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We introdu
e an approximate phase-spa
e te
hnique to simulate the quantum dynami
s of inter-

a
ting bosons. With the future goal of treating Bose-Einstein 
ondensate systems, the method is

designed for systems with a natural separation into highly o

upied (
ondensed) modes and lightly

o

upied modes. The method self-
onsistently uses the Wigner representation to treat highly o

u-

pied modes and the positive-P representation for lightly o

upied modes. In this method, trun
ation

of higher-derivative terms from the Fokker-Plan
k equation is usually ne
essary. However, at least

in the 
ases investigated here, the resulting systemati
 error, over a �nite time, vanishes in the limit

of large Wigner o

upation numbers. We tested the method on a system of two intera
ting an-

harmoni
 os
illators, with high and low o

upations, respe
tively. The Hybrid method su

essfully

predi
ted atomi
 quadratures to a useful simulation time 60 times longer than that of the positive-P

method. The trun
ated Wigner method also performed well in this test. For the predi
tion of the


orrelation in a quantum nondemolition measurement s
heme, for this same system, the Hybrid

method gave ex
ellent agreement with the exa
t result, while the trun
ated Wigner method showed

a large systemati
 error.

PACS numbers: 03.75.-b, 05.10.Gg, 02.50.Fz, 34.50.-s

I. INTRODUCTION

The aim of this paper is to introdu
e a new, approx-

imate, sto
hasti
 phase-spa
e method and to test it on

some simple problems with intera
ting Bose �elds. A fu-

ture goal of our resear
h is to use the method to simulate

the dynami
s of intera
ting Bose-Einstein 
ondensates

(BECs). The method is, in fa
t, designed for BEC prob-

lems, sin
e it relies on the ability to make a meaningful

separation of a multimode system into highly o

upied

(
ondensed) modes and lightly o

upied modes. Hen
e

our two-mode test 
ases will be 
onstru
ted to have one

highly o

upied mode (N ≫ 1) and one lightly o

upied

mode (N . 1).

Previous authors have developed formalisms in whi
h


ondensed atoms are treated in a di�erent way to non-


ondensed atoms. Castin and Dum [1℄ studied the dy-

nami
s of Bose-Einstein 
ondensates at very low temper-

atures using a Bogoliubov [2℄ approa
h, in whi
h the bo-

son �eld operator is written as a sum of 
ondensate-mode

terms and non-
ondensate-mode terms. Their treat-

ment deals with number eigenstates rather than 
oher-

ent states. They obtain results as an asymptoti
 expan-

sion in the square root of the fra
tion of non-
ondensed

atoms. Gardiner and Zoller [3℄, in the third of their

series on quantum kineti
 theory, 
onsider a stationary

non-
ondensate band at a �xed temperature a
ting as a

reservoir to the dynami
 
ondensate modes. They de-

rive a master equation for the 
ondensate modes, using

a number-
onserving formalism. Dalton [4℄ 
al
ulates

quantum 
orrelation fun
tions for boson �eld operators

to use in the interpretation of double-well BEC inter-

ferometry experiments. The approa
h is a phase-spa
e

method for a distribution fun
tional, in whi
h the Wigner

representation is used for the 
ondensed modes and the

positive-P representation for the non-
ondensed modes.

Our method will be seen to be substantially di�erent from

these three approa
hes.

Besides in BEC evolution and 
ollision problems, other

typi
al 
ases where disparate o

upation numbers exist

would be in the quantum Brownian motion of a small

number of massive parti
les inside a BEC, or in the 
ol-

lision of weak and strong 
oherent light pulses in a non-

linear opti
al �bre. Hen
e we also 
onsider these systems

to be 
andidates for the Hybrid method.

The foundations of this work are the sto
hasti
 phase-

spa
e methods developed to simulate the quantum dy-

nami
s of systems with many degrees of freedom. In par-

ti
ular we 
onsider the Wigner-Moyal [5, 6℄ approa
h,

and the positive-P method [7, 8℄. We will see that both

methods have wide appli
ability, but are ultimately lim-

ited in the parameter regimes on whi
h they 
an be used.

The Wigner-Moyal method generally requires a trun
a-

tion to be able to map to a sto
hasti
 pro
ess. The result-

ing approximate theory typi
ally fails to give 
orre
t re-

sults when signi�
ant numbers of modes with small mode

o

upation numbers are present [9℄.

The positive-P method is exa
t, but when applied to

large multimode problems 
an often be used only for lim-

ited simulation times before very large sampling error

renders it unusable. The longest useful simulation times,

for a given intera
tion strength, are for lightly o

upied

modes [7℄.

The new phase-spa
e method to be introdu
ed here

is a 
ombination of the Wigner and positive-P methods.

In this Hybrid method, as we will 
all it, highly o

u-

pied modes are treated with the Wigner representation

while lightly o

upied modes use the positive-P represen-

tation. A trun
ation of higher-order derivative terms is

usually needed, but the resulting approximate method is

expe
ted to be valid (over �nite times) to within 
orre
-

tions of the order of the re
ipro
al of the large o

upation

http://arxiv.org/abs/0803.1887v2
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numbers.

The Wigner method is used in the regime where it is

known to perform best and produ
es most simpli�
ation

of the sto
hasti
 di�erential equations. The positive-P

method is used on the modes that introdu
e most error

in the trun
ated Wigner method. This latter 
hoi
e is

also designed to lengthen the useful simulation time.

In this paper we will summarize the properties of the

two representations, and dis
uss their su

esses and prob-

lems, before a
tual 
onstru
tion of the Hybrid method.

As a test 
ase, we will apply the method to an exa
tly

solvable problem: a system of two 
oupled anharmoni


os
illators, one highly o

upied, the other lightly o

u-

pied. The intera
tion preserves individual parti
le num-

bers.

At �rst we simply 
al
ulate the expe
tation values

of quadratures and 
ompare with the trun
ated Wigner

method, the positive-P method and the exa
t solution.

Then we investigate a higher-order 
orrelation in the

same system, one that would be observed in a quantum

nondemolition measurement (QND) s
heme.

II. THE SINGLE AND DOUBLED WIGNER

REPRESENTATIONS

We 
onsider a quantum many-body system of bosons.

The relevant 
reation and annihilation operators are de-

noted â†m, âm . In the Wigner-Moyal approa
h, one 
om-

plex phase spa
e variable, αm, is used for ea
h mode, m,
of a system, and we 
all this a single phase spa
e. In 
on-

trast, a doubled phase spa
e uses two 
omplex variables,

αm and α+
m, for ea
h mode. We will �nd that using

the Wigner and positive-P representations for di�erent

modes of the same system will generally require using

a doubled phase spa
e, although this 
an be avoided in


ertain 
ases.

We begin by showing the de�nition and properties of

the doubled Wigner representation. This is an extension

of the familiar single phase spa
e Wigner representation

to a doubled phase spa
e, and has been studied and ap-

plied by Plimak et al [10℄. Throughout this paper we will

set ~ = 1.
The single phase-spa
e Wigner representation of the

density matrix is given by

ρ̂ =

∫

d2αW (α)Λ̂W (α). (2.1)

This is an expansion of the density matrix on a basis

of operators, the standard form we will use to 
ompare

all representations. Here W (α) is the Wigner fun
tion

on phase spa
e. Following Moyal [6℄ and Glauber and

Cahill [11℄,

Λ̂W (α) =

∫

d2ξ

π
e(ξâ

†−ξ∗â) e(αξ
∗−α∗ξ)

(2.2)

is an operator fun
tion on phase spa
e, with tra
e unity.

We also refer to this as the operator basis. We note that

equation (2.1) has a unique inverse, de�ning the Wigner

fun
tion in terms of the density matrix:

W (α) =

∫

d2ξ

π2
e(−ξα

∗+ξ∗α)
Tr(ρ̂e(ξâ

†−ξ∗â)). (2.3)

By manipulating equation (2.2), these basis operators


an be written in the normally ordered Gaussian form of

Corney and Drummond [12℄,

Λ̂W (α) = 2 : e−2(â†−α∗)(â−α) :, (2.4)

where : f(â, â†) : indi
ates normal ordering.

Now we may de�ne the doubled Wigner representation

with an expansion of the density matrix of the form

ρ̂ =

∫

d2α

∫

d2α+W (α, α+)Λ̂W (α, α+). (2.5)

HereW (α, α+) is a Wigner fun
tion de�ned on a doubled

phase spa
e and

Λ̂W (α, α+) = 2 : e−2(â†−α+)(â−α) : (2.6)

are the operator basis elements, also de�ned on the dou-

bled phase spa
e. The new variable α+
appears where α∗

had been, but in a sto
hasti
 simulation may take values

di�erent from the 
omplex 
onjugate of α.
From equation (2.6) we 
an derive the operator 
orre-

sponden
es for the doubled Wigner representation. The

a
tion of a 
reation or annihilation operator, multiplying

the density matrix to the left or right, is equivalent to a

linear di�erential operator a
ting on the Wigner fun
tion:

âρ̂↔
(

α+
1

2

∂

∂α+

)

W (α, α+) (2.7)

ρ̂â↔
(

α− 1

2

∂

∂α+

)

W (α, α+) (2.8)

â†ρ̂↔
(

α+ − 1

2

∂

∂α

)

W (α, α+) (2.9)

ρ̂â† ↔
(

α+ +
1

2

∂

∂α

)

W (α, α+). (2.10)

We add a 
autionary note. The derivation of equa-

tions (2.7-2.10) depends on the vanishing of boundary

terms in an integration by parts. This problem is dis-


ussed in Se
tion IV.

We note that a pure 
oherent state (with ρ = |γ〉〈γ|)

an be represented, in the doubled Wigner representa-

tion, with the sto
hasti
 pres
ription

α = γ +
1

2
(n1 + in2) (2.11)

α+ = γ∗ +
1

2
(n1 − in2) (2.12)
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where n1 and n2 are independent real Gaussian random

noises with unit standard deviations.

In this symmetri
ally ordered representation, the for-

mula for estimating symmetri
ally averaged produ
ts of


reation and annihilation operators as sto
hasti
 averages

over traje
tories is:

〈â†mân〉sym = 〈〈α+mαn〉〉. (2.13)

We will use the notation 〈〈〉〉 throughout to signify a

sto
hasti
 average over an ensemble of traje
tories.

We note that we will be exploiting the nonuniqueness

of this representation and that of the positive-P repre-

sentation: an in�nity of di�erent fun
tionsW (α, α+) 
an
give the same density matrix a

ording to equation (2.5).

This feature of representations on doubled phase spa
es

will allow us, in the 
ase of the Hybrid representation,

to 
onstru
t quasiprobabilities that are everywhere real

and non-negative, obeying Fokker-Plan
k equations that

allow mapping to a sto
hasti
 simulation.

III. PROBLEMS WITH THE TRUNCATED

WIGNER METHOD

The (single phase spa
e) Wigner representation has

been widely used to study diverse physi
al problems, with

great su

ess [13, 14, 15℄. But a trun
ation of terms is

ne
essary in most appli
ations to allow a sto
hasti
 simu-

lation. The trun
ated Wigner method is then not exa
t.

Although the method gives good results in many 
ases,

be
ause the trun
ation of terms 
an be well justi�ed if

mode o

upation numbers are large and simulation times

are limited, the systemati
 errors 
an be signi�
ant if

those 
onditions are not met. In addition, the estimation

of a higher order moment (the expe
tation of a produ
t

of more than one �eld operator) will generally 
ontain a

larger systemati
 error than the estimation of the expe
-

tation value of a single �eld operator [16℄.

Even when no trun
ation is ne
essary, there is the

problem of large sampling error in a trun
ated Wigner

simulation. While an initial 
oherent state 
an be rep-

resented by a positive-P distribution of zero width (see

equation (4.10)), the same state will have a Wigner distri-

bution with a �nite width (equations (2.11), (2.12)). For

short times, the growing positive-P noise will not over-

take the relatively 
onstant Wigner noise. The result is

greater sampling error in the Wigner simulation, requir-

ing the 
al
ulation of far more traje
tories to a
hieve the

same pre
ision.

The investigation of Deuar and Drummond [9℄ into

BEC s
attering showed how the trun
ation problem pro-

du
es serious systemati
 errors in the simulation of a

large number of intera
ting modes with many lightly o
-


upied modes. We will dis
uss these problems later in

this se
tion.

Here we outline the reasons for trun
ation and the re-

gion of validity of the approximation.

From equation (2.3) it may be seen that the Wigner

fun
tion is always real, but it may take negative values

for some density matri
es. This would prevent us from

mapping our quantum me
hani
s problem to a sto
has-

ti
 simulation, sin
e the latter would require a positive

semide�nite quasiprobability distribution.

However, when we �nd the equation of motion for the

Wigner fun
tion, the opportunity for an approximation

pro
edure be
omes apparent. This equation follows from

the operator 
orresponden
es of the single Wigner rep-

resentation (whi
h 
an be obtained from equations (2.7-

2.10) with the repla
ement α+ → α∗
) and the evolution

equation for the density matrix

∂ρ̂

∂t
= −i[Ĥ, ρ̂]. (3.1)

We are going to restri
t our attention to Hamiltonians,

in
luding multimode Hamiltonians, that in
lude prod-

u
ts of 
reation and annihilation operators only up to

quarti
 terms. This restri
tion will in
lude the model of

BECs with two-body s-wave s
attering [17℄. The equa-

tion for the evolution of a Wigner fun
tion under su
h a

Hamiltonian will always take the general form

∂W

∂t
= − ∂

∂α
(A(α)W (α)) − ∂

∂α∗
(A∗(α)W (α)) + T3.

(3.2)

Here T3 is a term with three derivative operators, ea
h

either

∂
∂α

or

∂
∂α∗ . The key point to note is that for un-

damped (unitary) time-evolution, there are never any

se
ond order (di�usion) terms, whi
h is a 
onsequen
e of

the fa
t that the Wigner representation is symmetri
ally

ordered. Also, fourth-order terms always 
an
el. These

general results for quarti
 Hamiltonians, for the Wigner

representation and for the positive-P representation, are

summarized in Table 1.

Drift Terms Di�usion Terms Third-Order Terms

Wigner Yes No Yes

Positive-P Yes Yes No

Table 1: Terms in the Fokker-Plan
k equation for a quarti


Hamiltonian, using the Wigner and positive-P

representations.

It is found that the third order terms, in
luding for

more general multimode problems, may be trun
ated and

produ
e a systemati
 error in

∂W
∂t

that is relatively small


ompared to the other terms, in the limit that the o

u-

pation numbers of the modes remain very mu
h greater

than unity.

The motivation for this trun
ation is 
lear: equa-

tion (3.2) then redu
es to Liouville form, a spe
ial 
ase

of the Fokker-Plan
k equation in whi
h only drift terms

in�uen
e the evolution of the quasiprobability. If the

initial density matrix for the problem is su
h that the
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Wigner fun
tion is everywhere non-negative (and this is

a 
ommon situation) then the fun
tion will remain non-

negative for all times. A further mapping to a sto
has-

ti
 simulation be
omes possible. The only noise in the

simulation will 
ome from the initial 
ondition, sin
e no

se
ond-order terms are present to 
ause di�usion.

A small error in

∂W
∂t

will produ
e a large error in W
after a su�
iently long time, so this approximation pro-


edure 
an only be valid for a �nite time. Over the rel-

evant time-s
ales, the trun
ation is justi�ed by a s
aling

argument. If the sto
hasti
 variable α is seen from the

trun
ated equations of motion to remain of very large

magnitude (|α| ∼
√
N0 ≫ 1), then we de�ne a s
aled

variable z = α/
√
N0 and �nd that the third-order terms

take the form

T3 ∼ 1

N0
∂∂∂(ζW ), (3.3)

where ∂ is either

∂
∂z

or

∂
∂z∗

and ζ is either z or z∗.
Deuar and Drummond [9℄ applied the trun
ated

Wigner method to the large multimode problem of s
at-

tering BECs and found an ultraviolet divergen
e prob-

lem: systemati
 errors that grow with the momentum


uto� imposed on the latti
e. They were able to simulate

a BEC 
ollision with 150,000 bosons, using the positive-

P representation for times long enough to obtain useful

results, and thereby had an exa
t result to 
ompare with

the trun
ated Wigner method. The latter method pro-

du
ed a �false halo� of parti
les in momentum spa
e, de-

pletion leading to unphysi
al negative densities beyond

the halo, and a

umulation of parti
les at low momenta

- all in disagreement with the exa
t positive-P results.

The Wigner method requires that initially empty modes

of the system be represented by nonzero distributions, as

if one half of a virtual parti
le o

upied ea
h mode. Evi-

dently the trun
ated Wigner method treats these virtual

parti
les as if they were real, in that a s
attering event

involving them 
an produ
e real populations of produ
t

modes.

This is an ultraviolet divergen
e problem in that it be-


omes worse as the momentum 
uto� is in
reased. To

obtain the most physi
ally relevant results from a simu-

lation, one must extrapolate to the 
ontinuum limit. It is

in this limit, as the momentum 
uto� approa
hes in�nity,

that the trun
ation errors are divergent. Clearly a full

Wigner-Moyal treatment without trun
ation would not

have these errors, but su
h a full theory with third-order

derivatives also involves negative probabilities, whi
h

have no sto
hasti
 equivalent.

We mention the proje
tion method used with the trun-


ated Wigner approa
h [18, 19℄, whi
h amounts to an-

other way to implement a 
uto�, but does not solve this

ultraviolet divergen
e problem.

We mention here the proje
tion methods as other te
h-

niques (not exa
t) for dealing with this problem .

This dis
ussion of problems with the trun
ated Wigner

method is given as motivation for a Hybrid treatment.

In future appli
ations to multimode systems, we will in-

vestigate whether the Hybrid method avoids these prob-

lems. The large number of initial va
uum modes in a


ollision, for example, would be treated in the Hybrid

method with the positive-P representation as phase-spa
e

variables set identi
ally to zero. However this requires a

detailed future investigation. The problem is absent in

the pure positive-P method, although at long times very

large sampling errors are found instead [9℄.

IV. THE POSITIVE-P METHOD

The positive-P method involves an extension of the

Glauber-Sudarshan P representation [20, 21℄ from a sin-

gle phase spa
e to a doubled phase spa
e, the same pro
e-

dure that gives the doubled Wigner representation from

the single. The de�ning equation (for a single-mode prob-

lem) gives a representation of the density matrix in terms

of a c-number fun
tion, P, and nondiagonal proje
tion

operators, ΛP , both de�ned on a doubled phase spa
e:

ρ̂ =

∫

d2α

∫

d2α+ P (α, α+)Λ̂P (α, α
+), (4.1)

with

Λ̂P (α, α
+) =

|α〉〈α+∗|
〈α+∗|α〉 . (4.2)

Here |α〉 indi
ates a 
oherent state: a normalised eigen-

state of the annihilation operator â. The e�e
t of left-

and right- multipli
ation of the density matrix by a and

a† on P (α, α+) 
an be dedu
ed from Eqs.(4.1,4.2). The

proof involves an integration by parts in whi
h bound-

ary terms are assumed to vanish. The realm of validity

of this assumption and the resulting e�e
ts on sto
has-

ti
 simulations are dis
ussed at length by Gil
hrist et al

[7℄. When the boundary terms vanish, the operator 
or-

responden
es are:

âρ̂↔ αP (α, α+) (4.3)

ρ̂â↔
(

α− ∂

∂α+

)

P (α, α+) (4.4)

â†ρ̂↔
(

α+ − ∂

∂α

)

P (α, α+) (4.5)

ρ̂â† ↔ α+P (α, α+). (4.6)

As we noted in Table 1, all quarti
 Hamiltonian prob-

lems, in the positive-P representation, give a true Fokker-

Plan
k equation, with at most drift and di�usion terms:

∂P

∂t
= −∂µ(Aµ(α, α+)P )+

1

2
∂µ∂ν(D

µν(α, α+)P ), (4.7)
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with

∂1 =
∂

∂α
, ∂2 =

∂

∂α+
, (4.8)

and summation over µ, ν implied. Thus, for the many-

boson Hamiltonian with two-body s−wave s
attering

terms [17℄, no trun
ation of the positive-P equations is

needed.

The positive-P method solves two problems that o
-


ur with single phase-spa
e representations. First, if the

distribution fun
tion is not guaranteed to remain real

and non-negative, we 
annot map the dynami
s onto a

sto
hasti
 simulation using standard methods. To deal

with this, we use the feature of the representation that

an in�nity of di�erent fun
tions, P (α, α+),may represent

the same density matrix. We may 
hoose, for the initial


ondition, a parti
ular fun
tion

P+(α, α
+) =

1

4π2
e−

1
4
|α−α+∗|2〈1

2
(α+α+∗)|ρ̂|1

2
(α+α+∗)〉,

(4.9)

that satis�es Eq.(4.1) and is everywhere non-negative,

as required. Alternatively, an initial pure 
oherent state,

with ρ̂ = |γ〉〈γ|, 
an have a delta fun
tion representation,
also positive:

P (α, α+) = δ2(α− γ)δ2(α+ − γ∗). (4.10)

The sto
hasti
 representation of this initial 
ondition is

simply

α = γ, α+ = γ∗. (4.11)

The se
ond problem to deal with is that the di�u-

sion matrix may not be positive semide�nite when writ-

ten in the basis of real (x) and imaginary (y) parts

(αx, α
+
x , αy, α

+
y ). However, there is another symmetry in

the positive-P representation, arising from the analyt-

i
ity in α and α+
of the nondiagonal proje
tion opera-

tor (4.2), that lets us make repla
ements to the real and

imaginary parts of the derivative operators (4.8) in (4.3-

4.6), in just su
h a way that the resulting Fokker-Plan
k

equation, relative to the 
omponent basis, has a positive

semide�nite di�usion matrix [8℄. With a positive initial


ondition and a true, positive semide�nite Fokker-Plan
k

equation, the distribution is guaranteed to remain pos-

itive. The standard method of mapping to a sto
hasti


simulation also requires a di�usion matrix that is posi-

tive semide�nite (all of its eigenvalues are non-negative),

so that sto
hasti
 equations are immediately derivable.

The �nal step of mapping to sto
hasti
 di�erential

equations involves �rst �nding an N -noise fa
torization

of the di�usion matrix of the form

Dµν =

N
∑

n=1

BµnBνn. (4.12)

This introdu
es another gauge degree of freedom that we

will exploit later. Di�erent 
hoi
es of the fa
tor matrix,

B, that satisfy (4.12) may provide sto
hasti
 simulations

with widely di�erent sampling error 
hara
teristi
s.

The result of the adjustment of the di�usion matrix

and this 
hoi
e of the fa
tor matrix is the set of It�

sto
hasti
 di�erential equations

dαµ = Aµdt+

N
∑

n=1

Bµndwn, (4.13)

where the dwn areN real Weiner in
rements [8℄ satisfying

the sto
hasti
 average

〈〈dwn(t)dwm(t)〉〉 = δnmdt. (4.14)

These SDEs, with appropriate initial 
onditions (equa-

tions (4.11) for 
oherent states), are used to evolve a

large ensemble of traje
tories. The positive-P represen-

tation is normally ordered, meaning that the most easily


al
ulated quantum me
hani
al expe
tation values are of

normally ordered operators. The formula for estimat-

ing a normally ordered quantum me
hani
al expe
tation

value as a sto
hasti
 average is:

〈â†mân〉 = 〈〈α+mαn〉〉. (4.15)

We see from equation (4.11) that a 
oherent state 
an

be represented initially with no noise in the positive-P

representation. In this paper we will not embark on a

detailed 
omparison of sampling error in the trun
ated

Wigner, positive-P and Hybrid methods. However, we

will take note of the number of traje
tories needed, in

ea
h method, for an ensemble average to 
onverge to a

satisfa
tory result. All of our simulations were performed

using xmds [22℄, and we used the built-in sampling error

estimates of that program to judge 
onvergen
e.

The next part of our 
onstru
tion of the Hybrid repre-

sentation involves writing the nondiagonal proje
tors for

the positive-P representation in normally-ordered Gaus-

sian form. The result of manipulating equation (4.2) is

ΛP (α, α
+) =: e−(â†−α+)(â−α) : . (4.16)

V. PROBLEMS WITH THE POSITIVE-P

METHOD

A parti
ular 
hoi
e of the fa
tor matrix, B, gives a

set of sto
hasti
 di�erential equations (4.13) that governs

the evolution of the ensemble of traje
tories. Unless this

evolution is 
onstrained in some way, traje
tories may

wander far from ea
h other in phase spa
e. Then the av-

eraging over traje
tories to estimate an expe
tation value

may involve additions of many di�erent, extremely large,

numbers. No 
omputer 
an 
al
ulate su
h an average

without in
urring a very large roundo� error.

The result is the dramati
 rise in sampling error that

has been seen in some positive-P simulations. The

growth in width of the distribution of traje
tories often

o

urs over a short time s
ale, so that the sampling error
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suddenly rises by many orders of magnitude, with the

resulting growth of numeri
al errors. The simulation is

of no value beyond this 
riti
al time.

The problem 
an be 
aused by drift terms or noise

terms, or a 
ombination of both. A single-mode example

to illustrate these problems is the anharmoni
 os
illator,

with Hamiltonian

Ĥ = ωâ†â+ χâ†â†ââ (5.1)

and positive-P It� sto
hasti
 di�erential equations:

dα = −i(ω + 2χα+α)αdt +
√

−2iχdw (5.2)

dα+ = +i(ω + 2χα+α)α+dt+
√

2iχdw+. (5.3)

If we ignore the noise terms and 
hoose α+α as a real

number initially, the traje
tory will be a 
ir
le in the


omplex α plane. But if α+α in
ludes an imaginary part

(from noise or from an initial 
ondition other than the


oherent state 
ondition (4.11)), either α or α+
will spiral

towards in�nity, while the other spirals in towards the

origin. The noise terms of the SDEs 
ontribute to the

problem, sin
e they generally move α+α away from real

values, thereby indu
ing the spiraling.

Note that the single Wigner representation does not

su�er from this problem be
ause the real term |α|2 will

always appear in pla
e of α+α in the SDEs.

Sampling error growth 
an be redu
ed or postponed

by using our freedom to 
hoose di�erent fa
tor matri
es

that give the same di�usion matrix, and by modifying

the drift equations. Su
h methods are 
alled sto
has-

ti
 gauge te
hniques [23, 24, 25℄. However, while these

are useful in single-mode examples, they are somewhat


ompli
ated when generalized to multi-mode 
ases. Also,

we are interested in extending the time available for use-

ful, error-free simulations to even longer time-s
ales than

these methods 
an provide.

A spe
ial 
ase of problems with drift traje
tories is

when a traje
tory is 
apable of rea
hing in�nity in a �nite

time [7℄. This typi
ally results in power-law tails in the

distribution fun
tion, whi
h violates the assumption that

partial integration 
an be 
arried out. The simulation as

it stands is then invalid beyond the singularity time. This

problem 
an be dealt with using drift gauges [23℄. Our

examples will not �t into this 
ategory.

We simulated the anharmoni
 os
illator in the positive-

P representation to illustrate the sampling error problem.

Figure 1 shows the X quadrature (X̂ = 1
2 (â+ â†)), with

the 
hoi
es ω = 0 (for simpli
ity) and initial average num-

ber N0 = 1. As we will do for all of our simulations, we

plot results against a s
aled time parameter, in this 
ase

χt. (This is dimensionless when using ~ = 1).

Deuar and Drummond [23℄ have investigated various

fa
tors that a�e
t the time for sampling error to be-


ome unmanageable in a multimode positive-P simu-

lation. They have found that 
oarser spatial latti
es,

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

χt

X

FIG. 1. X quadrature for single mode anharmoni
 os
illator

vs χt: positive-P method. Plotted are the ensemble average

and the ensemble average ± sampling error estimate. The

dashed line is the exa
t result. Parameters: ω = 0, N0 = 1.
Number of traje
tories: 1,000.

weaker intera
tions and lower parti
le densities all ex-

tend the lifetime of the simulation. Of 
ourse the spatial

latti
e spa
ing 
an only be in
reased at the expense of

systemati
 error, while the other two fa
tors are �xed by

the system being simulated.

In the Hybrid s
heme we will be using the positive-P

representation only for the modes with lowest o

upa-

tions. Our test 
ases will investigate whether this delays

the onset of large sampling error.

VI. THE HYBRID METHOD

The Hybrid method is designed to exploit a parti
-

ular feature of Bose-Einstein 
ondensate systems: that

a limited number of modes have very high o

upation

numbers. The method involves separating the physi
al

system into modes that are, at least initially, highly o
-


upied (the 
ondensed modes) and those that are lightly

o

upied (the output of an atom laser or the produ
ts of

a BEC 
ollision). Then we intend to use di�erent rep-

resentations to treat di�erent modes, treating the highly

o

upied modes with a form of the Wigner representa-

tion and the lightly o

upied modes with the positive-P

representation.

Use of the Wigner representation for the highly o

u-

pied modes will in general simplify the stru
ture of the

resulting di�usion matrix. In a simple two-mode model

dis
ussed in Se
tion VII, we will see that this allows us

to delay the rapid growth of sampling error. And by

not using the Wigner representation for the potentially

very large number of lightly o

upied modes, we intend

to avoid the false halo problem.
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Our �rst task is to show that we 
an 
onsistently

use two di�erent representations on di�erent modes, 
or-

re
tly des
ribing intera
tions that 
ouple these di�erent

modes. For general intera
tions of this sort, di�usion

terms involving the Wigner modes are inevitable. To be

able to 
onstru
t a positive semide�nite di�usion matrix

in the general 
ase, we will have to use a doubled phase

spa
e throughout.

Now we 
an exploit the similarities in equations (2.6)

and (4.16) to de�ne a Hybrid representation with a par-

ti
ularly simple notation. We suppose that a system has

modes labelled m = 1, . . . ,M . These modes are to be

treated with the Wigner representation or the positive-

P representation depending on whether a parameter rm
takes the value:

rm = 1 for positive-P, (6.1)

rm = 2 for Wigner. (6.2)

The nondiagonal proje
tion operator is a dire
t produ
t

of terms for ea
h mode, m:

Λ̂H(~α;~r) =

M
∏

m=1

rm : e−rm(â†−α+)(â−α) : . (6.3)

Then the Hybrid representation of the density matrix

be
omes

ρ̂ =

∫

d4M ~αPH(~α;~r)Λ̂H(~α;~r), (6.4)

where ~α = (α1, α
+
1 , . . . , αM , α

+
M ) and ~r = (r1, . . . , rM ).

Note that the use of the parameter r for these doubled
phase spa
e representations is very mu
h like Glauber

and Cahill's use of the parameter s to span antinor-

mally ordered, symmetri
ally ordered and normally or-

dered single phase spa
e representations. The 
onne
tion

between the two s
hemes follows by taking

r =
s− 1

s
(6.5)

and mapping doubled to single phase spa
es.

The appli
ability of the positive-P method depends on

the two results that we mentioned in Se
tion IV. First,

for any initial density matrix, it is possible to 
hoose

a phase-spa
e distribution that is everywhere real and

non-negative (using equation (4.9)). Se
ond, it is always

possible to 
ast any di�usion matrix into a form that is

equivalent with respe
t to physi
al predi
tions and that

is positive semi-de�nite in the basis of real and imagi-

nary parts of the phase-spa
e variables. Corresponding

results must hold for any Hybrid representation in order

for that method to be usable. We were able to prove both

assertions.

First, we found an integral transform that takes a

positive-P distribution to a doubled Wigner distribu-

tion representing the same density matrix. We show the

single-mode 
ase:

W (α, α+) =
1

2π

∫

d2ψ′ e−
1
2
|ψ−ψ′|2 P (

1

2
(ψ′+χ),

1

2
(ψ′−χ)),

(6.6)

with

ψ = α+ α+∗, χ = α− α+∗. (6.7)

Note that P has four independent real parameters, but

the integration is over only two degrees of freedom. The

single-mode 
ase is shown but the extension to the multi-

mode 
ase is straightforward. Sin
e the kernel is positive,

the transform 
an be used to take the initial positive dis-

tribution (4.9) to an everywhere positive doubled Wigner

distribution. Extension to the 
ase with many modes

treated by di�erent representations proves the �rst as-

sertion.

The proof of the se
ond assertion is exa
tly like the

textbook proof for the positive-P representation, sin
e

the derivative equivalen
es

∂

∂α
↔ ∂

∂αx
↔ −i ∂

∂αy
, (6.8)

∂

∂α+
↔ ∂

∂α+
x

↔ −i ∂

∂α+
y

, (6.9)

are the same as their positive-P 
ounterparts.

Use of the Hybrid method is simple for few-mode prob-

lems. For the mapping of the evolution equation (3.1)

for ρ to a Fokker-Plan
k equation, we use either the

Wigner (2.7-2.10) or positive-P (4.3-4.6) operator 
or-

responden
es as appropriate for ea
h mode. In gen-

eral there will be terms with three derivative opera-

tors for quarti
 Hamiltonians. (Terms with four deriva-

tives always 
an
el.) For ea
h appli
ation, we must de-


ide whether trun
ation of these terms, to produ
e a

drift/di�usion problem, is valid. S
aling arguments like

those applied to the Wigner method (3.3) 
an be used

here. In problems involving both highly o

upied modes

and lightly o

upied modes, there may o

ur problemati


three-derivative terms from mutual intera
tion of those

modes.

A feature pe
uliar to the Hybrid method is that there

will appear what we 
all interfa
e noise: there will be

di�usion terms that are proportional to the di�eren
e of

r values for di�erent modes, that would vanish if those

modes were treated with the same representation.

The mapping to sto
hasti
 di�erential equations uses

the same rule as is used for the positive-P representation:

if a generally 
omplex matrix B provides a fa
torization

D = BBT of the di�usion matrix, then the It� sto
hasti


di�erential equations 
an be 
hosen as

dαµ = Aµdt+

N
∑

n=1

Bµndwn, (6.10)

where µ labels the 
omponents of the ve
tor of phase

spa
e variables ~α = (α1, α
+
1 , . . . , αM , α

+
M ) and the dwn
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are N real, independent Weiner in
rements. We note

that the freedom of 
hoi
e of a fa
tor matrix, B, intro-
du
es a gauge degree of freedom that may allow us to

redu
e sampling error in simulations.

The relation between physi
al expe
tation values and

sto
hasti
 averages will take new forms in the Hybrid

representation. Here an observable may be a produ
t

of fa
tors to be treated with the symmetri
ally ordered

Wigner representation and others to be treated with the

normally ordered positive-P representation. So, for ex-

ample, in Se
tion IX we will need to 
al
ulate an expe
-

tation value as

〈N̂aŶb〉 = 〈 1
2i
â†â(b̂ − b̂†)〉 = 〈〈 1

2i
(α+α− 1

2
)(β − β†)〉〉,

(6.11)

where the a mode is treated with the Wigner represen-

tation while the b mode is treated with the positive-P

representation.

VII. TEST CASE: COUPLED ANHARMONIC

OSCILLATORS

As a �rst test of the Hybrid method, we simulated the

behavior of two 
oupled anharmoni
 os
illators, with a


oupling that preserves the individual mode o

upations.

The Hamiltonian is

Ĥ = ωaâ
†â+χaâ

†â†ââ+ωbb̂
†b̂+χbb̂

†b̂†b̂b̂+gâ†âb̂†b̂. (7.1)

We used an initial 
oherent state for the a mode (with

high mean o

upation Na0 = 100) and for the b mode

(low mean o

upation Nb0 = 0.01). We set ωa = ωb = 0
for 
onvenien
e and used χa = χb = g = 1, whi
h sets

the s
ale for the time variable.

This model is meant to resemble just a few terms of

the mu
h larger multimode Hamiltonian for a Bose gas

with s-wave s
attering terms.

Note that we have 
hosen a model system in whi
h the

a o

upation remains 
onstantly large, while the b o

u-
pation stays small. The Hybrid method 
an be used in


ases where these numbers are not 
onserved, and gives

good results when the o

upations of the modes remain

high and low over the intera
tion time, respe
tively. Re-

sults from this 
ategory will be presented in a later work.

We simulated this system using the Hybrid method

and, for 
omparison, the trun
ated Wigner method and

the positive-P method. We were also able to obtain an

exa
t solution for 
oherent state initial 
onditions, as did

Chaturvedi and Srinivasan [26℄.

We insert the Hybrid representation (6.4) of the den-

sity matrix into the evolution equation (3.1). An inte-

gration by parts, justi�ed in this 
ase, amounts to using

the Hybrid operator 
orresponden
es (2.7-2.10, 4.3-4.6).

This gives an equation of the form

∫

d8~α
∂PH
∂t

Λ̂H(~α,~r) =

∫

d8~αL(~α,~r)PH(~α,~r)Λ̂H(~α,~r),

(7.2)

where L is a linear, di�erential operator that a
ts on PH .
We extra
t a Fokker-Plan
k equation for PH from

(7.2), keeping all terms, in
luding third-order derivative

terms. (We note that for doubled phase-spa
e represen-

tations this 
hoi
e is not unique.). We �nd

i
∂PH
∂t

= − ∂

∂α
{2χa(α+α− 1) + gβ+β}αPH

+
∂

∂α+
{2χa(α+α− 1) + gβ+β}α+PH

− ∂

∂β
{2χbβ+β + g(α+α− 1

2
)}βPH

+
∂

∂β+
{2χbβ+β + g(α+α− 1

2
)}β+PH

+χb
∂2

∂β2
β2PH − χb

∂2

∂β+2
β+2PH

+
g

2

∂

∂α

∂

∂β
αβPH +

g

2

∂

∂α

∂

∂β+
αβ+PH

−g
2

∂

∂α+

∂

∂β
α+βPH − g

2

∂

∂α+

∂

∂β+
α+β+PH

+
g

4

∂

∂α

∂

∂α+
{ ∂
∂β

β − ∂

∂β+
β+}PH

+
χa
2
{ ∂2

∂α2

∂

∂α+
α− ∂2

∂α+2

∂

∂α
α+}PH . (7.3)

We use the 
onvention that the derivative operators a
t

on all fa
tors to the right.

To apply the s
aling argument dis
ussed in Se
tion III,

we write the third-order derivative terms above (whi
h we


all T3) in terms of the s
aled phase-spa
e variables

u ≡ α/
√

Na0, u+ ≡ α+/
√

Na0, (7.4)

v ≡ β/
√

Nb0, v+ ≡ β+/
√

Nb0. (7.5)

Then T3 be
omes

T3 =
1

Na0

g

4

∂

∂u

∂

∂u+
{ ∂
∂v
v − ∂

∂v+
v+}PH

+
1

Na0

χa
2
{ ∂

2

∂u2
∂

∂u+
u− ∂2

∂u+2

∂

∂u
u+}PH .(7.6)

We expe
t, in the sto
hasti
 simulation of this problem,

that there will be a �nite time s
ale over whi
h α and α+

will remain distributed 
lose to order

√
Na0 in magnitude,

while β and β+
remain near

√
Nb0. Our �rst simulation

will stay within this time region. Over that time s
ale,

the third-order derivative terms will make a negligible


ontribution to PH 
ompared to the drift terms (�rst-

order terms whi
h s
ale like Na0) and the di�usion terms

(se
ond-order terms whi
h s
ale like 1).

After we trun
ate these terms, the Fokker-Plan
k equa-

tion has drift ve
tor (in the basis (α, α+, β, β+))

A =











−i{2χa(α+α− 1) + gβ+β}α
+i{2χa(α+α− 1) + gβ+β}α+

−i{2χbβ+β + g(α+α− 1
2 )}β

+i{2χbβ+β + g(α+α− 1
2 )}β+











(7.7)
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and di�usion matrix:

D =











0 0 − ig
2 αβ − ig

2 αβ
+

0 0 + ig
2 α

+β + ig
2 α

+β+

− ig
2 αβ + ig

2 α
+β −2iχbβ

2 0

− ig
2 αβ

+ + ig
2 α

+β+ 0 +2iχbβ
+2











.

(7.8)

Be
ause of the use of the Wigner representation for

the a mode, this di�usion matrix di�ers from the one

resulting from a pure positive-P treatment in the absen
e

of terms −2iχaα
2
and +2iχaα

+2
in the �rst two diagonal

spa
es, respe
tively.

We were able to 
onstru
t a fa
torization of the dif-

fusion matrix (7.8) by �rst treating the diagonal terms

and then re
ognizing a simple stru
ture in the remaining

matrix. The following fa
tor matrix requires only four

real noises in the SDEs:

B =
√

2iχb











0 0 0 0

0 0 0 0

iβ 0 0 0

0 β+ 0 0











+
1

2

√

−ig











0 0 α iα

0 0 −α+ −iα+

0 0 β −iβ
0 0 β+ −iβ+











. (7.9)

The resulting SDEs produ
ed the results shown in Fig-

ures 2 and 3. We 
al
ulated the expe
tation values of the

quadrature operators X̂a = 1
2 (â+ â

†) and X̂b =
1
2 (b̂+ b̂

†).
The simulation was 
learly stable over the time s
ale

shown and gave results in ex
ellent agreement with the

exa
t solution. We will refer to the method used here as a

gauge Hybrid method, sin
e it relies on being able to �nd

a di�usion gauge (a useful fa
torization of the di�usion

matrix).

When we simulated this same problem using the trun-


ated Wigner method, the results were nearly indistin-

guishable from Figures 2 and 3 (using 150,000 traje
to-

ries), so we do not display them here. With regard to

this �rst test, we have not yet established superiority of

the Hybrid method over the trun
ated Wigner, ex
ept

to note that the Hybrid method requires far fewer tra-

je
tories to attain a given a

ura
y. In Se
tion VIII we

will explore a di�erent region of parameter spa
e and in

Se
tion X we will 
al
ulate a higher-order moment in the

same system. In both 
ases, we will see results that show

a 
lear distin
tion between the methods.

We also simulated this problem with the positive-P

method. Sampling error rose to very large values at about

t = 0.04, after just one os
illation of the quadratures.

0 0.1 0.2 0.3 0.4 0.5
−10

−5

0

5

10

χ
a
t

X
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Gauge Hybrid

Exact

FIG. 2. X quadrature for mode a vs χat: 
oupled
anharmoni
 os
illators treated with the gauge Hybrid

method. Plotted are the ensemble average, the ensemble

average ± sampling error estimate and the exa
t solution.

Parameters: ωa = ωb = 0, χa = χb = g, Na0 = 100,

Nb0 = 0.01. Number of traje
tories: 10,000.

0 0.1 0.2 0.3 0.4 0.5
−0.1

−0.05

0

0.05

0.1

χ
a
t

X
b

Exact

Gauge Hybrid

FIG. 3. X quadrature for mode b vs χat: 
oupled
anharmoni
 os
illators treated with the gauge Hybrid

method. Plotted are the ensemble average, the ensemble

average ± sampling error estimate and the exa
t solution.

Parameters: ωa = ωb = 0, χa = χb = g = 1, Na0 = 100,

Nb0 = 0.01. Number of traje
tories: 10,000.

Analysis of the third-order derivative terms from the

pure Wigner 
al
ulation, similar to the above analysis for

the Hybrid method, shows terms that s
ale as 1/Nb0 and
so 
annot be justi�ably negle
ted.

The me
hanism at work in stabilizing the Hybrid sim-

ulation over limited times is as follows. With this 
hoi
e

of gauge, the sto
hasti
 di�erential equations keep the

quantity α+α �xed, for ea
h traje
tory, at its initial

value. These values, sele
ted by the sto
hasti
 Wigner

initial 
ondition of the form (2.11, 2.12), will always be

real and 
lose to Na0. The quantity β+β starts at Nb0
then a
quires an imaginary part, but its magnitude is

kept of order Nb0 over the simulation time.

Further inspe
tion shows that the magnitudes of α and

α+
will remain near

√
Na0 while those of β and β

+
remain
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of the order of

√
Nb0 over the simulation time. (These

estimates were used to justify our negle
t of the third-

order derivative terms in equations (7.4, 7.5, 7.6).) So

the drift terms are dominated by the fa
tors of α+α and

spiraling is negligible.

Over a short time ∆t, the relative sizes of the drift

and di�usion in
rements, for z one of the phase spa
e

variables, are given by

Drift: ∆z ∼ Na z∆t

Di�usion: ∆z ∼ z
√
∆t

(with χa = χb = g = 1). So di�usion is, in this exam-

ple, negligible 
ompared to drift over the time s
ale of

interest.

We 
al
ulated the quadrature Xa in our model to

longer times, with results shown in Figure 4. (To obtain

the qualitative features rapidly, we used, in ea
h 
ase, a

lower number of traje
tories than we used in our previous

simulations.) The exa
t result showed a re
urren
e 
en-

tered on t = π. The gauge Hybrid method showed large

sampling error before that time, starting at about t = 2.5.
The trun
ated Wigner method was also unable to predi
t

this re
urren
e, showing instead a quadrature remaining


lose to zero. Re
alling that the pure positive-P treat-

ment su�ered large sampling error after about t = 0.04,
we see that the gauge Hybrid method extended the useful

simulation time by a fa
tor of 60.
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FIG. 4. X quadrature for mode a 
al
ulated to longer

(dimensionless) times χat. (a) Exa
t result. (b) Gauge
Hybrid result: 100 traje
tories. (
) Trun
ated Wigner result:

10,000 traje
tories. Parameters: ωa = ωb = 0, χa = χb = g,
Na0 = 100, Nb0 = 0.01.

VIII. WEAK COUPLING

In the previous example, both the gauge Hybrid

method and the trun
ated Wigner method are aided by

the fa
t that the quadratures are strongly damped be-

fore the negle
t of terms (for both methods) and sam-

pling error growth (for the Hybrid method) 
an be
ome

important. We lowered the mutual intera
tion strength

between the two modes, relative to χa = χb, by set-

ting g/χa = 0.0001. This greatly extended the damping

time for the b mode, allowing us to see di�eren
es in the

predi
tions of the gauge Hybrid and trun
ated Wigner

methods.

The results are shown in Figure 5.
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−0.1

−0.05
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0.05
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0.15

χ
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t

X
b

Gauge
Hybrid
Truncated
Wigner
Exact

FIG. 5. Comparison of the gauge Hybrid and trun
ated

Wigner methods in predi
ting the X quadrature for the b
mode of the 
oupled anharmoni
 os
illators, with weak


oupling. Quadratures plotted against χat. Gauge Hybrid:
10,000 traje
tories. Trun
ated Wigner: 15,000 traje
tories.

Parameters: ωa = ωb = 0, χa = χb, g/χa = 0.0001,
Na0 = 100, Nb0 = 0.01.

We see that the trun
ated Wigner method fails from

χat = 0, 
onsistent with our expe
tations for a system

with a very lightly o

upied mode. The gauge Hybrid

method performs well until about χat = 1.5, when it is

overwhelmed by sampling error.

IX. FURTHER TRUNCATION

In the examples we have seen so far, trun
ation of

terms in the Hybrid method has not prevented it from

attaining ex
ellent agreement with the exa
t solutions at

early times, even when dealing with a very lightly o
-


upied mode. The method is, however, 
learly limited

by the growth of sampling error. In this se
tion, we try

a simple adjustment to the equations to try to extend

useful results to longer times.

When phase spa
e distributions grow wide in un
on-

strained dire
tions, the traje
tories sampling those distri-

butions are widely spread and the 
al
ulation of expe
-

tation values be
omes a great numeri
al di�
ulty. To

understand the meaning of the widths in �un
onstrained

dire
tions,� we note that we 
ould estimate the spread of
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our Hybrid distribution by 
al
ulating all the sto
hasti


averages 〈〈αiαj〉〉, where αi is a real or imaginary part

of ~α (de�ned after equation (6.10)). Some of the linear


ombinations of these averages, su
h as 〈〈α+α〉〉, are 
on-
strained to approa
h physi
al predi
tions as the number

of traje
tories grows large. Widening of the distribu-

tion in the other dire
tions will in
rease sampling error,

but may be redu
ed using the gauge freedoms of doubled

phase-spa
e representations, or other methods.

Spiraling of the drift traje
tories is one sour
e of

spreading that we have identi�ed, and that we have al-

ready partially 
ontrolled using our 
hoi
e of gauge. For

our gauge SDEs, the quantity α+α remains 
ompletely

real for all times, and thus does not 
ause spiraling in the

drift equations. Not so the quantity β+β, whi
h starts

with a purely real value but 
an immediately develop an

imaginary part from the in�uen
e of the noise terms.

We tried a further trun
ation of our gauge Hybrid

equations, making the repla
ement

β+β → Re(β+β). (9.1)

In future appli
ations, if α+α is not 
onstrained, we pro-

pose to also try the trun
ation

α+α → Re(α+α). (9.2)

We saw good short-time behavior from this trun
ated

Hybrid method, equaling that of all the other methods.

At longer times the method was unable to predi
t the

re
urren
e, showing quadratures staying 
lose to zero.

But the sampling error remained at a manageable level to

t = 5.0. In future work, we will investigated whether this

somewhat ad ho
 trun
ation 
an be used as a simple way

to extend simulations to longer times without in
urring

ex
essive systemati
 error.

X. TEST CASE: QUANTUM NONDEMOLITION

MEASUREMENT

Our �rst test 
ase showed the Hybrid method�with

a di�usion gauge 
hoi
e and with a further trun
ation�

able to su

essfully simulate an intera
ting system be-

yond the time at whi
h the positive-P method be
ame

unusable. But the Wigner method was able to give

equally good results on the same system. (A distin
tion

was found in the weak 
oupling 
ase.) Here we investi-

gate a di�erent observable�a higher order moment�in

the same system, and �nd the results more sensitive to

the 
hoi
e of method.

The 
on
ept of quantum nondemolition measurements

[27, 28℄ arose from the need for a way to measure the very

small displa
ements of a gravitational wave dete
tor that

are expe
ted to o

ur from the passage of a gravitational

wave. Repeated measurements of position, to high a
-


ura
y, would be required to distinguish the signal from

other e�e
ts. Quantum me
hani
s sets limits on s
hemes

to measure those small displa
ements. Measurement of a

position observable with a �nite un
ertainty may produ
e

a state in whi
h the un
ertainty in position grows after

the measurement. At later times, when another measure-

ment of position is performed, the un
ertainty would be

larger that the desired maximum.

Instead, measurement of a 
onserved observable, su
h

as the momentum of a free parti
le, 
an be repeated an

arbitrary number of times without 
ausing the un
er-

tainty to in
rease. The quantum nondemolition (QND)

measurement s
heme involves 
hoosing an appropriate


onserved observable (in a probe beam) that 
an give in-

formation about the signal of interest after the signal and

probe intera
t.

A QND s
heme 
an be 
onstru
ted from our model

of intera
ting anharmoni
 os
illators [29℄. We suppose

that the bosons in question are now photons, and that

they 
an intera
t with ea
h other in a suitable nonlin-

ear medium, su
h that our number-
onserving intera
-

tion Hamiltonian gives a toy model of the dynami
s. Of


ourse a fuller des
ription of the dynami
s would involve

propagation in spa
e, dispersion and other fa
tors [30℄. A

lightly o

upied signal beam and a highly o

upied probe

beam intera
t in the medium. Phase information will be

ex
hanged between them, while their individual number

distributions are 
onserved.

In one QND s
heme, the 
onserved QND observable is

taken as the photon number, N̂a, in the highly o

upied

probe beam. The signal is the phase quadrature of the

lightly o

upied beam, Ŷb = − i
2 (b̂

† − b̂).
We suppose that the intera
tion between signal and

probe lasts only for a short time, as would be the 
ase for

two short pulses intera
ting in an opti
al �ber. We make

the intera
tion 
ease when the magnitude of the 
orre-

lation fun
tion rea
hes its �rst maximum. This means

that we use the previous Hamiltonian of equation (7.1),

ex
ept with g = 1 for t < t0, and g = 0 for t > t0, where
t0 = 0.1 in our example.

We 
al
ulate the 
orrelation fun
tion between probe

and signal, a measure of the potential su

ess of the mea-

surement s
heme:

C(Na, Yb) =
〈N̂aŶb〉 − 〈N̂a〉〈Ŷb〉
V

1
2 (Na)V

1
2 (Yb)

, (10.1)

where

V (Ω̂) = 〈Ω̂2〉 − 〈Ω̂〉2 (10.2)

is the varian
e of an operator Ω̂.We set ωa = 0 for 
onve-
nien
e, sin
e this will remove a high frequen
y variation

from our expe
tation value. Likewise, we set ωb = −Na0g
to obtain a slowly varying expe
tation value. This latter


hoi
e is equivalent to a parti
ular 
hoi
e of lo
al os
illa-

tor frequen
y in the homodyne dete
tion of Yb.
Figure 6 shows the 
orrelation fun
tion 
al
ulated with

two di�erent phase-spa
e methods and 
ompared to the
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exa
t result. The gauge Hybrid method shows ex
ellent

agreement with the exa
t result. In 
ontrast, the trun-


ation of the Wigner method evidently removes terms

that are needed to 
orre
tly predi
t the 
orrelation fun
-

tion at times after the intera
tion 
eases. The tenden
y

of the trun
ated Wigner method to give worse results

when predi
ting higher-order moments was investigated

by Drummond et al [16℄.

0 0.2 0.4 0.6 0.8 1
−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

χ
a
t

C
(N

a,Y
b)

Truncated Wigner

Gauge Hybrid

Exact

FIG. 6. Comparison of methods for determining the


orrelation between Na and Yb for a QND s
heme, vs χat.
Results are shown for the Hybrid method with a di�usion

gauge (50,000 traje
tories) and the trun
ated Wigner

method (50,000 traje
tories), 
ompared to the exa
t result.

Parameters: Na0 = 100, Nb0 = 0.01, ωa = 0, ωb = −Na0g,
χa = χb, g/χa = 1 for χat < 0.1, g = 0 for χat > 0.1.

XI. CONCLUSIONS

We have shown that, for a sto
hasti
 phase-spa
e treat-

ment of a multimode system, it is possible to use the

doubled Wigner representation for some modes and the

positive-P representation for the remainder. We tested

our method on a system of two 
oupled anharmoni
 os
il-

lators, one with a mean o

upation that remained at 100,

the other with a mean o

upation of 0.01. The method

was able to simulate the evolution of quadrature expe
-

tation values for times far beyond where the positive-P

method su�ers a rapid growth of sampling error. Results

were in ex
ellent agreement with the exa
t solution.

While the trun
ated Wigner method performed as well

as the Hybrid method when 
al
ulating these quadra-

ture observables (over a �nite time), for the 
al
ulation

of a higher order moment 
orresponding to a QND ex-

periment there was a very 
lear advantage of the Hybrid

over the trun
ated Wigner. The latter results 
ontained

a large systemati
 error, while the Hybrid result was in

ex
ellent agreement with the exa
t result.

At least as applied to this system with a small number

of modes, the Hybrid method was able to delay the onset

of rapid sampling error growth by a fa
tor of 60 
om-

pared to the positive-P method. Further investigations

will fo
us on many-mode systems to see whether these

advantages over the earlier methods 
an be maintained.

It is interesting to note here that our results show that

a very natural appli
ation of the Hybrid method is to

systems of two di�erent types of parti
le with intera
tions

that 
onserve individual spe
ies numbers. This presents

a natural framework to investigate quantum Brownian

motion, whi
h will be treated in subsequent work.
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APPENDIX: EXACT SOLUTIONS

The Hamiltonian

Ĥ = ωaâ
†â+ χaâ

†â†ââ+ ωbb̂
†b̂+ χbb̂

†b̂†b̂b̂+ gâ†âb̂†b̂,
(A-1)

des
ribing two 
oupled anharmoni
 os
illators, 
an be

written just in terms of the number operators, N̂a = â†â

and N̂b = b̂†b̂, as

Ĥ = ωaN̂a + ωbN̂b + χa(N̂
2
a − N̂a) (A-2)

+χb(N̂
2
b − N̂b) + gN̂aN̂b.

So the number states

|nanb〉 =
â†na

√
na!

â†nb

√
nb!

|0〉 (A-3)

are eigenve
tors of the Hamiltonian with eigenvalues

E(na, nb) = ωana + ωbnb + χa(n
2
a − na)

+χb(n
2
b − nb) + gnanb. (A-4)

We 
onsider an initial state that is a 
oherent super-

position of the number states (A-3) of the form

|γaγb〉 =
∞
∑

na=1

e−
1
2
|γa|

2 γna

a√
na!

∞
∑

nb=1

e−
1
2
|γb|

2 γnb

b√
nb!

|nanb〉,

(A-5)

where γa =
√
Na0, γb =

√
Nb0 and Na0 and Nb0 are the

average o

upations of the modes.

We are interested in observables, Ω, that are simple


ombinations of a small number of 
reation and/or anni-

hilation operators. These have simple matrix elements,

〈n′
an

′
b|Ω̂|nanb〉, between the number eigenve
tors. All

terms will be proportional to Krone
ker deltas of the form

δn′
a
,na+ma

δn′
b
,nb+mb

, for ma and mb integers. Then the

expe
tation value of su
h an operator in the state ve
tor

produ
ed by time evolution of (A-5) will always redu
e
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to a double sum (over na and nb), with the unitary time

evolution produ
ing a known phase fa
tor inside the sum.

The time-dependent expe
tation values of the quadra-

ture operators Xa = 1
2 (a + a†), Ya = 1

2i(a − a†), Xb =
1
2 (b + b†) and Yb =

1
2i(b − b†), for the initial state (A-5),


an then be evaluated as sums over na and nb. We �nd

the results

〈Xa(t)〉 =
√

Na0e
−{Na0(1−cos 2χat)+Nb0(1−cos gt)}

(A-6)

× cos{ωat+Na0 sin 2χat+Nb0 sin gt},

〈Ya(t)〉 = −
√

Na0e
−{Na0(1−cos 2χat)+Nb0(1−cos gt)}

× sin{ωat+Na0 sin 2χat+Nb0 sin gt}. (A-7)

For 〈Xb(t)〉 and 〈Yb(t)〉, we make the repla
ement a↔ b
in expressions (A-6) and (A-7), respe
tively.

Our model of a QND measurement has the feature

that the 
oupling strength, g, is 
onstant up to a time,

τ, and vanishes after that. This is meant to model

two light pulses that 
ease to intera
t after they no

longer overlap within an opti
al �ber. The evolution op-

erator for the resulting time-dependent Hamiltonian is

Û(t) = exp−
∫ t

0 Ĥ(t′)dt′. For times up to τ, we evaluate
the following:

〈N̂aŶb(t)〉 = −Na
√

Nbe
−Na0(1−cos gt)

×e−Nb0(1−cos 2χbt)
(A-8)

× sin{(ωb + g)t+Na0 sin gt+Nb0 sin 2χbt},

V (Ŷb) = 〈Ŷ 2
b 〉 − 〈Ŷb〉2

= −1

2
Nb0e

−{Na(1−cos 2gt)+Nb(1−cos 4χbt)} ×
× cos{2(ωb + χb)t+Na sin 2gt+Nb sin 4χbt}
−Nbe−2{Na(1−cos gt)+Nb(1−cos 2χbt)} × (A-9)

× sin2{ωbt+Na sin gt+Nb sin 2χbt}

+
1

4
+

1

2
Nb0.

For times beyond τ , we make the repla
ement gt→ gτ in
(A-8) and (A-9). This rule applies also to the expe
tation

values (A-6) and (A-7) for t > τ in this QND s
heme.

Finally we note that the individual parti
le numbers

are 
onserved under this Hamiltonian, and the 
oherent

state initial 
onditions (A-5) give

〈N̂a〉 = Na0, 〈N̂b〉 = Nb0, (A-10)

V (N̂a) = Na0, V (N̂b) = Nb0. (A-11)
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