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REVIEWS OF MODERN PHYSICS VOLUME 38, NUMBER 2 APRIL &-Ct

Group '. .' ~eory anc. tie .
'.-'. .yc.rogen Atom (::)

M. BANDER, C. ITZYKSON*

Stanford Linear Accelerator Center, Stanford University, Stanford, California

The internal 0(4) symmetry group of the nonrelativistic hydrogen atom is discussed and used to relate the various
approaches to the bound-state problems. A more general group 0(1, 4) of transformations is shown to connect the various
levels, which appear as basis vectors for a continuous set of unitary representations of this noncompact group.

I. INTRODUCTION

Tbere has been great interest recently in the possible
application of group theory to the strongly interacting
particles. Not only do certain systems possess obvious
symmetries which allow a classification of their spectra,
but it has also been suggested' that one look for certain
transformations which allow passing from one level
to another and thus get new insight into the structure
of the system.

In nonrelativistic quantum mechanics, several ex-
amples of such behavior are known and it may be
worthwhile to investigate in detail a speci6c one. We
have chosen to undertake such a study for the Coulomb
potential which seems very well suited for such an
investigation.

The classical treatment of the subject consists of
solving explicitly the Schrodinger equation in co-
ordinate space by means of hypergeometric functions.
In 1926 W. Pauli, ' found the spectrum of the Kepler
problem in a very elegant way by the use of the con-
servation of a second vector besides the angular mo-
mentum. A few years later, V. Fock' explained the
degeneracy of the levels in terms of a symmetry group
isomorphic to the one of rotations in a four-dimensional
space 04, and a few months later V. Bargmann related
the two approaches explaining further how, in the
Coulomb case, the separation of variables in parabolic
coordinates was linked with the new, conserved vector—a relation well known in classical mechanics. Later
on the rotational invariance was used, for instance, by
J. Schwingers to construct the Green function of the
problem.

Thus the Coulomb problem is interesting for its 04

invariance, but it has been recently remarked that one
can operate in the Hilbert space of bound states with
a still larger group, isomorphic to the de-Sitter group,
0(1, 4), in such a way that one thus gets an irreducible
in6nite dimensional unitary representation of this non-
compact group.

Our aim has thus been twofold. We first review the
symmetry group of the system, describing succinctly
the methods discussed above. We note some further
relations which were implicit in the works quoted.
Actually, following a remark of Alliluev, we shall
even generalize the problem to an arbitrary number of
dimensions. The larger group, 0(1, 4), is then intro-
duced in an heuristic way. The new terminology sug-
gested for this kind of superstructure is "Physical
Transformation Group. " We shall write the explicit
realization of this group as a set of unitary operations
in the Hilbert space of bound states and prove ir-
reducibility using the infinitesimal generators. Finally,
it is suggested that the type of considerations used can
be generalized to obtain special types of unitary repre-
sentations for noncompact groups. This paper is
mainly concerned with the problem of bound states.
We hope to consider in the future the case of scattering
states.

Several recent lectures given at Stanford by Professor
Y. Ne eman were the inspiration for this work. It is a
pleasure to thank him for his stimulation. It is clear
that many of the results were known to him and cer-
tainly to many other physicists. We apologize in
advance for giving only a very sketchy bibliography.

II. THE SYMMETRY GROUP

A. The In6nitesima1 Method'

with 6 the Laplacian

8 8 8
,+ ,+8' 8$2 t9$3

r= (xrs+xss+xss) &,

We want to solve the Schrodinger equation for the
Coulomb potential.

p is the reduced mass and, in the case of an hydrogen-
like atom, It=Ze'. Let p;= (ft/i) (8/Bx;) then due to~On leave of absence from Service de Physique Theorique,

CEN Saclay, B.P. No. 2, Gif-sur-Yvette (Seine et Disc), France.' Y. Dothan, M. Gell-Mann, and Y. Ne'eman, Phys. Letters
1'7, 148 {1965).' W. Pauli, Z. Physik 36& 336 (1926).

3 V. Fock, Z. Physik 98& 145 {1935).
4 V. Bargmann, Z. Physik 99, 576 {1936).' J. Schwinger, J. Math. Phys. 5, 1606 (1964).

6 The first relation in Eq. {5)has an obvious geometrical mean-
ing in the Kepler problem where L is orthogonal to the elliptical
orbit and M is along the main axis with a length given by the
excentricity of the ellipse times k. The expression for the energy
di6ers from the classical one only by the Q~ t|",rm,

880



M. BANDER AND C. ITzvzsoN Group Theory aud the Hydrogen Atom (I) 331

the invariance of Eq. (1) under spatial rotation the integer values. Assuming for a moment that 2j can
angular momentum take any integer value, we derive from Eq. (5), that

L44= x,p,—x;p, Lk = skit Lit/2 (2) (2E/t") (M'+ L'+5') = —h'

is conserved, and it is possible to separate the equation
using polar coordinates. However, it is known that
in the Kepler problem, the following three-vector

v xL—k(r/r)

is also a constant of the motion, v is the velocity, L the
angular momentum, and r the position vector,
(xt, xs, xs). Pauli simply used the correspondence
principle and investigated the commutation relations
of the Hermitian part of the previous vector, i.e.,

and

=V[4j(jy1) +1/

=as(2jp1) s

E= —(pk'/2fi') [1/(2j+1)'j

or with k =Ze'

llII'+ L'+h'= 4[(1III&L) /2 j'+A'

M= (2p)
—'p xL—(2y)

—'L x p k(—r/r) . (3) E= —(«'/&) 's ~[1/(2j+1)'J. (6)

The commutation relations of L, M and the Hamil
tonian B are

[H, L;j=0,

a,nde

[H, M;]=0,

[Lt, Lsg=@e;stLt,

[I.;,Ms( =iver'stMt,

[M;, Ms( = (fc/i) ep. 4Lt (2/t') H,

L &=M L=O (M' —h') = (2/y) H(L'+5') (5)

3II;= (t / 2E) tM;. —

Relations (4) suggest the consideration of a subspace
belonging to the eigenvalue E (E&0) of the Hamil-
tonian as L and M commute with it. In this subspace
it is meaningful to introduce the operator

If we identify 2j+1 with the principal quantum number

e, we recognize the familiar expression for the levels
in a Coulomb potential. With e taking every integer
value from 1 to , we see that j is allowed to take the
values 0, -'„1,—'„~~ ~ . Moreover, as L= (L+M)/2+
(L™)/2,the familiar addition theore'm for angular
momenta shows that for a given n= j2+1 the possible
values of L are 0, 1, 2, ~ ~ ~, 2j.This procedure shows
that the degeneracy of the levels is equal to

2j

p(@+1)= (2j+1)a=is.

It is tempting to assume that some group with the Lie
algebra of Os&&Os is acting (Os is the three-dimensional
rotational group). A good candidate is 04, but when
contemplating the actual form of M [Eq. (3)j it is
seen that it is essentially a second-order differential
operator in coordinate space. However, since the main
part is linear in x, there might be some suspicion that
it would be interesting to look in p-space for we know
that properly parametrized infinitesimal generators are
linear differential operators. This explains the second
approach to the symmetry due to Fock.

Then, as a result, (L+M)/2 and (I—3II)/2 build up
two commuting sets of operators, each one satisfying
the commutation relations of ordinary angular mo-
mentum; hence [(L+SI)/2]'= FPj t (jt+ 1) and

[(L—M)/2$'=5'js( js+1).

But according to Eq. (5), I"&=M L= 0 so that

[(L+M)/2]'= [(L ) /2]', —

B. The GIoba1 Method'

We make a Fourier transformation and write the
equation in momentum space. The 1/r term gives rise
to a convolution integral and we And

i"—'-E (p) =
I q —p js

In fact, it will be of interest to follow the remark of
Alliluev~ that the method can be generalized "to any

i.e., j&=js. It is not clear at this Point whether j=j&=js r S P A]lgnev Zh Egs crt~ i Teor Fis 33 2PP (1957)
has to be limited to integer values or can also take half- LEnglish transl. : Soviet Phys. —JETP 6, 156 (1958)g.
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p/p

Fro. 1. Stereographic projection of the f-dimensional space to
the unit sphere in f+1 dimensions.

Inserting these values in Eq. (9) we get

C(u) = pk I'I (f—1)/2] d~+'Q. C(e)

2PA ~(f+1)/2
(13)

The great interest of Eq. (13) is to show that the prob-
lem is rotationally invariant in an ( f+1)-dimensional
space, which in the case off= 3 implies an 04 symmetry
group. Before solving Eq. (13) it is interesting to com-
pare the normalization of C and C. We have

number of dimensions greater than or equal to 2. The
dimension will be denoted by f We h. ave

r-'= (xreg t)
—' dry

exp (—iq r),
q

where co„is the area of the unit hypersphere in an e-
dimensional space

(0 = 2n-"Is/F(-,'ts) .

For dimension f, Eq. (7) generalizes to

t'P' lr, drqC (g)

al ~~~-&
I q —p I' '

Let us remark that, in the case of bound states, 8 is
negative. We introduce the quantity

Pes= —2mE) 0,

and the equation now reads

(P +P ) C, (P)
L2(f—1)j df

@'(V)
(9)f ~l(f+1)

In this form the equation seems to exhibit nothing
more than the usual f-dimensional rotational invariance.
We now perform a change of variable. First, we replace
p by p/Ps, then imbed the f-dimensional space in an
f+1 dimensional one and perform a stereographic
projection on the unit sphere (Fig. 1). Let u be the
point on the unit sphere corresponding to p and let n
denote the unit vector from the origin to the north
pole of the sphere; we have

C u 'dO= C 'd~

We can now use the virial theorem which states

I
c'(P) I'd'P= ——

I c(P) I'd'P
2p

to obtain the result that Lfor a solution of Eq. (13)$

d'+'~l-I c'(~) I'= d'PI ~(P) I' (14)

Hence the mapping: C (P), belonging to the eigenvalue
E, ~C(N) satisfying Eq. (13) as given by conditions
(10) and (12) preserves the scalar products. This
mapping can be extended on one side to the Hilbert
space of I.' functions on the sphere —call it BCp+g on
the other to the Hilbert space of linear combinations
of eigenfunctions (and their limits) corresponding to
the discrete spectrum of the Hamiltonian. As the func-
tions corresponding to different eigenvalues of the
Hamiltonian are orthogonal and as the same property
holds on the sphere for solutions of Eq. (13) corre-
sponding to different eigenvalues of Pe, the extended
mapping obtained in that way is one-to-one and iso-
metric that is unitary. Note that it cannot be given
through a geometric transformation of the type (10)
which clearly depends on pe.s We now solve Eq. (13),
using the following remark. In the ( f+1)-dimensional
space, the kernel (I u —v Ir ') ' is essentially the Green
function of the Laplace operator. More precisely,

~ '+'(I u —v Y ') '= —( J'—1)~f+r~"'(tt—v) (15)

P' Po' 2Pou= n
P'+P ' P'+P ' (10)

Moreover, the spherical harmonics defined on the
sphere form a complete system of functions in 3Cf+g.

They are labeled by an integer X taking the values
An immediate calculation shows that

d'+'fl = 2&(N' 1)d'+'I= E(2Po) '/—(Po'+P')'3~'P

. I p—q I'=
I (P'+Po') (e'+Po')/(2Po)'E

I
u —v I' (ll)

if v corresponds to q. Let us also change the wave
function by defining

C'(&) = (Po) 'I:(Po'+P')/2Poj "+""C'(P) (12)

8 If we vary Po in. Eq. (10) we obtain a mapping of the sphere
onto itself of a type which will be of interest in the next sec.ion.
It can be geometrically described as follows. First perform an
inversion of radius V2 with center at the north pole of the unit
sphere (this projects the sphere on the plane of Fig. j.); then a
"scale" transformation (u—+t u), 6nally the inversion again.
The whole operation leaves the sphere invariant and the north
and south poles do not move. It turns out that we can get the
same result as the product of two inversions with respect to two
spheres orthogonal to the unit one with centers on the north-
south axis.
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0, 1, 2, ~ ~ ~ and an index n whose meaning will be
specified in a moment, such that if Y~, is the spherical
harmonic

Iu I"I'~..(&/I & I) ='JJ~.-(u)

is an homogeneous polynomial of degree ) in u con-
strained by the condition

FIG. 2. The surface of
integration in Green's for-
mula.

d/+"g~, (u) =0. (16)

The index n allows us to classify the set of solutions of
Eq. (16) properly orthonormalized. An arbitrary
homogeneous polynomial in f+1 variables of degree X

depends on

and on the sphere n'= 1 (with u'= 1)

constants. Equation (16) gives

X+f 2&—
X—2)

homogeneous conditions; hence the number of inde-
pendent spherical harmonics belonging to the same ),
Sy, is

(1&)
fX+@ (X+f 2i (X—+f—2) !(2X+f—1)

& X j k 'A —2 j (f 1)IX!—

(indeed, for f= 2 we find 2A+1 and for f= 3 (X+1)', a
result which we will use in a moment). Taking into
account the fact that 'JJ~, (v) and (I v —ulr ') ' are
harmonic in v everywhere except at the point v=u,
we write Green's formula for u on the unit sphere and
a surface S, as shown in Fig. 2:

S,=—I V: v'= 1, I
v —u I'&eI

U Iv: i'(1,
I
v —u

We have

«
I
v —u lr ',2=.2=i

Hence

0= tet+i Fi, (6)
2

d~+'0
+ . " I'.,-(I) L

—-'(f—1)—A3
I

8—tt lt-'

Using again the formula for the area of the sphere, we

get

( f 1+2K) —f 1) d—t+'0,

kr-,'(f+1) 2 j
I

v —4!r—'

(18)

Equation (13) is now to be compared with Eq. (18).
Obviously, due to the completeness of spherical har-
monics, we have thus found all the possible levels given

by

t ~/pe&= ( f—1+2K)/2

thus

8= —(pe'/2tt) —=-'tt(k'/fP) -'( f—1+2K)—' (19)

1

Iv —ulr '«
The integral splits into two parts. The first one tends
smoothly when e goes to zero to an integral evaluated
on the whole sphere. The second part taken over a
small hemisphere around the point I tends to

I (f—1)/2leex+ J&, (u)

and since u is on the unit sphere 'JJ= I'. Moreover, due
to the homogeneity of 'JJ, we have

If we now set f=3, then -', (f—1+2'A) =X+1 and we
again get formula (6) with X now identified. with 2j.
The energy levels do not depend on the index a, and
thus there are Eq orthogonal states belonging to the
same eigenvalue of the energy. Equation (17) gives
the degeneracy in that case, Xq= (X+1)'.

At the same time we have obtained the eigenfunc-
tions which are to be identified with a set of spherical
harmonics on the four-dimensional sphere Lor more
generally on an ( f+1)-di'mensional sphere(. There are
several possible ways to label the additional quantum
numbers in one level and this will be discussed in the
next paragraph. For the moment let us observe that
the 0(4) symmetry group acts on the eigenfunctions
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of each level in a very simple way for if 0 denotes a
rotation in ( f+1)-dimensional space

I'y, (Opt) = Qh, "(0) 7'g, (6),
ai'

where 6 denotes an X-dimensional representation of
the orthogonal group 0(f+0 Remembering that

'9~,-(u) = Iu l"I'~,-
u )

the representation just written is, in fact, obtained by
letting the matrix 0 transform the coordinates of u in
the form (Ou);= Q,O;,e; and looking for the corre-
sponding transformation of the symmetric polynomial
'JJz, . In fact, 'JJ&, is not an arbitrary symmetric poly-
nomial and the corresponding representation of 0(f+g)
is the one which, in the language of Voung tableaux, is
made of a single row of P boxes. (A harmonic poly-
nomial can essentially be written as

lI p sg i ~ s ~ p 'A) ~'kg~'cQ) ) ~sf)~ ~

~ ~ ~
~ ~ ~ ~ ~

fg, S2, ~ we, 2$

with t symmetric in its indices and of zero trace in
each pair of term. ) In particular, for 0(4) these repre-
sentations when described in terms of two angular
momenta are labeled X)» with ) =2j. Using the classical
branching law for the orthogonal group, one readily
sees that they split according to the 0(3) subgroup in
a direct sum of representations with /=0, 1, ~ ~ ~, 2j.
This gives us the allowed values of the ordinary angular
momentum for a level with principal quantum number
I=)+1=2j+1.It is even intuitive that an homogene-
ous polynomial of degree X in f+1 variables can be
written as a sum of homogeneous polynomials of
degrees 0, 1, ~ ~ ~, 2j in the first f variables. By choosing
them harmonic, one has thus a procedure to compute
the wave function. We shall obtain exp1icitly the wave
functions in another way.

Let us finally use Eq. (18) to write an expansion of
the Green kernel. For v and u, not of equal length,
one deduces immediately from the fact that in a p-
dimensional space

lul&I; (u/lul) and (1/lul)&+p-sI;, .(u/lul)

are both harmonic

rL-,'(p —2) 3
lu —vl&—'

C. Calculation of Wave Functions

We shall now compute the wave functions using
another possibility afforded by group theory. We make
the remark that the four-dimensional sphere is homeo-
morphic with the space of parameters of the group SU2,
the uni-modular unitary group in two dimensions
(which is the covering group of the ordinary three-
dimensional rotation group). Moreover, we know a
complete set of functions on this space, ' namely, the
matrix elements of the various representations Q,
labeled by j, taking the values 0, —',, 1, ~ ~ ~ and —j&m&

j, —j&m'&j. The S functions were computed by
Wigner and are given below. They seem to be good
candidates for being spherical harmonics on the sphere
if we notice further that, corresponding to a "spin" j,
they are (2j+1)' in number —precisely the number of
spherical harmonics of degree X=2j. We shall prove
that this is, indeed, the case. This kind of coincidence
is very peculiar to the dimension we are precisely in-
terested in.

Let us first recall the correspondence between the
sphere and SV2. The most general unitary unimodular
two-by-two matrix can be written:

A =up+id'u, (21)

with (up, u) real, up'+u'= 1, and o.t, os, o.s are the usual
Pauli matrices. This parametrization sets a one-to-one
correspondence between the two spaces and hence
between the functions defined on the two spaces.

Writing the previous matrix A as

a b)

E-5 )
aa+bb= 1

a= up+pup,

An invariant measure on SU2 is

b =iut+up (22)

28(us —1)dpu= 8(aa+bb 1) s (dadadbdb) . —(23)

Consequently, the measure on SU2 coincides with the
usual measure on the sphere and we have

8(aa+bb 1) ts (dadadb—db),

but up to a constant factor we know that invariant
measures are unique on a compact group; hence, this
measure is the usual one (up to a factor). It also reads

W&" Q.F)„.i»(u/u) I'g, J»(u/u)
g W)'+" ' p —2+2K

(20)

where W&(W)) denotes the smaller (greater) of the
two quantities

l
u l, and

l
v l. The superscript on the

spherical harmonics recalls the dimension of the space.
In this formula they are assumed orthonormalized.

(24)

Moreover, we can extend SUs to a group I R+ I X SUs,

~This is the conterht of Peter-Weyl theorem. C. Cheralley,
Theory of Lpe Groups (Princeton University Press, Princeton,
N.J., 1946), p. 203.
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where E+ is the multiplicative group of real positive
numbers and make it in one-to-one correspondence
with the four-dimensional space without the origin.
This means that we multiply the matrix A by a real
positive factor. Including the value 0 extends the cor-
respondence to the whole space. Now let us recall the
definition of Wigner's X) functions. Let 8 be the most
general two-by-two matrix

(a b)

(c d)

We now use the relation

hence

8 8a„4=4
B(up+zuz) B(up —zup)

8

B(zui+uz) B(—zui+up)

t9 8 ()—+ =4
Bx' By' B(x+zy) B(x z—y)

Consider polynomials in two variables of degree 2j of
which a basis is given by

8

B(sa) B(sa) B(sb) B(s5)
(29)

$j+m m

L( j+~)!»L( j+~)!»
m jy j 1 je

(at+brt) '+" (&5+dit) ~"
)»L(j- ) u~

(25)

In order to prove that 64$, &=0, it is suf6cient to
prove that

(j+m~ 0'™
Q 64$,„j(sA), , =0 (30)

since the I'j, ($, rt) are linearly independent poly-
nomials; hence we have to compute

with

= Q &-.- j(&)F'j.-(5 n) (26)
m~—j

64(sa/+sbrj) I+"( sb)+sart) —& ".

Using Eq. (29) we easily find that this quantity is
zero. More generally, we can check that

&-.- j(&)=L(j+~)!(j—~)!(j+~')!(j ~') t3'

+ng ~ gng ~ &ne, dn4

X Q . . . ,
(27)

n.)0 'gyI 02t'034'84f
(

B' B' )
B.Bd BbB,&~

--""'='-
Next we study the normalization. We have

Ã4+ sz =j+ztz Ip+tz4 =j ztz—
zzi+ztp= j+ztz', Np+tz4= j—zrt'.

The ordinary matrix elements of the irreducible repre-
sentations of SU2 corresponding to spin j are obtained
by putting in Eq. (27) for 8 the general element
A C SUp. Formula (27) is suited for computing X)„,„.j)&

(sA) when s&0. Now I), j(sA) can be considered
as a function in the four-dimensional (real) space,
and obviously it is homogeneous of degree 2j; that is,

2x'
$- ~ r$

~ ~ I )j m]m] m2m424j~
A=up+zd u upz+u'= 1. (31)

The only point to be verified is the factor 2n'/(2j+1),
otherwise the orthogonality stems from Schur's lemma.
For that purpose we note that

S„,„j(sA)=s'jS„,„.j(A) . (28) Q S„,„j(A)S„pj(A)=b, p

Moreover, we will now show that it satis6es the Laplace
equation. Since we obtain for each integer 2j a set of
(2j+1)' linearly independent homogeneous poly-
nomials satisfying the Laplace equation, the S,„j(A)
form a complete set of spherical harmonics on the four-
dimensional sphere. The Laplace operator is

8 8
,+ ,+ ,+8Sg BSq BN2 8N3

Hence

S„m,& * A X)„m,& A O40„=5m, ,2+2,

where 2~2 is the surface of the sphere. On the other
hand, Eq. (31) gives

27r2 +j
~naimp= 2& &mimp2j+1 4
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A complete set of spherical harmonics properly nor-
malized on the four-dimensional sphere is thus

V». . .'4~ (jj) = [(2j+1)/22r'$'X)„,, ,j(NO+iu 6)

2j=O, 1, ",—j&m, &j. (32)

The S, ,&' also afford very quickly the representa-
tion of 0(4) in the following way. First let U be a
generic element of SU2. Then if we select V and lV
belonging to SU2, the correspondence

U O'= VUR"+

If (V, W)~0, then (V, W) '= (V+, W+)~0 ' with
the set of spherical harmonics given by Eq. (32), we
have as a result of the properties of X) functions

&» ml, m2 (0 jj)

+mlml' ( V ) +m2'm2 (W) V2j;ttt1 ttt2 (+) ~

Hence

l', 2mimlmttt2 L( Vt ,W) j +ml, ml (W) ' (33)

Of course, (V, W) and (—V, —W) give rise to the
same matrix. In particular, since we are to make use
of it, we 6nd easily the representation of a rotation
through angle 8 in the (0, 3) plane, namely,

6„2„,.„,,"({exp[i(0/2) 03)t exp [—(8/2) osI )

is a mapping of SU2 on itself. It is clear that if we write
U=uo+idu the mapping u—+u' is linear; hence, we
have obtained an orthogonal transformation. The set
of pairs (V, W) with the law of multiplication (V', W')
(V, W) = (V'V, W'W) forms a group —namely

( SU2X SU2) and we have an homomorphism
(SU2, SU&) l0(4) which can readily be seen to cover
0(4) . This is, of course, well known. The kernel of the
mapping consists of the two elements (I, I) and

( I, I). Th—e dia—gonal subgroup of pairs of the
form (U, U) corresponds to three-dimensional rota-
tions of u, and we are going to use it in the following.

The transforms, tions of the type (U, U+), on the
other hand {where U= exp [(hatt/2) d n/I, correspond
to rotations (through angle 8) in the two-plane passing
through the 0 axis and the axis n (in the three-dimen-
sional subspace N2 ——0). Now we write the general
orthogonal transformation as:

Yg & &(N)~Vg '+(0 'I) = +A ~ (0) V), ~ +(N)060

('0 1)

I,—1 0)
Then for any 2)&2 unitary unimodular matrix

(34)

Consider S,,„j[A(u) F]; then

S, '[A (uo, Ru) F]=n ... j[RA (I) 1'Rrf

=K), lj(R)X), j(Rr)

xn. .., [A(u) r].
But, as is immediate from formula (27), Sj(Rr) =
K)j2'(R) so that

j[A(jjo, Ru) rj
=n„,„,j(R)n. , .. (R)n..,., [a(u)r&. (36)

This last formula shows that the spherical harmonics
of degree 2j form the carrier space of a reducible rep-
resentation of the three-dimensional rotation group,
and this representation can be reduced to a sum cor-
responding to angular momenta I.=O, 1, 2, ~ ~ ~, 2j. If
( j, jr'; j, m'! LM) denotes the usual Clebsch —Gordan
coefficient, "we' recall that

(j jjj;jm'
!
L3II') X)m~t (R)

-1.&m«L,

(jul;j~l'! L~)& „„'(R)$,'(R). (37)—j~~m1&+ j—j(m1«+ j
With the help of Eq. (37) we obtain immediately in I
space the properly normalized eigenfunctions of our
problem with principal quantum number e=2j+1,
angular momentum I., and magnetic quantum number
3f as

V,.:,,~~'~(~) =!
I Z (j, ~;jm'

I Lm)
(2j+ 1&

tt=2j+l l 22r tj -j&mSyj—j(m«+~

to submitting u, the projection of the 4-vector a=-
{No, uI, to the same rotation.

If A (I) =No+idu, then

A (No, Ru) =RA R-',

where for simplicity of the notation, E stands on the
right-hand side for the 2&(2 unitary matrix which cor-
responds to the rotation. Our second remark is that if
I' is the two-by-two unitary unimodular matrix

= exp [ i(jll+m—2) elf'lm, m24;m2 (33')
such that

Xm„,„.[(I,+id u)rg (38)

Before giving further interpretation of formula (32)
we shall construct the set corresponding to the diago-
nalization in angular momentum. We remark that
rotating p, the three-dimensional momentum, amounts

(jjo, R 'u) = V,re (+0, u) &us tlj'(R) ~ (39)
' See for instance, A. Messiah, Quuntlm Mechanics (North-

Holland Publishing Company, Amsterdam, 1964), especially
Vol. II, Appendix C.
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Using the properties of C. G. coefficient one shows that

i2) iL sin F dLI'.;L2j'4'(24) =
~

—
~

&irj D 242 —1') ~ ~ ~ (rt2 —L2) ]l d (COS 5) L

is expressed as a polynomial of degree 2j in cos 8) . The
answer is thus

42 sin rt8

22r2 sin 8

(sin5 j ju)j
where 8 is defined through Np+2u=e'P. The derivation
of this formula is given in the appendix.

We can easily derive from Eq. (32) or (38) the
projection operator on to the space corresponding to
principal quantum number rt= 2j+1 which appears in
several formulas, as for instance in Eq. (20) . We have
(P standing for this projection operator:

ti o=2j (Nq V) g I 2j;L,jj(N) ~2j;L,ij(V)
L,M

L(2j+1)/22r2$X)„, jLA (I)]
tn tnf

X(n...LA(v) j)*,
= g $(2j+1)/22r2$5) „.j(A(24) j

(cos 228)2z'd cos 0

I e —cose

I ='V =1. (42)

1 'V&II ~ 1

w& 2j=p, i . .. w&j 2(2/+1)

X
(2j+1) sin (2j+1)8

2x2 sin 8

Using this result, we can rewrite formula (20) for
f+1=4 as

1 1 1 ( (zv 'I2 (2'= —w&
—2i 1+

i

—
i

—
i

cos8
42r' In —V P 42r' E, E,w&j & w&

mm/
Thus with t= (w&/w&) (1, we find the classical gen-

X&m,m' $A (v) ly crating functions for Chebichev polynomials

=P(2j+1)/2~@ gn. , LA(N)A-'(v)g, „sin(X+1)8
sin 8

=L(2j+1)/22rpg Tr Sr/A(N)A '(v)].

Now we want to compute A(24) A '(v). We have

A (I)A —'(v) = (Up+2 it u) (vp —i')
=NpVp+ll'V+Zd' (vpu —NpV+u x V)

the unitary unimodular matrix can also be written

A (I)A '(v) = cos (p/2) i sin (p/—2) it n

(41)
Comparing this result with the generating function for
Legendre polynomials (which arises in our case for
f=2 from the Green function corresponding to the
Laplace equation in three dimensions):

(1+t'—2t cos8) '*= g t"P (qc o8s)
l=0

we deduce the relation

Lsin (X+1)8/sin 8)= g Pq, (cos 8) Pqe(cos 8). (44)
Xy+Xg=)

More generally, we can compute similar projectors in
arbitrary dimensions. Our examples suggest that we

8 is t}e angle between I and v on the 4-sphere, we distinguish between odd and even dimensions. We

have have in even dimension p=2r, according to formula
(20)

cos 8=lpvp+u v= cos (Q/2)

hence, @=28 (the sign is irrelevant) . Since we compute
a trace, we can choose our coordinate system as we
please. In particular, "quantizing" along the axis n,
we have

+' . sin (2j+1)8
Tr 5)if A (24) A '(v) j= g exp (2im8) =

m Sin 0

(we recognize the Chebichev polynomials if

sin (2j+1)8/sin 8

(1+t2 2t cos8)' '—
4(2r)" (P),t»&(cos 8)gtl

p 2F (r—1) r+li —1

X f d "—' sin (li+r —1)8
&d cos) sin 0

Where 6'~&'"& is the projector, i,e., a polynomial of
degree ) in cos 0 which can be obtained simply by
differentiating Eq. (43) to give

1

(1+t2—2t cos 8)' ' 2" 2F(r—1)
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and

2 (r+X—1) d ) "—' sin (X+r 1)8—
(Pq(2") (cos 8) =

(2)r)' dcos8) sin 8

p'2 (») (u) I 2 (2&) (2)) ~ r& 2. (45)

In the odd case the calculation is completely similar
and yields:

(r+X—-,') t' d
(P),(2"+n(cos 8) = '

! ! J'),~„)(cos 8)
22r " &d cos8j

(srjl) (u) f (2r+1) (&) .

formation C (p) —+4'(p) =C (p)+8C (p)
~P3

84
(p2+p 2) 2

X p —
pp

—2ps 8

2pp I9ps

PsP( 8 PsP2

pp 8pp po 8p2

&& (p'+po')'C'(p) (48)
The infinitesimal generator when written as

BC (P) = (—i)P(/SP0) oosMPsC (P) (49)

is )with pp;=iA, (8/8p;)g

22(P)(P+Pp)

Of course, one can express these polynomials in terms
of products of Legendre polynomials.

D. Connection Between the Two Ayyroaches;
Parabolic Coordinates4

or

2ppps p pp

p"+po' p'+ po'

2ppp( 2pop(

p"+po' p'+po'

2 pops

p +po

17
2

&ps= opsr. (p' —po' —2ps')/2poj,

BP2 002(PSP2/Pp) y

&p)= —002(pops/po) (4&)

Using Eq. (12) this gives the infinitesimal trans-

In this paragraph we want to show that the genera-
tors of the group of symmetry found in the global
method coincide essentially with the two vectors, I.
and M, introduced in Sec. IIA, as should be expected.
We will also show that the two sets of spherical har-
monics that we have found (connected one to another
by a unitary fixed transformation), equations (32)
and (38), correspond indeed, with the possibility
already present in the classical problem, of separating
variables into two different systems of coordinates.
Classically it is also known that the "accidental de-
generacy" is related to this fact.

To generate our group, 0(4), we can use six infinites-
imal operators —the first three correspond to ordinary
rotations in p-space and lead to the conservation of
angular momentum. The next three correspond in I-
space to infinitesimal rotations in the (uou)), (uous),
and (upus) planes. We shall compute the generator in
that case. For that purpose let C (p) be a solution of
Eq. P); then the transformation, corresponding to an
infinitesimal rotation in the (upus) plane is

p p p po pops

p"+po' p'+po' p'+po'

(p p . p')
M =

I

—r——(p r) —ih, —
!
——r.

p) r
Equation (50) can also be written

M = (p/2p) xL—L x (p/2)(s) —(is/r) r

(50)

which is seen to coincide with Eq. (3) and leads to the
interpretation of the second vector. It merely corre-
sponds to the three generators of rotations in the two
planes passing through the fourth axis introduced in
the stereographic projection.

Our second remark has to do with the two systems of
spherical harmonics we have used on the sphere S4.

'

The first one I F'„,z„)al clearly corresponds to the
usual separation of variables in polar coordinates, It is
natural to ask if the second system

I I'„, ,
= (2j+1/22rs) &n„, 22= 2j+1I

corresponds to another natural system of coordinates
which allow separation of variables. As expected, we
will show that this is related to parabolic coordinates.
For that purpose we write in the p space

~-:-,- (P) = (2j+1/ ')'I:2po/(p'+po') 1'

X(po),&, 'L&(P) $ (51)
with

p pp . 2pp
(joP

2 2 2 2

p po ps ~p&
xs ——(p r) 2i-

2p p p

At this point we recall that Mp; acts on an eigenfunc-
tion of the Hamiltonian —corresponding to the eigen-
value E= —pps/22N. Moving pps to the right, we can
replace it by 2rjsIX= —22)—sr (P /2rw) —(k/r) ] so that
lV can now act on any linear combination of eigen-
functions. Clearly the calculation of Mp2 and Mp3 is
completely analogous. We introduce the vector M
whose components are 3'», Mp27 3fp3

p' fp' pM= —r+r! ———
!
——(P r) 22fi, —

2p &2p r) p
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According to Eq. (36)

C'n;m, m (Rp) =&m,m1 (R) +m', m1' (R ) @n;mlml (p) ~

In particular, if R is a rotation of angle iir around the s
axis

B„,„,'(Rt, ) = exp (—in') 8„,„,
so that

c„.,„,„(Rt)= exp $—i(rN —trt')$)c,.„,„(P).
Hence, C„.. . ~ is an eigenfunction of the third compo-
nent of the angular momentum L3 corresponding to
the eigenvalue h(ns' —rrt). Now, I.s commutes with
Ms—=Mps according to Eq. (4) . We thus investigate
the effect of an infinitesimal "rotation" in the (03) I-
plane. For that purpose we use Eq. (33')

+m.m (R-epSQ) = eXP L
—i(ttti+rrts) ePS/S, m '(st),

)iX

FIG. 3. Parabolic coordinates.

p pp ps 22)s
Ms —— xs——(p r) — p, .

2p p p

We have also written above the third component of the
where E. „,indicates a rotation through angle —

&03 operator M as
in the (03) plane. Changing from —ops to +cps and
comparing with Eq. (49), we have immediately the
action of M3. We now have

ISC'ns, m,m'(p) = )S(nt tw) @n;m,m'(p) Using p;= (ft/i) (8/Bx;) and Eq. (54), we easily 6nd
MsC„, ,„(p)= —(Spp/I) (ns+ns') C.. . (p). (52)

11 1 cPI 4—4 2'( & e))

1 ( 8 8) fP 1
X ~+2-

()il+~2) E ~)11 ~~2) tt ~1+)12xi——(Xihs) '* cos p 'Ai& 0, Xs) 0, 0&p& 22r

fP 'Ag —)2( 8 8 8 8
On the other hand, we may introduce parabolic +2

coordinates to separate variables in the original
Schrodinger Eq. (1). Those are defined in terms of the
parameters of two systems of paraboloids with focus
at the origin and an azimuthal angle p in the (xi, xs)
plane (Fig. 3). Analytically

xs= ()11X2)& sin P

xs = ()11—Xs) /2. (53)
8 8&

One has r= (xi'+xs'+xs') &= ()11+4)/2 so that

Xi= r+xs

)2=r—X3.

The Laplacian takes the form:

2, g l9 l9 8'

2 —lb.i +2
~1+4 ~~1 ~)11 1)~2 ~)12

(54)

1 (1 1 i 82

2 ('Ai )12j 8$2

The Schrodinger equation now reads

)A1+As+ (2)tk/52) ]f(l11,Xs, P) =0,

that is, simplifying and comparing with Eq. (55),

Ms ——(h,/2tt) (Ai—As) . (56)

III. THE LARGER GROUP

Hence, parabolic coordinates where the natural opera-
tors to diagonalize are I.s (fi/i)(B/8&), Ai an——d As
lead naturally to Ms and changing the axis of coordi-
nates (or through commutation with L) to the other
components of M as constants of the motion. It is also
in this way that V. Bargmann' was naturally led to
wave functions on the sphere S4, essentially identical
with the S& functions of Wigner.

vrith

8 8 1 8 ppA;=2 X; + ———)1t,
()X, 2)1, Bg 2)s

(pp'/») =—~.

We have remarked. that the Hilbert space generated
by the eigenfunctions of the Schrodinger equation
corresponding to bound states is mapped unitarily on
the Hilbert space of square-integrable functions on the
unit sphere of a four-dimensional space, which we call
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2
z-u =0

in an (p+1)-dimensional space. We call s the extra
component. Consider the paraboloid s=u'; its points
are in one to one correspondence with those of the
hyperplane s=O (Fig. 4). The set of projective trans-
formations which leave the paraboloid invariant, when
translated into the u space is the conformal group. We
obtain it by taking homogeneous coordinates s/t, u/t
so that this group is the homogeneous linear group
which leaves invariant the quadratic form st—u'.

It is a pseudo orthogonal group 0(1, p+1) since
st = sf(z+f) ' (s——f) '$. It contains the transformations
(i) to (iv) which appear as

(a) u—&Ou,

(b) u—cpu+at,

s~s~ $~$
s~s+2R'll+a f, f~f

FIG. 4. Projection of a p-dimensional space on a paraboloid
in p+1 dimensions.

u—&Ou

tlat+ 8
u~P u
u~u/~ u ~'.

When combined in all possible manners these trans-
formations generate a group: the conformal group. All

these transformations leave the angle between two
curves invariant. We can describe this group more
precisely as follows": imbed the p-dimensional space

"This is a familar device when using the conformal group and
has been used also for nonde6nite metric. Qle learned it from
Dr. R. Stora.

K4. We now want to find a larger group 6 for which
the following conditions are satisfied.

(i) G contains 0~ as a maximal compact subgroup
p)2;

(ii) G acts on the sphere S„.
(iii) K~ is an irreducible space for a unitary repre-

sentation of G;
3'.

„

is the space of I.' functions on a unit sphere in a
p-dimensional real space. Instead of giving the answer
and verify the previous conditions we indicate a
heuristic derivation. Discussing the Fock transforma-
tion LEq. (10)$ mapping the three-dimensional space
on the sphere we have casually remarked that the
transformation depended on the energy (or equiva-
lently on ps) and we have investigated the effect of
varying the energy. The result was a combination of
operations which could be described geometrically in
terms of inversions and "scale" transformations. Since
we are now looking for operations which eventually
will help us to relate subspaces corresponding to various
energy levels it seems appropriate to investigate the
general class of transformations to which the particular
ones just mentioned belong. For that purpose, consider
the following set of transformations in a p-dimensional
space (u now stands for the complete p-dimensional
vector):

(a) orthogonal transformations

(b) translations
(c) scale transformations
(d) inversions

(c) u~u,

(d) u~u,

~—As t—+ —t

S~t t~s.
The general transformation in p-dimensional space

is then"

t1'jjBj+ctgzu +(x~(
Q —+Q

2[n,jQ~+ng, u +ctgt$

where the matrix

(57)

'CL]g ' ~ ' Agz ' ' ' A'

Q Qf ~
~ ~ ~ ~ ~ ~

1 p

0 0

0 —1 0

p —I ~ ~ e

"The conformal group is a general invariance group for the
l.aplace equation in the following sense. If f (I,') is a solution of
d'&f(N') =0 then g(N) = (ngg+~g, N'+Z;~g, z~;)&' »12f{N') with zf"

given by Eq. (57) satishes also Laplace equation 5&g(N) =0.
This result can be quickly obtained by checking it for the four
types of transformations. The only nonstraightforward case (d)
gives rise to the fact that if I"q&» is a spherical harmonic then
both r" I z&» and r &"+& 2&I)t&» are solutions of the Laplace equa-
tion; a property which we have already used.

~ ~ ~ /V ~ ~ ~ ~ /V ~ ~~'sz

leaves the form st—u2 invariant, that is aTye=y with
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We can now ask the following question: what is the
subgroup of the conformal group which leaves the
unit sphere invariant? In other words, we want s—t to
remain invariant. Since

st—u'—=s (s+t) '——,
' (s—t) '—u'

From (56) we derive

( Q ao; du;) U~+ (ape+ Q ap,~;) d U; = Q a,; du;

D(U;)/D(u;) =$(aoo+ g aou;) $ det (a;;—U;ap;).

we see that the remaining subgroup is also a pseudo
orthogonal group 0(1, p) . We will how prove that this
group indeed satisfies our criteria. Conditions (i) and
(ii) are veri6ed by construction. In order to examine
(iii) we will construct explicitly the representations in

Xe,. Let A, be an element of 0(1, p) that is

goo ~ ~ 0 go + ~ ~ ~

Using the expression of U in terms of u we get

D(U) 1

D(ur) (aoo+ Q ao,~;)"+'

a + Pao,u, ~ ao ~ ~ a,

(62)

g O
~ ~ 0 g ~ ' o ~ ~u

X d.et a„+ga;,u;" a,," a;„ (63)

with

D(U;)

)
("2)

1
det A.

(app+ Q ao,u, )&+'

Then the transformation on u, 8, t is

—',(s'+t') =aooo(s+t)+ Q aors,

-', (s' —t') =-', (s—t),

ue =aepp(z+t) + Q augur',

or if the initial point (s=1, t=1, u) belongs to the
unit sphere then

Iui =aio+ Q aer%j

t'=a,o+ g ao,~;.
Hence on the sphere the transformation induced by A is

A:u-+U: U, =u /t'= (a;p+ Q a;,u;)/(app+ g ao,~;).

We know that det A=~i. I"urther we remark that

(Z", ;) &(Z;)(Z;).
We shall only use the preceding expression for N2=

g;u,z=1. Then

(Q aor~))'&(Q ao') =aoo' —1.

Hence for u'=1 we have
) app+ gtap%r

~

)
~

app )—
(aoo' —1)&)0 and the Jacobian never vanishes. From
(57) and (60) we get

1
Wl =28(U' —1) d"U= d"0„.(64)

Coo qaog%q

Let f(U) and g(U) be L'-functions on the sphere S„.
The previous calculation shows that

Ug U d"0p
Sp

One veri6es that

U' —1= (u' —1)/(app+ Q ap,~;)'. (60)

f(U(u) )

[ aoo+ P ao u '
(
~~ ~1

g(U(u))
X d"0„

~
aoo+ g ao~' )

We now compute the Jacobian of the transformation.
For that purpose we extend the transformation (59)
to the whole I-space and write the element of area on
the unit-sphere as

(65)

d~0v=2~(U' —1) d~U.
with u~U given by (59).

(61) We are now ready to describe the representation of
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f~T~f

f(A. 'u)
[Ts f$(u) =

i app(A
—')+ Jap (A ')u i& (67)

Since obviously Tr =I (the identity operator) Eq. (67)
will also show that Ts has an inverse (and hence is
unitary). We will thus get a unitary representation of
0(1, p). For that purpose consider

~,p(&-')+Z ~v(~ ') u
A 'u;=

~pp(ii ')++~«~(~ ')u~
(66)

0(1, p) afforded by X„.ip Given a A&0(1, p) and an The operator T~ is obviously a linear operator from
element fQ X„weset X„to X~. Equation (62) shows that it is an isometric

operator. All that remains to be verified is that the
correspondence A~Ts is a representation of 0(1, P),
in other words we want to show

(68)

Clearly as gs—i&i-i= (h, As)
—' all we have to show is

that the denominator in the preceding equation is

"pure" Lorentz transformation in the (0, 2) plane;
generator I'~.

app(As 'A.i ')+ Q ap;(As 'hi ') u;, (69) The corresponding infinitesimal transformations are
[(cricra8) infinitesimal

This can be shown by a direct calculation but it is
easier to remark that (69) stems from the properties
of Jacobians [compare with Eq. (64) j. The group
law (67) is satisfied. Hence, we have constructed a
unitary representation (infinite dimensional) of 0(1, p)
in the space of I.' functions on the sphere S„.In view

of the explicit equations of transformations our repre-
sentation satisfies all the usual continuity requirements.
We recall that 0(1, p) has four sheets and our repre-
sentation is a representation of the full-group. How-

ever, in the sequel we might as well assume that we

deal with the connected part, which allows us to derive

the form of the infinitesimal generators. If the repre-
sentation of the connected subgroup is irreducible the
representation of the wholegroup is aforfiori irreducible.

For the sake of simplicity let us first examine the
case where p=2. Our construction leads to a unitary
representation of the (real) Lorentz group in three
dimensions 0(1, 2). Restricting ourselves to the con-

nected part of the group, it is generated by three types
of transforinations:

rotation in the (1, 2) plane: generator I.
"pure" I.orentz transformation in the (0, 1) plane;

generator Pj

1+rriPi+crsPp+PL

oo o)
0 0

01 0)

ohio)

P,= 100
(oo o)

o o

000
s o o)

The commutation relations are

[L, Pi]=Ps [L, Ps]= Pi [Pi, Ps]= L.—(71)—
The sphere 5~ is a unit circle on which the spherical

harmonics

'o The quantity
~
goo++so, u; [ is reai positive; it is clear that

to satisfy the unitarity condition we can more generally set

)T fl(N) =U(Z 'u)/I goo(Z ')+~aoi(A )ooi li'o-»loi+'rg

where 7 is real and say nonnegative. Different 7 define inequivalent
representations. This shows that the representation of the group
G is not uniquely defined. The minor changes in adding ~ "re
all very simple and we do not include them in the text. The
only formula for which this does not go through as simply is
Eq. (80) which is the basis of the introduction of "noncompact"
operators in Ref. i. T(L) I'„= irNY— (72)

constitute a complete basis for Xp (classical result from
the theory of Fourier series); pn takes all integer values
from —oe to +oo. In the following we drop the index
(1) of F &'&. For A~1+PL we write T~I+PT(L),
then
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Let p be equal to A 'p with A~1+n1P1, we get from We have
Eq. (59)

1
(T f) (u)

(1 p ) t 11(2f«s 0—(—P+ cos 0') /(1 P—«s 0)

sin ~[sin $/(1 —P cos Q) g,

tan p = [sin (tr/( p+—cos p) 7,

( Qy N2 —p+u; u„xl
(1—Pu; 1—Put 1—Put 1—Put)

T(P ) F-=-'(F~+F -)+ktrt(F-+ —F )

and Writing TA'=I+pT(P, )

1 ( sing T(P;) =-,'(p —1)u;+u; Q u, (8/Bu;) —(8/Bu;). (76)
(TAf) (P) f I

arctan
1—pcos$ & ( cosp —p

This expression can be given an interesting meaning.
f(4')+p((cos 4'/2)f(4')+»n 4'(it/~4')f(4') ) Let us introduce the generators L;; of rotations in the

(ij) planes —according to (66) we have

=-', (1+2nt) F +1+-,'(1—2m) F ('73) T(Lu) =u'(~/~ur') ut(~/~u').

An analogous calculation yields

1 m
T(P2) Fm — . ( Fry+1 Fm-1) + . ( Fto+1+ Fm 1)

4i 2i

1+2m 1—2ne~~x-
4z 4z

Let us now commute the Casimir operator

L'= —Q T(L~t)' (78)

with the operators u; [as an operator u, means f(u) ~
u;f(u) $. We easily find

[L' u,]=—2u'(8/Bu;)+2u; Q u;(8/Bu, )+(p 1)u—,(74)

(79)

put u'=1 on the unit sphere hence comparing (76)
and (79) we have

(8o)T(P;) =-', [L' u j.
This last equation gives in essence the procedure de-
scribed by Dothan, Gell-Mann, and Ne'eman' to
generate the "noncompact" operators, as commutators
between a Casimir operator of the compact subgroup
and a set of abelian operators submitted to auxiliary
conditions invariant under the compact subgroup and
which transform among themselves under commutation
with generators of the subgroup.

We will now prove irreducibility in a fashion similar
to the case P=2. It is clear that if by combining
linearly the operators T(P;) we can find two operators
which acting on a spherical harmonic of degree )
generate one of degree X+1 and another of degree X—1
the proof of irreducibility will be complete since the
set of spherical harmonics of a given degree is the
carrier space of an irreducible representation the sub-
group of rotations 0„.Now we recall that

TpY = [(1&2rN)/2]F„g1. (75)

Since rN is an integer (1&2rN)/2 can never vanish
and starting from one vector F by successive ap-
plication of T(L1)&iT(Lz) we generate all the others
Hence, the representation is irreducible.

The proof of irreducibility in the general case can
be made along similar lines. Let us denote by I.~, ~ ~ ., I.„

the generators of "pure Lorentz transformations" in
the two-planes (0, 1), (0, 2), ~ ~ ~, (0, y). We calculate
T(P;).Let

1 0 ~ ~ ~ P

I
u I"F1.&»(4)

The formulas (72), (73), and (74) give us the repre-
sentation of the Lie algebra of 0(1, 2) afforded by our
construction. One veri6es of course the commutation
relations (71). Moreover the generators are anti-
Hermitian as a consequence of the unitarity of the
representation. We can prove the irreducibility using
the Lie algebra. Indeed constructing T+ T(P1)&-—
iT(Pz) we ind

Jt ~I+PP;= satisfies the Laplace equation

~"(I u I"F.-'"'(~) ) -o.
But

P—1 et 8' 1+ I.2
lul alul a lul Iul

(81)
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with L2 given above. Hence

L'F&, '»=+) (X+p—2) F&, '».

Now consider the special set of spherical harmonics

Let us Grst remark that from Eq. (22)

(n„.p(u, +idv) r7)*,

where v is a vector along the 2 axis, vanishes unless
m+m'=. 0. Now any u can be written E,p, pv with n, P
the polar angles of u. From the very construction of
F'4& PEq. (39)7 we have

(82)F&,'» = (up+ iup) '
These are not normalized but this is irrelevant here.
For each X they provide us with one spherical harmonic,
the other ones being simply generated by rotations.
Now F„,r„»r~'&(up, u) = F„,r,~&~(up, R,p,pv)

Fn,L,p (up& v) K&pM (E p )

F,r,»r~4'(up, u) = F„,r,p'4& (up, v) ($»fp~(E p) )*.

Pr(Z, )+ir(Z, )7F~&»(u)

=+p L'F&+&'»p (u+iu ) L'Fd",

=kL(l +1)(l&+P—1)—& (l +P—2) F + '»7

=D+p(P 1)—7F~+i'"&

Hence

[2'(&i) +i2'(~p) IFp'"'= p (P—1)

(83) In this last equality the second factor is, except for a
factor L4n./(2L+1) 7&, the usual three-dimensional
spherical harmonic; hence

Fp&» is the unit function, l T(Px)+i2'(&p)7 is a
"step"-operator. Repeated application of this operator
generates, starting from the spherical harmonic of
degree zero, a spherical harmonic of degree ). Com-
bining the action of this operator with the generators
of rotations we obtain all spherical harmonics. Hence
the representation is irreducible.

IV. CONCLUSION

The construction of unitary representations of non-
compact groups which have the property that the
irreducible representation of their maximal subgroup
appear at most with multiplicity one is of certain
interest for physical applications. The method of
construction used here in the Coulomb potential case
can be extended to various other cases. The geometrical
emphasis may help to visualize things and provide a
global form of the transformations.

We hope to develop this approach.
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APPENDIX

Fr»f&P&(u/l u l). (A1)

The vector v is along the s axis and its length is given
by l

v
l

=
l
u

l

= (1—upp)&. We shall write up= cos 8,

l
v

l

= sin 5. It remains to study the 6rst factor on the
right-hand side of this equation. For convenience we
write

F g,p~ &(up, v) =i L(2L+1)/2x 7~T,r, (h) ~ (A2)

From Eq. (38) and (2/) it now follows that

(2j+1l 1
-.~( )

X p (j m;j —m
l
L 0) (n .—'(up+ivy)I')*,

(2j+1)&1
2~.&(&) =

l&2L+1)l '~

X g (j, m; j, —m l L, 0)(—1)~exp ( 2iml'&).—

We shall now simply use known properties of the
Clebsch —Gordan coefficients in order to express T„,I.
in a simpler way. First we note that

(j, m; j, —r&p l L, 0) = (—1)'~r (j t&&;j, m
l L, 0)—.

We want to derive formula (40) from (38).We have Hence

F,t.,u'4& (u)

Q (jm;jt»' l LM) (n "t (up+i') r7)*(xi~
2m'j

u—= (up, u) 2j+1=u. That was the reason for introducing the factor i .
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Then using ( j, m; j, —m! 0, 0) =(—1)' (2j+1)& that
we find

T.,o(&) =
m~(n —13/2 sin s8

—Sill 8T„,I, (8) = Sill 5

exp (—2im8) = . . (A3)~(n—i)/2 sin 5

L
[n' —(L+1)'$'*

2L+1

Furthermore

rtz (—L+1)'
2m( j, m; j, —m! LO) =(L+1)

(2L+1) (2L+3)

X(j, m; j, —m! L+1, 0)

L+1XT„,~I(5)+ (et' L—')&T„,l, I(8) . (A5)2L+1
Relations (A4) and (A5) are equivalent to
'
[(d/d8)+I cotan bgT„,I,(5)

= [rt' (L+—1) 'O'T. ,~I
m' —L''

(2L-1)(2L 1)
" [(d/dS)+(I, +1) cotan SjT„,,(S)

=[n —(L) 1~T„,,-I
(A6)

Hence

d L+1—T„,l, (8) = [rtz (L—+1)']'*T„,I+I(8)
dB

' 2I.+1

Using the fact that

—(d/d8) +I.cotan 8= sin 8~+1(d/d cos 5) (1/sin~ 5),

we deduce from (A3) that

L 1

+2L 1~ ) o' ( ) [( 1)(te 2z)' '((n' —L2) '*T . (A4)

Using a similar technique we find, with the help of

( j, m;j, —m! I., 0)+(j,m+1, j, —m —1!L,, 0)

)~ sin N8

&d cos Bj sin 5

and

Putting this expression in (A2) we get the desired
L(I.+1) result. The functions T,l, (5) are, of course, well

g( j+1)—m(m+1) ' ' ' '
known. 4 Our calculation relates them in a very simple
way to the Clebsch-Gordan coefBcients through

(2m+1) ( j, m+1; j, m! L, 1)—
L(L+2) (rt2 (L+—1)') &

(2L+1) (2L+3)

X(j, m+1;y, —m I L+1, 1)

(L,+1)(L—1) (I'—L') '

(2L+1) (2L—1)

X(j,m+1;j, —m! L 1,1)—
d &~ sin (nb)

&( sin b~
!d cos b] sill 5

l'1 +&

~ 2 ( j~ m ~j —m
I

LO) (—1)~"
2L+1& il „=;

X exp (—2imb)

2j+1—=tt.




