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High-energy behavior of the nuclear symmetry potential in asymmetric nuclear matter
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Using the relativistic impulse approximation with empirical NN scattering amplitude and the nuclear scalar
and vector densities from the relativistic mean-field theory, we evaluate the Dirac optical potential for neutrons
and protons in asymmetric nuclear matter. From the resulting Schrédinger-equivalent potential, the high-energy
behavior of the nuclear symmetry potential is studied. We find that the symmetry potential at fixed baryon density
is essentially constant once the nucleon kinetic energy is greater than about 500 MeV. Moreover, for such a
high-energy nucleon, the symmetry potential is slightly negative below a baryon density of about p = 0.22 fm™>
and then increases almost linearly to positive values at high densities. Our results thus provide an important
constraint on the energy and density dependence of nuclear symmetry potential in asymmetric nuclear matter.
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I. INTRODUCTION

Recently, there is renewed interest in the isovector part
of the nucleon mean-field potential, i.e., the nuclear symmetry
potential, in isospin asymmetric nuclear matter [ 1-16]. Knowl-
edge on the symmetry potential is important for understanding
not only the structure of radioactive nuclei and the reaction dy-
namics induced by rare isotopes but also many critical issues in
astrophysics. In addition to depending on the nuclear density,
the symmetry potential also depends on the momentum or
energy of a nucleon. Various microscopic and phenomeno-
logical models, such as the relativistic Dirac-Brueckner-
Hartree-Fock (DBHF) [2,8,9,13,15] and the nonrelativistic
Brueckner-Hartree-Fock (BHF) [1,14] approaches, the rela-
tivistic mean-field theory based on nucleon-meson interactions
[12], and the nonrelativistic mean-field theory based on
Skyrme-like interactions [3,11], have been used to study
the symmetry potential. However, the results predicted by
these models vary widely. In particular, whereas most models
predict a decreasing symmetry potential with increasing
nucleon momentum albeit at different rates, a few nuclear
effective interactions used in some of the models lead to the
opposite conclusion. Thus, any constraint on the momentum
and density dependence of the symmetry potential is very
useful.

In the optical model based on the Dirac phenomenology,
elastic nucleon-nucleus scattering is described by the Dirac
equation for the motion of a nucleon in a relativistic potential.
For spherical nuclei, good agreements with experimental
data were obtained in the relativistic approach with a scalar
potential (nucleon scalar self-energy) and the zeroth com-
ponent of a vector potential (nucleon vector self-energy),
whereas the standard nonrelativistic optical model using the
Schrodinger equation failed to describe simultaneously all
experimental observables [17]. Motivated by the success of
the Dirac phenomenology, a microscopic relativistic model
based on the impulse approximation (RIA) [18-21] was
developed, and it was able to fit the data from p + 40Ca and
p + 2%Pb elastic scattering at nucleon energies of both 500 and
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800 MeV very well. A nice feature of the RIA is that it permits
very little phenomenological freedom in deriving the Dirac
optical potential in nuclear matter. The basic ingredients in this
method are the free invariant nucleon-nucleon (NN) scattering
amplitude and the nuclear scalar and vector densities in nuclear
matter. This is in contrast to the relativistic DBHF approach,
where different approximation schemes and methods have
been introduced for determining the Lorentz and isovector
structure of the nucleon self-energy [2,8,9,13,15].

In the present work, we evaluate the Dirac optical poten-
tial for neutrons and protons in asymmetric nuclear matter
based on the relativistic impulse approximation by using the
NN scattering amplitude determined by McNeil, Ray, and
Wallace [22], which has been shown to be valid for nucleons
with kinetic energy greater than about 300 MeV. The high-
energy behavior of the nuclear symmetry potential from the
resulting Schrédinger-equivalent potential is then investigated
without adjustable parameters. We find that the nuclear
symmetry potential at fixed density becomes almost constant
for nucleon kinetic energy greater than about 500 MeV. For
such high-energy nucleons, the nuclear symmetry potential is
further found to be weakly attractive below a nuclear density
of about p = 0.22 fm~3 but to become increasingly repulsive
when the nuclear density increases.

The article is organized as follows. In Sec. II, we briefly
review the relativistic impulse approximation for nuclear
optical potential and the relativistic mean-field model for
nuclear scalar and vector densities. Results on the relativistic
nuclear optical potential and the nuclear symmetry potential
in asymmetric nuclear matter are presented in Sec. III. A short
summary is then given in Sec. I'V.

II. NUCLEAR OPTICAL POTENTIAL

A. Relativistic impulse approximation

Many theoretical studies have suggested that nucleon-
nucleus scattering at sufficient high energy can be viewed as the
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projectile nucleon being scattered from each of the nucleons
in the target nucleus. One thus can describe the process
by using the NN scattering amplitude and the ground-state
nuclear density distribution of the target nucleus. For the
Lorentz-invariant NN scattering amplitude, it can be written
as

f=Fs+Fv7/1uJ/2/4+FTUfw02;w
+ Foyivs + Favi vl vivau (1

in terms of the scalar Fyg, vector Fy, tensor Fr, pseudoscalar
Fp, and axial vector F,4 amplitudes. In the above, subscripts
1 and 2 distinguish Dirac operators in the spinor space of
the two scattering nucleons and y’s are y matrices. The five
complex amplitudes Fg, Fy, Fr, Fp, and F, depend on the
squared momentum transfer q> and the invariant energy of the
scattering nucleon pair, and they were determined in Ref. [22]
directly from the NN phase shifts that were used to parametrize
the NN scattering data. For a spin-saturated nucleus, only the
scalar (Fs) and the zeroth component of the vector (Fyy,y3)
amplitudes dominate the contribution to the optical potential.
In the relativistic impulse approximation, the optical potential
in momentum space is thus obtained by multiplying each of
these two amplitudes with corresponding momentum-space
nuclear scalar gg(q) and vector py(q) densities, i.e.,

—47iprap

Uopt(q) = M

[Fs()ps(@ + voFv(@)pv(@l,  (2)
where pia, and M are, respectively, the laboratory momentum
and mass of the incident nucleon. The optical potential in
coordinator space is then given by the Fourier transformation
of Uopt(q), similar to the “fp” approximation used in nonrela-
tivistic impulse approximation [22].

The q dependence of the relativistic NN amplitude is
important for calculating observables of a nucleon scattering
off finite nuclei within the Dirac phenomenology. In the present
work, we are interested in the strength of the Dirac optical
potential of nucleons in infinite nuclear matter. Because the
scalar and vector densities in coordinate space are constant in
infinite nuclear matter, they are delta functions in momentum
space, i.e., ~8)(q). In this case, only the forward NN scatter-
ing amplitudes, i.e., Fso = Fs(¢ = 0) and Fyo = Fy(q = 0),
contribute to the Fourier transform of Eq. (2), and the nuclear
coordinate-space optical potential takes the simple form [18]:

—47Tip1 b
Uopt = __ e

[Fsops + voFvopvl, (3)
where pgs and py are, respectively, the spatial scalar and vector
densities of an infinite nuclear matter.

The optical potential Uy is a 4 x 4 matrix in the Dirac
spinor space of the projectile nucleon and includes the

following scalar U and vector U™ pieces:

Uopt = U§Ol + VOU(t)0t~ (4)

Because Uy and Uy are generally complex, they can be
expressed in terms of their real and imaginary parts, i.e.,

Ut =Us+iWs, UY = U+ iW, &)
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B. Nuclear scalar densities

To evaluate the RIA optical potential for neutrons and
protons, we need the values for the isospin-dependent Fyg
and Fy, which can be found in Ref. [22], as well as the scalar
and vector densities for neutrons and protons. For the latter,
we determine them using the relativistic mean-field (RMF)
theory [23] with a Lagrangian density that includes the nucleon
field v, the isoscalar-scalar meson field o, the isoscalar-vector
meson field w, the isovector-vector meson field p, and the
isovector-scalar meson field §, i.e.,

LW, 0,0,p,8) = Ylyid" — g,0") — (M — g,0)]¥
+ %(E)Maa"a —mZo?) — élla),wa)‘“’
+ im2 w0t —1b, M(8,0)*—1¢6(850)*
+ Loy (G2wuat)’ + 18,898 — m38?)
+ 3m2pup" — 1op™ + 5(820uP")
x (Asgio® + Avgw,0")
— 8pPu YTV + 85U Ty, (6)

where the antisymmetric field tensors w,,, and p,, are given
by w,, = 9,0, — d,w, and p,,, = 3,0, — 9,0, respectively,
and the symbols used in Eq. (6) have their usual meanings. The
above Lagrangian density is general and allows us to use many
presently popular parameter sets. In the present work, we use
three typical parameter sets, namely the very successful NL3
model [24], the Z271v model which was used to study the
neutron skin of heavy nuclei and the properties of neutron stars
[25], and the HA model, which includes the isovector-scalar
meson field § and fits successfully some results calculated with
more microscopic DBHF approach [26].

In Fig. 1, we show the neutron and proton scalar densities
ps as functions of the baryon density pp (vector density in the
static infinite nuclear matter) in nuclear matter with isospin
asymmetry o = 0 and 0.5 for parameter sets NL3, Z271v, and
HA. The isospin asymmetry is defined as a = (p, — p,,)/pB
with pg = p, + p, and p, and p, denoting the neutron and
proton densities, respectively. It is seen that the neutron scalar
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FIG. 1. (Color online) Neutron and proton scalar densities as
functions of baryon density in nuclear matter with isospin asymmetry
o = 0 and 0.5 for the parameter sets NL3, Z271v, and HA.
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FIG. 2. (Color online) Energy dependence of real and imaginary
parts of the scalar and vector potentials for neutrons and protons
in nuclear matter with isospin asymmetry « = 0 and 0.5 for the
parameter set HA.

density is larger than that of the proton at a fixed baryon
density in neutron-rich nuclear matter. Although results for
different parameter sets are almost the same at lower baryon
densities, they become different when pp > 0.25 fm—3 with
Z271v giving a larger and NL3 a smaller pgs than that from
the parameter set HA. The real and imaginary parts of the
scalar potential at higher baryon densities thus depend on the
interactions used in evaluating the nucleon scalar density and
have, therefore, large uncertainties.

III. RESULTS

A. Relativistic nuclear optical potential

With neutron and proton scalar densities obtained from the
RMF theory for the parameter set HA, we have studied both the
energy and density dependence of the real and imaginary parts
of the scalar and vector potentials for neutrons and protons
in nuclear matter with isospin asymmetry o = 0 and 0.5.
In Fig. 2, the resulting energy dependence is shown for the
three nucleon densities pg = 0.08 fm~ [panel (a)], 0.16 fm—>
[panel (b)], and 0.24 fm—3 [panel (c)]. For all densities, the
optical potential shows a strong energy dependence below
300 MeV, where it is known that the influences because of
ambiguities in the relativistic form of the NN interaction, the
exchange contribution, and the medium modification because
of Pauli blocking are important. The low-energy behavior
of the optical potential can in principle be studied in the
generalized relativistic impulse approximation based on the
relativistic meson-exchange model of nuclear force and using
the complete set of Lorentz-invariant NN amplitudes [27-31].
Because many theoretical studies have shown that data on
elastic nucleon-nucleus scattering can be reproduced by using
above optical potential when the nucleon kinetic energy is
greater than about 300 MeV and that this optical potential also
agrees very well with that extracted from phenomenological
analysis of the nucleon-nucleus scattering data [18-20,32],
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FIG. 3. (Color online) Density dependence of the real and
imaginary parts of the scalar and vector potentials for neutrons and
protons in nuclear matter with isospin asymmetry o = 0 and 0.5 for
the parameter set HA.

we thus in the present work focus on the higher-energy
behavior of the isospin-dependent optical potential. As shown
in Fig. 2, for all three densities considered here, there is
a systematic difference or isospin splitting in the optical
potentials for protons and neutrons in asymmetric nuclear
matter. Specifically, the neutron exhibits a stronger real but
weaker imaginary scalar and vector potentials in neutron-rich
nuclear matter. Furthermore, both the proton and neutron
optical potentials become stronger with increasing density.

The density dependence of the real and imaginary parts
of the scalar and vector potentials for neutrons and protons
in nuclear matter with isospin asymmetry « =0 and 0.5
obtained with the parameter set HA is shown more explicitly in
Fig. 3 for the three nucleon kinetic energies of Eyi, = 600 MeV
[panel (a)], 800 MeV [panel (b)], and 1000 MeV [panel (c)]. An
isospin splitting of the nucleon optical potential in asymmetric
nuclear matter is again clearly seen.

B. Nuclear symmetry potential

From the Dirac optical potential, a Schrodinger-equivalent
potential (SEP) of the following form is usually introduced
[33,34]:

USEP — U;Pt + U(t)ot + L( gotZ _ (t)otZ) + U_OS’ (7)
2M
where ¢ is the nucleon kinetic energy. Using the SEP in
the Schrodinger equation gives the same bound-state energy
eigenvalues and elastic phase shifts as the solution of the upper
component of the Dirac spinor in the Dirac equation using
corresponding Dirac optical potential. The real part of the SEP
is then given by the following:

1 Uo
Re(Usep) = Us + Uy + - [U3=W§ — (U5 =Wg)] + -
®)
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FIG. 4. (Color online) Energy dependence of the nuclear symme-
try potential using the parameter sets NL3, Z271v, and HA as well as
from the phenomenological interaction MDI with x = —1, 0, and 1
at fixed baryon densities of pg = 0.08 fm™ (a), 0.16 fm~> (b), and
0.24 fm™ (c).

This equation corresponds to the nuclear mean-field potential
in nonrelativistic models [15,35] and allows us to obtain the
following nuclear symmetry potential, i.e., the so-called Lane
potential [36]:

Ue — Re(Usgp)n — Re(Uskp)

where Re(Usgp), and Re(Usgp), represent, respectively, the
real part of the SEP for the neutron and proton.

In Fig. 4, we show the energy dependence of the nuclear
symmetry potential for the parameter sets NL3, Z271v, and
HA at fixed baryon densities of pz = 0.08 fm™> [panel (a)],
0.16 fm~3 [panel (b)], and 0.24 fm=3 [panel (c)]. It is seen
that all three parameter sets give a similar nuclear symmetry
potential for a nucleon at kinetic energies higher than about
300 MeV, i.e., it first decreases with nucleon kinetic energy and
then becomes essentially constant when the nucleon kinetic en-
ergy is above about 500 MeV. Specifically, the nuclear symme-
try potential starts from about 0 MeV at alower density of pp =
0.08 fm~3 (about half of nuclear saturated density), 4.8 MeV
at a normal nuclear matter density (o = 0.16 fm~?), and
12 MeV at a higher density of pp =0.24 fm~ (about
1.5 time nuclear saturated density) and then saturates to
about —3.8 £ 0.5 MeV, —1.8 £ 1.7 MeV, and 5.3 &= 3.8 MeV,
respectively, when the nucleon kinetic energy is greater than
about 500 MeV. The uncertainties in the saturated values
simply reflect the variation in the energy dependence of the
symmetry potential at high energies.

For comparison, we also show in Fig. 4 results from
the phenomenological parametrization of the momentum-

, ®
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dependent nuclear mean-field potential, i.e., MDI interaction
with x = —1,0, and 1. In the MDI interaction, the single
nucleon potential in asymmetric nuclear matter with isospin
asymmetry o is expressed by the following [3,5,6,10]:

(%)

784

o+1/ po

2B \ po
+( —120.57 4+ x —+B
o+1/ po

o—1

2B Pt/
Up,ao,p,t,r)=[—-9598 — x —

x (1 — xaz) — 8tx
o+1 pg
2C‘L’,‘L’ ’ f‘L’ (rv p/)
4_ L/n 3p N2 2
00 1+ (p—-p)/A
2(jnr’ / Jt r, /
+ 200 [y B o)
00 1+(@{p-p)/A

In the above t =1/2 (—1/2) for neutrons (protons) and
T #£1t';0 =4/3, and f,(r, p) is the phase-space distribution
function at coordinate r and momentum p. The parame-
ters B,C;;,C;y, and A were determined by fitting the
momentum dependence of U(p, «, p, T, r) to that predicted
by the Gogny Hartree-Fock and/or the BHF calculations [1],
the saturation properties of symmetric nuclear matter and
the symmetry energy of 31.6 MeV at normal nuclear matter
density pp = 0.16 fm=>3 [3]. The incompressibility Ky of
symmetric nuclear matter at py is set to be 211 MeV. The
different x values in the MDI interaction are introduced to vary
the density dependence of the nuclear symmetry energy while
keeping other properties of the nuclear EOS fixed [10]. We note
that the energy dependence of the symmetry potential from the
MDI interaction is consistent with the empirical Lane potential
at normal nuclear matter density and low nucleon energies [4]
and has been used in the transport model for studying isospin
effects in intermediate-energy heavy-ion collisions induced by
neutron-rich nuclei [5,6,10].

It is seen from Fig. 4 that results from RIA at lower
density of p =0.08 fm™> are comparable to those from
the MDI interaction with x = 0, whereas at higher baryon
density of pp = 0.24 fm~3 they are comparable to those from
the MDI interaction with x = —1. At normal nuclear matter
density, the MDI interaction, which gives same results for
different x values by construction, is seen to lead to smaller
nuclear symmetry potential at high nucleon kinetic energies
compared with present results from the RIA based on empirical
NN scattering amplitude and the nuclear scalar density from
the relativistic mean-field theory. We note that our results agree
surprisingly well with those of DBHF by Fuchs et al. [8,37].

For the density dependence of the nuclear symmetry
potential using the parameter sets NL3, Z271v, and HA at
a fixed high nucleon kinetic energy of 800 MeV, it is shown
in Fig. 5 together with corresponding results from the MDI
interaction with x = —1,0, and 1. It is clearly seen that
the nuclear symmetry potential from all parameter sets NL3,
Z271v, and HA changes from negative to positive values at
a fixed baryon density of about pz = 0.22 fm~ and then
increases almost linearly with baryon density. Furthermore, the
nuclear symmetry potential depends very little on the choice of
the parameter sets NL3, Z271v, and HA. At such high nucleon
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FIG. 5. (Color online) Density dependence of the nuclear sym-
metry potential using the parameter sets NL3, Z271v, and HA as well
as from the MDI interaction with x = —1, 0, and 1 at a fixed nucleon
kinetic energy of 800 MeV.

kinetic energy, the nuclear symmetry potential from the MDI
interaction with x = 0 reproduces nicely the results from the
RIA when pp < 0.1 fm~3 as in its energy dependence at low
densities shown in Fig. 4. The two differ strongly, however, at
high densities. The MDI interaction with both x = —1 and 1,
conversely, show very different density dependence from
present RIA results.

IV. SUMMARY

We have evaluated the Dirac optical potential for neutrons
and protons in asymmetric nuclear matter based on the rela-
tivistic impulse approximation with empirical NN scattering
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amplitude and the scalar and vector densities from the rela-
tivistic mean-field theory. We find that the nuclear symmetry
potential derived from the resulting Schrddinger-equivalent
potential is not very sensitive to the parameter sets used in the
relativistic mean-field calculation, particularly at low densities
and high nucleon energies, although the latter give very
different nuclear scalar densities at high baryon densities in
both symmetric and asymmetric nuclear matters. Furthermore,
the nuclear symmetry potential at a fixed density becomes
almost constant when the nucleon kinetic energy is greater than
about 500 MeV. For such high energy nucleon, our study shows
that the density dependence of its nuclear symmetry potential
is weakly attractive at low densities but become increasingly
repulsive as nuclear density increases. Results presented
in present study thus provide important constraints on the
high energy behavior of the nuclear symmetry potential in
asymmetric nuclear matter, which is an important input to the
isospin-dependent transport model [5,12] in studying heavy-
ion collisions induced by radioactive nuclei at intermediate
and high energies. They are also useful in future studies
that extend the Lorentz-covariant transport model [38,39] to
include explicitly the isospin degrees of freedom.
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