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Robust to impurity-scattering spin Hall effect in two-dimensional electron gas
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We propose a mechanism of spin Hall effect in two-dimensional electron gas with spatially random
Rashba spin-orbit interaction. The calculations based on the Kubo formalism and kinetic equation
show that in contrast to the constant spin-orbit coupling, spin Hall conductivity in the random
spin-orbit field is not totally suppressed by the potential impurity scattering. Even if the regular
contribution is removed by the vertex corrections, the terms we consider, remain. Therefore, the
intrinsic spin-Hall effect exists being, however, non-universal.
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Spin currents are believed to be of great importance
for future spin electronics2, as they offer the possibil-
ity of nonmagnetic manipulation of magnetic moments.
Generally, spin currents are associated with charge cur-
rents, and can be generated by various methods, such as
for instance by electric field in magnetic systems or cir-
cularly polarized light in nonmagnetic semiconductors.
Of particular interest, however, are pure spin currents,
where the flow of spins is not accompanied by any elec-
tric current. Search for generation techniques of pure
spin currents, especially in nonmagnetic semiconducting
systems, is of high interest both for fundamental and ap-
plied physics. One of the possibilities of producing pure
spin currents relies on the spin Hall effect (SHE) in non-
magnetic semiconductors with various types of spin-orbit
(SO) interaction, where uniform electric field causes a
transverse spin rather than charge current.

The existence of SHE in semiconductors with impuri-
ties has been predicted by Dyakonov and Perel’3. Since
then several mechanisms of SHE have been proposed4–6,
and the effect has been observed in a number of
experiments7,8. It is generally believed that two extrinsic
mechanisms related to the SO-dependent scattering by
impurities, i.e. side jump and skew scattering9–11, can be
responsible for the SHE in metallic and semiconducting
materials. In addition, a lot of discussions in recent liter-
ature concerned the possibility of SHE due to intrinsic SO
interaction in disorder-free systems. An extensively stud-
ied example of such a system is a two-dimensional elec-
tron gas with constant Rashba SO interaction6,12, lead-
ing to the momentum-dependent spin splitting of electron
states. The theoretical efforts were especially focused on
the possibility of equilibrium spin currents13,14 and uni-
versal SHE6 independent on the SO coupling strength.
However, it turned out that the role of impurities is cru-
cial for this mechanism16. It has been shown that even in
the limit of a very weak spin-independent disorder, the
potential scattering from impurities suppresses the SHE
completely17–23. In the case of random Rashba field with-

out impurity scattering, the SHE can be also nonzero,
as shown numerically within tight-binding model for a
finite-size system24.
Here we show that the intrinsic SHE does exist, para-

doxically, in relatively dirty systems, where the SO cou-
pling appears locally, but vanishes on average. Such a
random spin dynamics is common in symmetric semi-
conductor quantum wells (QWs)25, such as Si/SiGe26

and GaAs/AlGaAs QWs grown along the [110] axis27.
Moreover, we show that impurities play here the role less
important than in the case of uniform SO interaction –
the spin Hall conductivity does not vanish in the limit
of small impurity density. This behavior is qualitatively
different from that for constant Rashba SO interaction.
To describe the model under consideration we assume

Hamiltonian of electrons moving in the r = (x, y) plane

with random Rashba SO interaction, Ĥ = Ĥ0 + Ĥso (in
the following we use units with h̄ ≡ 1), with

Ĥ0 = −
∇2

2m
, (1)

Ĥso = −
i

2
σx {∇y, λ(r)} +

i

2
σy {∇x, λ(r)} , (2)

where ∇i = ∂i − eAi/c, A is the vector potential of ex-
ternal field, e and m is the electron charge and effective
mass, respectively, and σa are the Pauli matrices (a =
x, y, z). The curly brackets {...} stand for the anticom-
mutator of the appropriate operators to ensure the Her-
mitian form of the Hamiltonian. The random coupling
parameter λ(r) vanishes on average, 〈λ(r)〉 = 0, while
the correlator Cλλ(r−r′) ≡ 〈λ(r)λ(r′)〉 =

〈
λ2

〉
F (r−r′),

with all higher correlators reduced to the second-order
one for the Gaussian fluctuations of λ(r).
The spin current operator has the following form28:

̂ai =
1

4e
{̂i, σa}, (3)

where ̂i = −c (∂Ĥ/∂Ai) is the i-th component of the
current operator (i = x, y, z). We consider in-plane
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electric field E, and calculate the total spin current Ja
i .

In the following we use the gauge with vector potential
A(t) = A0e

−iωt, E = −c−1(∂A/∂t), and at the end take
the limit ω → 0 in the calculated response function29.
Using Eqs. (1) and (3) one can write the matrix ele-

ments of the spin current operator in the basis of eigen-
functions of Ĥ0 as

〈
k|̂zi |k

′

〉
=

δ
kk′

2m

(
ki −

eAi

c

)
σz , (4)

where k includes the electron momentum k and spin com-
ponent σz . We note that the z-component of spin cur-
rent, ̂zi , does not contain any anomalous part explicitly
dependent on the SO coupling.
It is convenient to decompose the Hamiltonian Ĥ into

two terms, Ĥ = ĤA=0+ ĤA, where ĤA=0 corresponds to
vanishing vector potential (A = 0), while ĤA appears at

nonzero A. Matrix elements of Hamiltonian ĤA=0 are

〈
k|ĤA=0|k′

〉
=

k2

2m
δ
kk′ + V̂

kk′
, (5)

V̂
kk′

=
λkk′

2

[
σx(ky + k′y)− σy(kx + k′x)

]
, (6)

where λkk′ is the Fourier component of the ran-
dom Rashba field. In turn, matrix elements of the
A−dependent term, ĤA, have the form

〈
k|ĤA|k′

〉
= −

ek ·A

mc
δ
kk′ +

e2A2

2mc2
δ
kk′ + Ŵ

kk′ , (7)

Ŵ
kk′ = −

eλkk′

c
(σxAy − σyAx) . (8)

In the linear response regime, only the first and third
terms on the right-hand side of Eq. (7) are relevant. The
third term clearly demonstrates the coupling of electric
field to electron spin via the Fourier component of the
random Rashba field. These two terms can be associated
with two different electromagnetic vertices in the Feyn-
man diagrams for system’s conductivity: the first one
leads to the conventional conductivity while the third
one to the spin conductivity.
To calculate the spin Hall conductivity we apply the

conventional Kubo formalism29 using the retarded and

advanced Green’s functions ĜR,A
k = ÎGR,A

k , taken in the
vicinity of the Fermi level,

GR,A
k =

1

εk − εF ± i/2τ
, (9)

where Î is the 2 × 2 unit matrix, εk = k2/2m, εF is
the Fermi energy, and τ is the total momentum relax-
ation time including scattering from impurities (τ0) and
scattering by spin-dependent Rashba potential (τSO),
1/τ = 1/τ0 + 1/τSO. Since the SO coupling vanishes
on the average, the Green function (9) keeps exactly the
diagonal form in the spin subspace. The linear spin Hall
conductivity is represented by the sum of two Feynman

FIG. 1: The Feynman diagrams leading to nonvanishing con-
tributions to spin current. Here the left vertex (filled square)
corresponds to the spin current operator, the right vertex
(filled circle) is the external field perturbation in Eq.(8), and
the white circle is the matrix element of spin-orbit coupling
in Eq.(6). Upon averaging over disorder, the dashed line
becomes the Fourier component of the correlator of random
Rashba SO interaction C(k− k

′).

diagrams in Fig.1. We neglect ladder corrections for spin
current vertex since we assume isotropic scattering by
impurities. On the other hand, corrections to the ver-
tices corresponding to the random spin-orbit coupling are
small by the parameter R/ℓ ≪ 1, where R is a character-
istic length of the fluctuations in the Rashba interaction,
and ℓ is the electron mean free path. This situation is
completely different from the case of constant SO inter-
action. Since the spin current operator does not include
any anomalous term, there are no diagrams with the cor-
responding vertices including the random Rashba field.
In other words, the spin Hall effect is due to a spin-
dependent correction to the distribution function only,
as will be explicitly verified later in the text by consider-
ing the kinetic equation for the density matrix23,30.
We assume that the field is oriented along the y-axis

(Ax = 0, Ay 6= 0) and calculate the spin-Hall conduc-
tivity σsH defined as Jz

x = σsHEy. One can easily verify
that all other components of the spin current are equal to
zero. Calculating the diagrams, taking the trace in the
spin subspace, and integrating over the electron energy
ε, we obtain in the static limit ω → 0,

σsH =
ie

2πm
× (10)

∑

kq

kx (kx + k′x)C(q)GR
k

(
GR

k−q −GA
k−q

)
GA

k ,

where C(q) = C(q) for an isotropic system. We consider
the experimentally relevant case of weak SO coupling,
where τ0 ≪ τSO and, therefore, τ is very close to τ0.
For the states close to the Fermi surface, the difference
GR

k−q −GA
k−q = 2iImGR

k−q can be presented in the form

GR
k−q −GA

k−q = −2πiδ (εF − εk−q) , (11)
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which reflects the energy conservation. By using the re-
sulting identity,

δ
((

k2 − (k− q)2
)
/2m

)
= (12)

2m

q
√
4k2 − q2

[δ (θ − θ1) + δ (θ − θ2)] ,

with θ denoting the angle between k and q, and θ1,2
being two solutions of cos θ1,2 = q/2k, we arrive upon
integrating over k at

σsH =
emτ

4π2

∫ 2kF

0

C(q)
√

4k2F − q2 dq, (13)

where kF is the Fermi momentum. Taking into account
the formula for the spin relaxation time τs due to random
SO coupling, derived in Ref.31 for ℓ ≫ R:

1

τs
=

m

π

∫ 2kF

0

C(q)
√

4k2F − q2 dq, (14)

we obtain

σsH =
e

4π

τ

τs
. (15)

Equation (15) is our main result. It shows that σsH is
non-universal and depends on both the disorder due to
impurities and random SO coupling. However, it is not
zero under very general assumptions of our model, which
is qualitatively different from σsH = 0 for the uniform
Rashba coupling20. Of course, our finite σsH is not in
contradiction to the result of Ref.20 since, in contrast to
Ref.20, the SO coupling is disordered here.
The above result can also be obtained with the kinetic

equation for random Rashba SO interaction23,31, which
allows a better insight into the problem. The kinetic
equation for the density matrix ρ̂k includes the usual
field-dependent term eE·∂ρ̂0k/∂k, which is responsible
for the conductivity. Here the unperturbed density ma-
trix is ρ̂0k = Îf0(εk), where f0(ε) is the Fermi-Dirac dis-
tribution function. Another source of the perturbation in
the electron distribution under external field E is due to
the spin-dependent scattering associated with the fluctu-
ating Rashba SO interaction, as given by the third term
in the right-hand-side of Eq.(7). As discussed above, the
electric field produces a random field acting on electron
spin, which can be treated in the collision integral.
Using the matrix elements in Eqs. (6), (8), and assum-

ing that the perturbation due to SO interaction is small,
we find the following expression for the collision integral:

St ρ̂k =
1

τ
(ρ̂0k − ρ̂k) + St[E]ρ̂k, (16)

St[E]ρ̂k = 2π
∑

k′

(
V̂
kk′

Ŵ
k′k

+ Ŵ
kk′

V̂
k′k

)
×

(ρ̂0k′ − ρ̂0k) δ(εk − εk′ + ω), (17)

where St[E]ρ̂k is the contribution from the random
Rashba field. Since we consider the linear response to

Ey, in the last term we take the equilibrium density ma-
trix, with ρ̂0k′ − ρ̂0k = ω ∂f0(ε)/∂ε. Upon the averaging
over the SO disorder, we obtain,

V̂
kk′

Ŵ
k′k

+ Ŵ
kk′

V̂
k′k

= −
e

ω
C(q) (kx + k′x)σzEy. (18)

This term is the driving force for the spin current, as
shown in Fig.2. The corresponding contribution to the
collision integral can be obtained with Eq.(12) as

St
[E]
k = −e

∂f0
∂ε

1

k

1

τs

(
kx
k
σz

)
Ey. (19)

We present the density matrix as ρ̂k = ρ̂0k + δρ̂k + Skσz

and with Eqs. (16),(17), find for the steady state:

Sk = −e
∂f0
∂ε

kx
k2

τ

τs
Ey, (20)

describing spin split of the Fermi surface, corresponding
to Fig.2. In the stationary state the spin-dependent force
due to the external field and random spin-orbit coupling
in Eq.(18) is balanced by the friction force due to the
disorder, proportional to 1/τ .
Having found the distribution function, we can calcu-

late the spin current. First, we calculate in the spin space
Trρkj

z
x, with jzx = kxσz/2m and obtain:

Trρkj
z
x = −e

∂f0
∂ε

τ

τs

k2x
mk2F

Ey. (21)

The total spin current is then equal

Jz
x =

∫
Tr ρkj

z
x

d2k

(2π)
2 =

e

4π

τ

τs
Ey. (22)

This result leads to σsH equivalent to Eq.(15).
To consider an example, we assume the following form

of the correlator C(q)25,31:

C(q) = 2π
〈
λ2

〉
R2e−qR, (23)

achieved by doping quantum wells with charged impuri-
ties. In the semiclassical limit of long-range correlations,
kFR ≫ 1, the integral in Eq. (14) becomes

1

τs
= 2kF

m

π

∞∫

0

C(q) dq = 4m
〈
λ2

〉
kFR, (24)

and the resulting spin Hall conductivity is

σsH =
e

π
mτ

〈
λ2

〉
kFR. (25)

When kFR ≪ 1, the system is always in the dirty limit
of very long SO coupling-determined relaxation times.
As a result, the spin Hall conductivity is suppressed and
tends to zero as (kFR)

2
with decreasing kFR. This is a

general feature of the finite-range correlators (similar to
that in Eq.(23)), the effect of which vanishes due to fast
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FIG. 2: Preferable spin-dependent scattering direction by the
effective potential in left-hand-side of Eq.(18), shown by hor-
izontal arrows attached to the circles. White and filled circles
correspond to spin components σz = 1 and σz = −1, respec-
tively. As a result, the Fermi line becomes spin split with the
preferable concentration of spin-up electrons at kx > 0 and
spin-down ones at kx < 0, leading to the SHE.

oscillations of the Rashba parameter on the spatial scale
of the electron wavelength.
Now we can qualitatively discuss the clean limit τ0 ≫

τSO. Here the spin conductivity is finite and does not de-
pend on the magnitude of fluctuating Rashba field since
both the relaxation rate and gain due to the external
field are proportional to

〈
λ2

〉
. However, the clean limit

requires a separate analysis of the relaxation timescales,

which will be considered elsewhere.

In conclusion, we have shown that the random Rashba
spin-orbit interaction can generate spin Hall effect, even
in the presence of impurities. This behavior is distinct
from that found for spatially uniform Rashba interaction,
where in the limit of small impurity concentration, the
potential scattering by impurities totally suppresses the
spin Hall effect. In contrast to Ref. [32], where it was
found that for the linear Rashba coupling this suppres-
sion is a result of a sum rule for spin conductivity, here
the corresponding rule cannot be established and the re-
sulting spin current is not suppressed. We mention that
the comparison of conventional and torque-related28 def-
initions of spin current shows that the result in Eq.(15)
is independent of definition.

In systems with nonzero spin polarization, arising for
instance due to finite magnetization, the above discussed
SHE is closely related to the anomalous Hall effect. If
the concentrations of spin-up and spin-down electrons are
different, spin separation leads to electric current which
gives rise to the anomalous Hall effect. Since the disorder
in spin-orbit coupling leads to the spin current, it can
cause the anomalous Hall effect, too.
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