδþ δζÞðDφÞ ¼ δðDφÞ þ ζa∇aðDφÞ ≜ 0 ⇒ ζa ¼ ζ̄na ¼ −
�
Dδφ

D̄Dφ
þ D̄φ

D̄Dφ
lbδlb

�
na: ð7:2Þ

3The calculation simplifies if one notes that in differential form notation, κD̄φϵ ¼ D̄φdl ¼ −κdφ ∧ n.
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Hence, for an object of the form H ¼ R
Δ Hna, the full variation will be

δ

Z
Δ
Hna ¼

Z
Δ
ðδHþ ζa∇aHÞna: ð7:3Þ

We can now ask whether the transformations δξ and δ̂η of the preceding section can be realized canonically as in (A8),
that is, whether there exist generators that satisfy

δL½ξ� ¼ 1

8πG

Z
Δ
½δφδξκ − δξφδκ − δðD̄φÞlbδξlb þ δξðD̄φÞlbδlb�na

¼ 1

8πG

Z
Δ
½δφDðDþ κÞξ − ξDφδκ þ fξD̄Dφ − ðDþ κÞξD̄φglbδlb�na; ð7:4aÞ

δM½η� ¼ 1

8πG

Z
Δ
½δφδ̂ηκ − δ̂ηφδκ − δðD̄φÞlbδ̂ηlb þ δ̂ηðD̄φÞlbδlb�na

¼ 1

8πG

Z
Δ
½−δωηDδφ − δκðDþ κÞηþ fD̄ðDþ κÞη − δωηD̄φglbδlb�na; ð7:4bÞ

where in the last line I have used the fact that δ̂ηκ ¼ Dδ̂ωη.
It is not at all clear that such generators exist; there is no

obvious reason that the near-horizon symmetry (6.3) should
have a canonical realization. In fact, though, the quantities

L½ξ� ¼ 1

8πG

Z
Δ
½ξD2φ − κξDφ�na; ð7:5aÞ

M½η� ¼ 1

8πG

Z
Δ
η

�
Dκ −

1

2
κ2
�
na ð7:5bÞ

do the job. [To obtain the δωη terms in (7.4b), one must use
the full variation (7.3), along with equation (6.10) for Xη

and the fact that D̄η ≜ 0; again, the covariant phase space
formalism allows us to impose equations of motion after
variation].
Using (A10), we can now find the Poisson brackets of

these generators:

fL½ξ1�; L½ξ2�g ¼ L½ξ12�; ð7:6aÞ

fM½η1�;M½η2�g ≜ 0; ð7:6bÞ

fL½ξ1�;M½η2�g ≜ −M½η12�

−
1

16πG

Z
Δ
ðDξ1D2η2 −Dη2D2ξ1Þna;

ð7:6cÞ

where ξ12 and η12 were defined in (6.11). The fL;Lg
brackets are unchanged even if Δ is not a horizon. The
fL;Mg and fM;Mg brackets do change—the shift

transformations are exact symmetries only on a horizon—
but modulo equations of motion, the deviations are of
order ðDφÞ2. The canonical generators thus give a repre-
sentation of the symmetry algebra (6.11), nowwith an added
central term. Such central terms are well understood in
classical mechanics [55]; their appearance in quantum
gravity was first emphasized by Brown and Henneaux
[56], and as we saw in Sec. II, they play a crucial role in
determining entropy.

VIII. MODES AND ZERO MODES

As described in Sec. II, we can now use the symmetry
(7.6a)–(7.6c) to determine the density of states. To do so,
we will need the central charge and the zero modes. These,
in turn, require a mode expansion for the parameters ξ
and η.
For a black hole with constant surface gravity, the

appropriate modes are well known. They take the form
einκv, where v is the advanced time along the horizon,
normalized so that la∇av ¼ 1. Such modes are periodic in
imaginary time with period 2π=κ, as required for non-
singular Green’s functions. Here, though, κ is one of our
canonical variables, and we cannot simply take it to be
constant. In the language of Ref. [41], we are considering
nonexpanding horizons but not “isolated horizons.” While
we can always perform a local Lorentz transformation to
make κ constant, that would require much more restrictive
boundary conditions, which would hide part of the
symmetry.
Fortunately, though, the appropriate generalization is

straightforward. Define a phase ψ such that

Dψ ≜ κ; D̄ψ ≜ 0 ⇔ dψ ≜ −κna ⇔ ψ ≜ −
Z
Δ
κna ≜ −

Z
κdv: ð8:1Þ
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The modes are then

ζn ≜ 1

κ
einψ ðwhere ζ is either ξ or ηÞ: ð8:2Þ

The prefactor of 1=κ has been chosen so the modes obey the
ordinary algebra of diffeomorphisms of the circle,

fζm;ζng¼ ζmDζn−ζnDζm¼−iðm−nÞζmþn: ð8:3Þ

Setting Ln ¼ L½ξn� and Mn ¼ M½ηn�, it is easy to
check that our BMS3 algebra reduces to (2.1), with a
central term

−
1

16πG

Z
Δ
ðDξmD2ηn −DηnD2ξmÞna ¼ −

i
16πG

Z
Δ
ðmn2 − nm2ÞeiðmþnÞψdψ : ð8:4Þ

If we take the integral to be over a single period—
essentially mapping the problem to a circle, as is standard
in conformal field theory—we obtain a central charge:

cLM ¼ 1

4G
: ð8:5Þ

We also need the zero modes of L and M. For M, this is
straightforward: from (7.5b),

M0 ¼ M½η0� ¼ −
1

16πG

Z
Δ
κ2η0na ¼

1

16πG

Z
dψ ¼ 1

8G
:

ð8:6Þ

For L, the “bulk” contribution to L0 vanishes. But L, unlike
M, has a boundary contribution. Indeed, the variation
leading to (7.4a) involves integration by parts, with a
boundary term

δL½ξ� ¼ � � � þ 1

8πG
½ξDδφ − ðDþ κÞξδφ�

				∂Δ: ð8:7Þ

As noted in Sec. VII, the covariant phase space approach
requires that we set Dδφ to zero at the bifurcation point B.
We should certainly not hold φ itself fixed, though, since
that would fix φ along the entire horizon, eliminating the
shift symmetry. Instead, we should fix the conjugate
variable κ at B. This requires an added boundary contri-
bution to cancel the variation (8.7),

Lbdry
0 ¼ 1

8πG
φðDþ κÞξ0

				
B
¼ φþ

8πG
; ð8:8Þ

where φþ is the value of φ at B.

IX. ENTROPY

We are finally in a position to compute the entropy of
our black hole. Inserting (8.5), (8.6), and (8.8) into (2.4),
we obtain

S ¼ φþ
4G

: ð9:1Þ

For a purely two-dimensional theory, this is the correct
Bekenstein-Hawking entropy for a black hole [40,50].
From the D-dimensional perspective, it is the contribution
of a single null generator of the horizon. But the sym-
metries that determine (9.1) act independently on each
generator, and entropy is an extensive quantity, so we can
add the individual entropies:

S ¼ 1

4G

Z
dD−2yφþ ¼ 1

4G

Z
dD−2y

ffiffiffiffiffiffi
ϕþ

p ¼ Aþ
4G

; ð9:2Þ

where Aþ is the area of the bifurcation sphere. We have thus
obtained the correct Bekenstein-Hawking entropy for the
full D-dimensional theory.

X. CONCLUSIONS

As anticipated, black hole entropy is indeed determined
by the symmetries of the horizon. In contrast to previous
efforts to demonstrate this behavior, the derivation pre-
sented here has required no stretched horizon, no extra
angular dependence, and no other ad hoc ingredients. The
main assumption has merely been that the dimensionally
reduced horizon obeys the “boundary conditions” of
Sec. V.
What is the meaning of the crucial BMS3 symmetry? It is

not a gauge symmetry; physical states are singlets under
gauge symmetries, while our state counting only works
because the relevant states transform under high-dimen-
sional representations. This kind of behavior is typical of an
asymptotic symmetry. But our BMS3 is also not quite a
standard asymptotic symmetry; while we can view the
horizon as a sort of boundary, it is a boundary that exists
only for a restricted class of field configurations. Physically,
we are asking a question of conditional probability—if a
black hole is present, what are its properties?—and the
symmetries reflect this condition. This is at least vaguely
analogous to entanglement entropy, which requires a
similar specification of a boundary. Indeed, it is possible
that our horizon degrees of freedom might be viewed as a
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remnant left behind after tracing out the state behind the
horizon. For three-dimensional topological field theory, this
argument can be made fairly rigorous [57]; it would be
interesting to investigate it further in the present context.
There are several obvious directions for generalization.

A BMS symmetry at the horizon has appeared in other
settings (for instance, Refs. [53,58–62]); the relationship to
the BMS3 symmetry described here should be clarified.
Perhaps most fundamentally, if this symmetry really does
explain the universality of black hole entropy, it should be
present—although possibly hidden—in other derivations of
entropy. Hints of such a hidden symmetry have been found
for loop quantum gravity [63], induced gravity [64], and
near-extremal black holes in string theory [65], but none of
these investigations has yet exploited the full BMS3
symmetry.
Ideally, we might hope to do even more. Many of the

fundamental questions in black hole thermodynamics
involve the dynamics of Hawking radiation and its coupling
to gravitational degrees of freedom. In 2þ 1 dimensions,
Emparan and Sachs have succeeded in using the asymptotic
conformal symmetry to couple the BTZ black hole to
matter and obtain Hawking radiation [66]. Perhaps our
BMS3 symmetry will ultimately allow us to do the same in
arbitrary dimensions.
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APPENDIX A: THE COVARIANT CANONICAL
FORMALISM

The idea underlying the covariant canonical formalism is
that for a theory with a well-posed initial value problem—
that is, well-defined and unique time evolution—the phase
space, viewed as the space of initial data, is isomorphic to
the space of classical solutions [67–70]. The isomorphism
is not canonical, but requires a choice of a Cauchy surface
Σ. Once Σ has been chosen, though, the identification is
simple: initial data on Σ determines a unique classical
solution, and a classical solution restricted to Σ defines a
unique set of initial data. This equivalence, which can be
traced back to Lagrange (see Ref. [68]), means that we can
formulate all the usual ingredients of Hamiltonian mechan-
ics without ever having to break general covariance by
choosing a particular time slicing.
Consider a theory in a D-dimensional spacetime with

fields ΦA (for us, φ, g, and ψ) and a Lagrangian density
L½Φ�, which we view as a D-form. Under a general
variation of the fields, L½Φ� changes as

δL ¼ EAδΦA þ dΘ½Φ; δΦ�; ðA1Þ

where the equations of motion are EA ¼ 0 and the last
“boundary” term comes from integration by parts. We
normally ignore this boundary term, but in the covariant
canonical formalism, it is crucial. The symplectic current ω
is defined by a second variation,

ω½Φ; δ1Φ; δ2Φ� ¼ δ1Θ½Φ; δ2Φ� − δ2Θ½Φ; δ1Φ�; ðA2Þ

and the symplectic form is

Ω½Φ;δ1Φ;δ2Φ�¼
Z
Σ
ω½Φ;δ1Φ;δ2Φ�¼

Z
Σ
ωABδ1ΦA∧ δ2ΦB;

ðA3Þ

where Σ is a Cauchy surface. (More precisely, Ω is often a
presymplectic form, with degenerate directions that must be
factored out to obtain a true symplectic form [69]).
In keeping with the covariant phase space philosophy,

Ω½Φ; δ1Φ; δ2Φ� depends on a classical solution Φ, which
fixes a point in the phase space. Ω itself is a two-form on
the phase space, and the variations δΦ are tangent vectors to
the space of classical solutions, that is, solutions of the
linearized equations of motion. For a field theory in flat
spacetime, it is not hard to check that when Σ is a surface of
constant time, (A3) is equivalent to the ordinary symplec-
tic form.
The symplectic current (A2) is closed,

dω½Φ; δ1Φ; δ2Φ� ¼ δ1dΘ½Φ; δ2Φ� − δ2dΘ½Φ; δ1Φ�
¼ −δ1EA ∧ δ2ΦA þ δ2EA ∧ δ1ΦA ¼ 0;

ðA4Þ

since the variations satisfy the linearized equations of
motion δEA ¼ 0. Hence, the symplectic form (A3) will
depend only weakly on the choice of Cauchy surface;
integrals over two surfaces Σ1 and Σ2 can differ only by
boundary terms that might arise if ∂Σ1 ≠ ∂Σ2. In particular,
for a diffeomorphism-invariant theory, a diffeomorphism
generated by a vector field ζa transverse to Σ may be
viewed as a deformation of the Cauchy surface, and we
have

Ω½Φ; δ1Φ; δζΦ� ¼ 0 ðA5Þ

as long as ζa vanishes at ∂Σ. This may be checked
explicitly for the symplectic form (7.1): under a diffeo-
morphism generated by a vector field ζa ¼ ζ̄na, one finds

ΩΔ½ðφ;gÞ;δðφ;gÞ;δζðφ;gÞ�¼
1

8πG
ζ̄δðD̄φÞ

				∂Δþ…; ðA6Þ

where the omitted terms are proportional to either the
equations of motion or their first variations, which are both
set to zero in the covariant canonical formalism.
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As in ordinary mechanics, the symplectic form deter-
mines Poisson brackets and Hamiltonians. Schematically,
the Poisson bracket of two functions X and Y is

fX; Yg ¼
Z
Σ

δX
δΦA ðω−1ÞAB δY

δΦB : ðA7Þ

Given a family of transformations δτΦA labeled by a
parameter τ, the Hamiltonian H½τ� that generates the
transformations is determined by the condition

δH½τ� ¼ Ω½δΦ; δτΦ� ðA8Þ

for an arbitrary variation δΦ. Using (A3), we can see that
this is just a disguised form of Hamilton’s equations of
motion,

δτΦA ¼ ðω−1ÞAB δH½τ�
δΦB : ðA9Þ

The Poisson bracket of two such generators is

fH½τ1�; H½τ2�g ¼ δτ2H½τ1� ¼ −Ω½δτ1Φ; δτ2Φ�: ðA10Þ

APPENDIX B: GAUSSIAN NULL COORDINATES
AND DIMENSIONAL REDUCTION

In Sec. III, Gaussian null coordinates were used to help
reduce the D-dimensional Einstein-Hilbert action to an
effective two-dimensional form. Here, I describe these
coordinates in a bit more detail.
We start with the Gaussian null coordinate system4

described in Appendix A of Ref. [39] and in Ref. [48].
In such coordinates, a general metric takes the form

ds2 ¼ −r · fdv2 þ 2drdvþ 2r · hμdvdyμ þ ϕμνdyμdyν:

ðB1Þ

The surface r ¼ 0 is null; here, we will take it to be the
horizon Δ.
The coordinates (B1) have clear geometrical meanings.

The horizon r ¼ 0 is a null surface with null normal
lAdzA ¼ dr. (The surface gravity is κ ¼ 1

2
fjr¼0). Since

Δ is null, its normals are also tangent vectors; indeed, the
integral curves of the tangent vectors lA∂A ¼ ∂

∂v are the null
geodesic generators of Δ. The “orthogonal” vectors
nA∂A ¼ ∂

∂r are null even off the horizon, and their integral
curves are null geodesics transverse to the horizon. As in
Sec. III, the coordinates yμ parametrize a spacelike cross
section Δ̂ of the horizon, and may be extended to a
neighborhood of Δ by requiring that they be constant on
both sets of null geodesics.

The coordinate r is an affine parameter along the
transverse geodesics, and thus provides a natural geometric
notion of “distance from the horizon.” For the
Schwarzschild metric, in particular, Gaussian null coordi-
nates are Eddington-Finkelstein coordinates with r shifted
to vanish at the horizon. Near the horizon, r ≈ ρ2=8m,
where ρ is the proper distance to the horizon at constant
time. Appendix A of Ref. [48] gives an explicit expression
for the Kerr-Newman metric in Gaussian null coordinates.
As claimed in Sec. III, the components Aa

μ of Yoon’s
metric (3.2)—here of the form r · hμ—vanish on the horizon,
and are OðrÞ near Δ. In fact, a direct calculation in these
coordinates shows that the ordinary two-dimensional scalar
curvature R differs from the quantity R̂ of Eq. (3.5) by terms
of order r2, justifying the near-horizon form (4.1) of the
action.
The metric (B1) is of the general Kaluza-Klein-like form

(3.2). But Gaussian null coordinates are too restrictive to
exhibit the full set of available symmetries. As in Sec. III,
though, we can move out of the Polyakov-like gauge by
allowing an arbitrary two-dimensional coordinate trans-
formation x → x̄ðxÞ. This will restore the general structure
of the metric (3.2), while still restricting the y dependence
of the metric; for instance, although it will no longer be the
case that

ffiffiffiffiffiffi−gp ¼ 1, it will remain true that ∂μ
ffiffiffiffiffiffi−gp ¼ 0. It

may be checked that after such a transformation, R
continues to differ from R̂ only by terms of order r2.
We may next ask how the D-dimensional vectors lA and

nA are related to their two-dimensional counterparts la and
na of Sec. IV. For lA, this is simple: we have only defined
lA on the horizon, where it is the tangent field to the null
generators of Δ, and thus coincides with la. For nA, the
essential feature is that its D-dimensional integral curves
are affinely parametrized null geodesics:

nB∇BnA ¼ 0 ¼ nBð∇BnA −∇AnBÞ ¼ nBð∂BnA − ∂AnBÞ;
ðB2Þ

where I have used the fact that nAnA ¼ 0. Now, the only
nonvanishing components of n in Gaussian null coordinates
are nr and nv, and under two-dimensional coordinate
transformations x → x̄ðxÞ, it remains true that only two-
dimensional components na and nb are present. Thus,
Eq. (B2) becomes

nbð∂bna − ∂anbÞ ¼ 0 ¼ nbð2Þ∇bna; ðB3Þ

which was the defining property of na in Sec. IV. The D-
dimensional transverse vectors nA thus coincide with the
two-dimensional vectors na. In particular, the affine param-
eter r gives a good measure of distance from the horizon in
both D and two dimensions.
Note that if F is any function that vanishes at the horizon

and is smooth near Δ,

4My notation differs a bit from that of Ref. [39]; I use different
index conventions, my v is their u, my la is their ka, and my na is
their la.
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F ¼ r∂rF þOðr2Þ ¼ rD̄F þOðr2Þ: ðB4Þ

In particular,

Dφ ¼ rD̄DφþOðr2Þ; ðB5Þ

quantifying the notion that Dφ is a measure of distance
from the horizon.

APPENDIX C: SOME DETAILS OF
NEAR-HORIZON SYMMETRIES

Section VI discussed a “near-horizon symmetry” that
played a crucial role in counting states. Specifically, I
argued that for any η satisfying D̄η ≜ 0, the transformation

δ̂ηφ ¼ ∇aðηlaÞ þ Lζφ; ðC1aÞ

δ̂ηgab ¼ Xη
Dφ

D̄Dφ
gab þ Lζgab; ðC1bÞ

δ̂ηχ ¼ Lζχ; ðC1cÞ

with ζa ¼ −
DðDþ κÞη

D̄Dφ
na

and 2DðDþ κÞXη þ ζ̄ D̄DR ¼ 0 ðC1dÞ

is an “approximate symmetry” of the action (4.1) with
horizon boundary conditions (5.3a)–(5.3c), in the sense that
the variation of the action could be made “arbitrarily small.”
As stated, this claim is a bit ambiguous. First of all, the

variation δ̂ηI will be inherently small as the support of η
shrinks to a small neighborhood of the horizon, simply
because the integration region becomes small. Second, for

this particular variation it may be seen from (7.6a)–(7.6c)
that the symmetry algebra is unchanged under a constant
rescaling η → kη, while the variation δ̂ηI of the action
scales by k. It is thus not entirely clear what “small”means.
To remove these ambiguities, let us define an approxi-

mate near-horizon symmetry as one for which the quantity

δ̄ηI ¼ δ̂ηI=
Z

jηjϵ ðC2Þ

becomes arbitrarily small as the support of η shrinks to a
small enough neighborhood of the horizon. (The absolute
value in the denominator eliminates problems that could
occur if

R
Δ ηna ¼ 0.) This expression is invariant under

rescalings of η, and the integral in the denominator
compensates for the effects of a shrinking region of
integration. If, as in Eq. (C5) below, η has support only
in a band r < ε, this condition is roughly equivalent to
normalizing η at the horizon and then demanding that δ̂ηI
go to zero faster than ε.
To apply this criterion to the transformations (C1a)–

(C1c), we should first check that they preserve our
boundary conditions (5.3a)–(5.3c). Condition (5.3c) simply
tells us that the Weyl transformation δ̂ηgab acts only on la
and not on na (and therefore on na and not la). Condition
(5.3a) then determines the form of the transverse diffeo-
morphism ζ̄, and as shown in Sec. VI, condition (5.3b)
gives the equation in (C1d) that fixes Xη.
We next examine the effect of this transformation on the

action (4.1). The action is diffeomorphism invariant, so we
can ignore ζa and consider only the shift of the dilaton and
the Weyl transformation of the metric. The variation of the
action is then

δηI ¼
Z �

δI
δφ

δ̂ηφþ δI
δgab

δ̂ηgab

�
ϵ ¼ 1

16πG

Z �
∇aðηlaÞ

�
Rþ dV

dφ

�
þ Xη

Dφ

D̄Dφ
ð−□φþ VÞ

�
ϵ ¼ 1

16πG

Z
½ηAþ XηB�ϵ

ðC3Þ

with

A ¼ −D
�
Rþ dV

dφ

�
¼ −DR −Dφ

d2V
dφ2

¼ −r
�
D̄DRþ D̄Dφ

d2V
dφ2

�
þOðr2Þ ðC4aÞ

B ¼ Dφ

D̄Dφ
ð−□φþ VÞ ¼ Dφ

D̄Dφ
ð2D̄Dφþ VÞ ¼ rð2D̄Dφþ VÞ þOðr2Þ; ðC4bÞ

where in the last equalities I have used (B4) to write the result in Gaussian null coordinates.
We have assumed that the parameter η falls off rapidly away from the horizon—this is, after all, a “near-horizon”

symmetry. Let us make this explicit by writing

η ¼ ηΔ · ΨεðrÞ; ðC5Þ

where ηΔ is the restriction of η to the horizon and Ψ is a smooth bump function
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ΨεðrÞ ¼

8>><
>>:

1 r ¼ 0

smooth interpolation 0 < r < ε

0 r > ε

with ∂rΨεjr¼0 ¼ 0; ðC6Þ

where the last condition ensures that D̄η ≜ 0. The variation (C3) is then

δηI ¼
ε2

32πG

Z
Δ

�
−ηΔ

�
D̄DRþ D̄Dφ

d2V
dφ2

�
þ XηΔð2D̄Dφþ VÞ

�
na þOðε3Þ: ðC7Þ

The denominator in (C2), on the other hand, is

Z
jηjϵ ¼ ε

Z
Δ
jηΔjna þOðε2Þ: ðC8Þ

Thus, as long as the integrand in (C7) remains well
behaved near the horizon, the variation δ̄ηI is of order ε,
and can be made arbitrarily small by shrinking the support
of η.

Note that while η must have large (Oð1=εÞ) radial
derivatives, these never appear in the variation of the
action. For the first term in (C7), this is obvious; for the
second, it follows from the fact that the defining
equation (C1d) for Xη involves no radial derivatives.
Recall also from Sec. III that the corrections to the near-
horizon form (4.1) of the action are at most of order r, so
any additional variation of the action coming from these
terms will also fall off as ε2.
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