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Recent series of theoretical and experimental reports have driven attention to time-reversal symmetry-
breaking spintronic and spin-splitting phenomena in materials with collinear-compensated magnetic order
incompatible with conventional ferromagnetism or antiferromagnetism. Here we employ an approach
based on nonrelativistic spin-symmetry groups that resolves the conflicting notions of unconventional
ferromagnetism or antiferromagnetism by delimiting a third basic collinear magnetic phase. We derive that
all materials hosting this collinear-compensated magnetic phase are characterized by crystal-rotation
symmetries connecting opposite-spin sublattices separated in the real space and opposite-spin electronic
states separated in the momentum space. We describe prominent extraordinary characteristics of the phase,
including the alternating spin-splitting sign and broken time-reversal symmetry in the nonrelativistic band
structure, the planar or bulk d-, g-, or i-wave symmetry of the spin-dependent Fermi surfaces, spin-
degenerate nodal lines and surfaces, band anisotropy of individual spin channels, and spin-split general, as
well as time-reversal invariant momenta. Guided by the spin-symmetry principles, we discover in ab initio
calculations outlier materials with an extraordinary nonrelativistic spin splitting, whose eV-scale and
momentum dependence are determined by the crystal potential of the nonmagnetic phase. This spin-
splitting mechanism is distinct from conventional relativistic spin-orbit coupling and ferromagnetic
exchange, as well as from the previously considered anisotropic exchange mechanism in compensated
magnets. Our results, combined with our identification of material candidates for the phase ranging from
insulators and metals to a parent crystal of cuprate superconductors, underpin research of novel quantum
phenomena and spintronic functionalities in high-temperature magnets with light elements, vanishing net
magnetization, and strong spin coherence. In the discussion, we argue that the conflicting notions of
unconventional ferromagnetism or antiferromagnetism, on the one hand, and our symmetry-based
delimitation of the third phase, on the other hand, favor a distinct term referring to the phase. The
alternating spin polarizations in both the real-space crystal structure and the momentum-space band
structure characteristic of this unconventional magnetic phase suggest a term altermagnetism. We point out
that d-wave altermagnetism represents a realization of the long-sought-after counterpart in magnetism of
the unconventional d-wave superconductivity.
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I. INTRODUCTION

Recent predictions of time-reversal symmetry breaking
[1–3] and spin splitting [1,2,4–12] in electronic bands,
typical of ferromagnets, in materials with collinear-
compensated magnetic order, typical of antiferromagnets,
are incompatible with the conventional division into the

ferromagnetic and antiferromagnetic phases. The conse-
quences of the intriguing electronic structure of these
collinear-compensated magnets have been illustrated by
predictions of odd-under-time-reversal responses, includ-
ing anomalous Hall and Kerr effects [1–3,9,13–15], as well
as spin current, giant and tunneling magnetoresistance,
and spin-torque phenomena [6,11,12,16–18]. Some of the
predictions of these unexpected responses have been
already supported by experiments [9,19–22].
In this article, we resolve the conflicting notions of

unconventional ferromagnetism or unconventional antifer-
romagnetism by deriving that on the basic level of uncorre-
lated nonrelativistic nonfrustrated (collinear) magnetism,
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symmetry allows for three instead of two distinct phases.
We employ a symmetry approach based on a nonrelativistic
spin-group formalism [23–25]. To explain its merits, we first
recall the conventional theory frameworks.
A traditional approach to the basic categorization of a

magnetic materials phases based on models focusing on
spatial and spin arrangements of magnetic atoms alone
while omitting nonmagnetic atoms in the lattice can be
traced back to the seminal works on Néel’s collinear
antiferromagnetism [26]. Subsequently, the approach was
employed, e.g., when discussing the competition of Néel’s
antiferromagnetism and the spin-liquid phase in the
context of high-temperature cuprate superconductors [27].
Recently, models considering clusters of magnetic atoms
have underpinned the multipole theory of the anomalous
Hall effect in noncollinear-compensated magnets [28],
and of the nonrelativistic spin splitting in collinear-
compensated magnets [5,8]. However, these models are
principally incapable of providing a general classification
and description of the underlying magnetic phases in
prominent families of materials. A specific example is
rutile crystals with the collinear-compensated magnetic
order [1,4,7], in which the nonmagnetic atoms have been
recognized to play a key role in the anomalous time-
reversal symmetry-breaking spin phenomena [1,3]. In
particular, RuO2 is a prominent room-temperature metallic
member of this rutile family, in which the unconventional
spin physics and spintronics have already been studied both
theoretically and experimentally [1,4,16–18,20–22].
A traditional symmetry description of the full structure

of magnetic crystals, including the nonmagnetic atoms,
considers transformations in coupled real physical space
and the space of magnetic moment vectors. In other words,
the transformations acting on the coordinates of the atoms,
subject to the standard crystallographic restrictions, simul-
taneously act on the components of the magnetic moment
vectors [24,25,29] (see Supplemental Material Sec. I
Fig. S1 [30]). This symmetry formalism naturally arises
from the classical orbital-current model of magnetic
moments [31], as well as from the relativistic quantum-
mechanical description of coupled spin and orbital degrees
of freedom of electrons [31,32]. The corresponding mag-
netic groups [29,31,33–35] have been broadly applied in
the research of equilibrium and nonequilibrium phenom-
ena, including their modern topological variants [36–38],
and have represented the primary tool for a systematic
classification of hundreds of magnetic structures in materi-
als databases [35,39].
Magnetic groups are indispensable for the description

of effects governed by relativistic physics. However, the
inherent relativistic nature of the magnetic-group symmetry
transformations in coupled real and spin space makes the
magnetic groups generally unsuitable for the classification
of nonrelativistic phenomenology, which typically plays
the leading role in magnetism [23,40]. Magnetic space

groups of type II describing time-reversal invariant crystals
without a magnetic order, are an exception for which a
transition to a nonrelativistic physics description in
decoupled spin and real space can be generally performed
by making a direct product with the SU(2) group of spin-
space rotation transformations [24,28]. For the remaining
magnetic space groups of types I, III, and IV encompassing
collinear as well as noncollinear magnets [7,10], a transition
to the nonrelativistic physics description is not avail-
able [5,8,28]. Therefore, the strong nonrelativistic spin-
splitting phenomena are not generally described by magnetic
groups augmented by spin-space transformations [7,10].
In this article, we use an approach to rigorously and

systematically classify and describe nonrelativistic magnetic
materials phases and their physical properties based on the
spin-group formalism [23–25] of symmetry transformations
in decoupled real and spin space. The spin groups are a
generalization of the conventional magnetic groups [23–25].
They consider pairs of transformations ½RikRj�, where the
transformations on the left of the double vertical bar act only
on the spin space and on the right of the double vertical bar
only on the real space [23–25] (see Supplemental Material
Sec. I Fig. S1 [30]). The symmetry landscape of the spin
groups is much richer because, in general, different rotation
transformations can simultaneously act on the spin and real
space, and only the transformations in the real space are
crystallographically restricted. (The same rotation transfor-
mations simultaneously acting on the spin and real space
are contained in both magnetic and spin groups.) Despite
their richness, studies based on the spin symmetries have
appeared only sporadically in the literature. For example,
in the past they were used for the classification of possible
spin arrangements on crystals and spin dynamics, with an
emphasis on complex noncollinear or disordered structures,
while not focusing on the electronic structure [40]. Very
recently, they have been applied in studies of magnons [41]
or topological quasiparticles [42–45]. Overall, however, the
spin-group formalism has remained largely unexploited and
undeveloped [46].
The nonrelativistic spin groups represent an example of

approximate or so-called “hidden” symmetries in the sense
that relativistic effects are generally present in all magnets.
The key significance of the nonrelativistic spin groups is
that they can offer a systematic symmetry description of
physics that is commonly leading in magnetism and that
arises from the strong nonrelativistic electromagnetic crys-
tal potentials [23,40]. Here, by the electric crystal potential,
we refer to the internal potential in the nonmagnetic phase
of the crystal, as described, e.g., by the local density
approximation of the density-functional theory (DFT); by
the additional magnetic component, we refer to the modi-
fication of the internal crystal potential due to the transition
to the magnetically ordered phase. Since the magnetic
groups represent only a small subset of the spin groups
[25], they are prone to omitting prominent magnetic phases
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dominated by the nonrelativistic electromagnetic crystal
potentials. For example, the magnetic groups, which
generally encompass collinear and noncollinear magnets,
can determine only whether a net magnetization is allowed
or not, but do not distinguish ferromagnets from antiferro-
magnets in which magnetization arises only as a weak
relativistic perturbation [31]. For the band structures, the
magnetic groups can be used to identify a violation of
Kramers spin degeneracy [10,36,47–52]. However, both
the magnetic-group formalism and Kramers theorem
[53,54] entangle nonrelativistic and relativistic physics.
Consequently, the nonrelativistic spin splitting in materials
from the magnetic groups violating the Kramers spin
degeneracy were identified by performing numerical
DFT calculations with the relativistic spin-orbit coupling
turned off [10].
In our work, by employing and developing the spin-

group formalism, we derive three distinct phases of non-
relativistic collinear magnetism: The first phase has one
spin lattice (or opposite-spin sublattices not connected by
any symmetry transformation). It corresponds to conven-
tional ferromagnetism (ferrimagnetism) [31]. The second
phase has opposite-spin sublattices connected by trans-
lation or inversion (or both), and corresponds to conven-
tional antiferromagnetism [23,26,41]. The third phase has
opposite-spin sublattices connected by rotation (proper
or improper and symmorphic or nonsymmorphic) but
not connected by translation or inversion. Unlike the
conventional ferromagnetic phase with a nonrelativistic
magnetization and spin-split bands that break time-reversal
symmetry [31], and unlike the conventional antiferromag-
netic phase with nonrelativistic spin-degenerate time-
reversal invariant bands and zero net magnetization
[26,32,55–58], the third phase has split but equally popu-
lated spin-up and spin-down energy isosurfaces in the
band structure that break time-reversal symmetry. The spin-
group formalism allows us to provide a complete
classification and description of the specifics of the spin-
momentum locking in the band structure of the third phase.
Our direct link of the spin groups to real material candidates
establishes that the third phase is abundant. We also show
that it is a strong, robust, and fundamental phase, as it does
not require (but can coexist with) relativistic spin-orbit
coupling, electronic correlations, or magnetic fluctuations
or frustrations. We point out that our classification and
description based on the spin-group formalism are univer-
sally applicable to any effective single-particle Kohn-Sham
Hamiltonian, as well as for the Dyson-equation description
of correlated or disordered systems.
Principles based on the spin-group symmetries guide us

to our discovery of outlier materials hosting the third phase,
with an extraordinary microscopic spin-splitting mecha-
nism, whose eV scale and momentum dependence are
determined by the electric crystal potential, i.e., by the scale
and momentum dependence of the band splitting of the

nonmagnetic phase. It is fundamentally distinct from the
earlier-considered various internal magnetic-interaction
mechanisms [4,7,8,17,59,60], such as the anisotropic
spin-dependent hopping in the magnetic state [8,17]. The
spin-splitting mechanism in the third magnetic phase by the
electric crystal potential is nonrelativistic and accompanied
by zero net magnetization. Therefore, it also starkly
contrasts with the conventional mechanisms of the ferro-
magnetic splitting due to the nonzero net magnetization,
or the relativistic spin-orbit splitting due to the broken
inversion symmetry. It opens a new paradigm for designing
spin quantum phases of matter based on the strong crystal-
potential effects complementing the widely explored rela-
tivistic or many-body correlation phenomena [61].
The focus of our work is on the classification and

description of the nonrelativistic band structures of materi-
als hosting the third phase and the identification of
new material candidates, which opens a range of potential
science and technology implications of this magnetic
phase. In the Supplemental Material Sec. I [30], we briefly
comment on the links to relativistic effects and noncollinear
magnetism [3].

II. DERIVATION OF SPIN-GROUP
CATEGORIZATION OF NONRELATIVISTIC

COLLINEAR MAGNETISM

We start with the derivation of the three distinct spin-
group types describing, respectively, the three nonrelativ-
istic phases of collinear magnets. In general, spin groups
can be expressed as a direct product rs ×Rs of so-called
spin-only group rs containing transformations of the spin
space alone, and so-called nontrivial spin groups Rs
containing the elements ½RikRj�, but no elements of the
spin-only group [24,25]. For the collinear spin arrange-
ments on crystals, the spin-only group is given by [24,25]
rs ¼ C∞ þ C̄2C∞. Here, C∞ is a group representing all
rotations of the spin space around the common axis
of spins, and C̄2 is a 180° rotation around an axis
perpendicular to the spins, combined with the spin-space
inversion. We recall that the spin-space inversion in the spin
groups enters via the time reversal [24,25,40]. We also
again emphasize here that the relativistic magnetic space
groups encompass collinear, as well as general noncollinear
magnets [7,10]. This implies that, e.g., a conjecture based
on the spin-space C̄2 symmetry that nonrelativistic spin
splitting is generally excluded in materials belonging to the
type IV magnetic space groups [7,10] is invalid.
The form of the nonrelativistic spin-only group rs for

collinear magnets has two basic general implications
independent of the specific nontrivial spin group Rs.
The first implication follows from C∞. This symmetry
makes spin a good quantum number with a common
quantization axis independent of the crystal momentum
across the nonrelativistic band structure. The electronic
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structure is thus strictly separated into nonmixing spin-up
and spin-down channels.
The second implication follows from the C̄2 symmetry in

the spin-only group of collinear magnets. Since the spin-
space inversion enters via the time reversal [24,25,40], it is
accompanied by a time reversal in the real space (T ).
Although T acts as an identity on the real-space coordi-
nates of the atoms, it flips the sign of the crystal momen-
tum. This is important for the band-structure spin
symmetries. In particular, we now use the symmetry
½C̄2kT �, which follows directly from the above spin-only
group symmetry of the collinear magnets and from the
simultaneous action of the time reversal on the spin and real
(momentum) space. When applying the transformation
½C̄2kT � on spin (s) and crystal-momentum (k)-dependent
bands ϵðs;kÞ, we obtain ½C̄2kT �ϵðs;kÞ ¼ ϵðs;−kÞ. We see
that the ½C̄2kT � transformation acts the sameway on ϵðs;kÞ
as the real-space inversion. Next, since ½C̄2kT � is a
symmetry of nonrelativistic collinear spin arrangements
on crystals, ½C̄2kT �ϵðs;kÞ ¼ ϵðs;kÞ, and hence, ϵðs;kÞ ¼
ϵðs;−kÞ. We derive that the nonrelativistic bands of all
collinear magnets are invariant under real-space (crystal-
momentum) inversion not only in inversion-symmetric
collinear magnets [1,7,8], but even if the crystals lack
the real-space inversion symmetry.
We now move on to the nontrivial spin groups. While the

above spin-only group is common to all nonrelativistic
collinear magnets, we derive three different types of the
nontrivial spin groups corresponding, respectively, to the
three distinct phases. The nontrivial spin groups are
obtained by combining groups of spin-space transforma-
tions with groups of real-space crystallographic transfor-
mations [24,25]. Regarding the groups of spin-space
transformations, there can be some freedom in their choice
[24,25]. For the collinear spin arrangements, one of the
two spin-space transformation groups is S1 ¼ fEg; i.e., it
contains just the spin-space identity [24]. We choose the
second group in the form of S2 ¼ fE;C2g which is
favorable for our derivation of the categorization into the
three phases of nonrelativistic collinear magnets. The group
contains the spin-space identity and the 180° rotation of
the spin space around an axis perpendicular to the spins.
(We note that because of the above spin-only group
symmetry element C̄2, and because the product of spin-
space transformations C̄2C2 is equal to the spin-space
inversion, an alternative choice [24] of S2 contains the
spin-space inversion instead of C2.)
After introducing the spin-only group and the spin-space

transformations in the nontrivial spin groups, we move on to
the real-space crystallographic transformations in the non-
trivial spin groups. The procedure of constructing the non-
trivial spin groups applies equally when considering
crystallographic space groups (i.e., those containing also
translations) or crystallographic point groups (i.e., those
where the translations are replaced by identity). To categorize

the nonrelativistic collinear magnets based on their magnetic
crystal structure, we need to consider the crystallographic
space groups. However, to make our manuscript concise, we
do not explicitly list all nontrivial spin groups constructed
from the crystallographic space groups. This is because the
physical consequence of the third phase that we focus on in
this work is the spin-momentum locking in the nonrelativistic
band structure. In other words, we focus on determining
which momenta in the Brillouin zone have spin-degenerate
eigenstates protected by the spin-group symmetries, and for
which momenta the spin-group symmetries allow for lifting
the spin degeneracy. For all collinear spin arrangements on
crystal independent of the crystal’s real-space translation
symmetries, and independent of whether the crystal does or
does not have the real-space inversion symmetry, the spin-
momentum locking is described by the direct product of the
spin-only group and nontrivial spin groups constructed from
the crystallographic point groups containing the real-space
inversion symmetry (crystallographic Laue groups).
The general independence of the spin-momentum locking

of translations is a consequence of the strict separation of
the nonrelativistic band structure into nonmixing spin-up
and spin-down channels protected by the spin-only group
symmetries of the collinear magnets. The separate spin-up
and spin-down channels then have equal energies at a given
momentum k in the Brillouin zone when the nontrivial
spin group contains a symmetry element ½C2kR�, where R
transforms the momentum k on itself or a momentum
separated from k by a reciprocal lattice vector (R belongs
to the little group of k). Since k is invariant under trans-
lations, the spin degeneracy at a given momentum k is
protected by ½C2kR� irrespective of whether R does or does
not contain a translation. Note that additional band degen-
eracies can exist within one spin channel, i.e., degeneracies
in band indices other than spin that are protected by
crystallographic space-group symmetries. These features,
whose systematic study is beyond the scope of our present
manuscript, can be readily included in the symmetry analysis
based on the nonrelativistic spin-group formalism and can be
important when, e.g., exploring exotic (topological) quasi-
particles near such degeneracy points [42–45].
The general invariance of bands of nonrelativistic col-

linear magnets under real-space (crystal-momentum) inver-
sion is derived above from the spin-only group symmetry
½C̄2kT �. Later in the text, we give specific examples of the
inversion-symmetric spin-momentum locking in the band
structures of the third phase in crystals with or without the
inversion symmetry.
By using the isomorphism theorem [24], we construct

all the nontrivial spin (Laue) groups, whose elements on
the left of the double vertical bar form a group of the spin-
space transformations and on the right of the double vertical
bar a (Laue) group of the real-space crystallographic
transformations. It implies the procedure of combining
all isomorphic coset decompositions of the two groups,
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i.e., decompositions with the same number of cosets for the
two groups [24]. (A coset decomposition of a group X is
given byX ¼ xþ X1xþ X2xþ � � �, where x is a subgroup
of X, and Xi are elements of X [24].) The details of our
derivation are in the Supplemental Material Sec. II [30].
Here we summarize the result in which all the nontrivial
spin Laue groups describing ϵðs;kÞ of collinear magnets
are arranged into the following three distinct types using the
isomorphic coset decompositions.
The first type of nontrivial spin Laue group is given

by RI
s ¼ ½EkG�, where G are the crystallographic Laue

groups. Because there are 11 different crystallographic
Laue groups, there are also 11 different RI

s groups. As
highlighted in Fig. 1, the RI

s groups do not imply spin
degeneracy of ϵðs;kÞ at any k-point. They describe
nonrelativistic spin-split band structures with broken
time-reversal symmetry and nonzero magnetization corre-
sponding to conventional collinear ferromagnets (ferrimag-
nets) whose magnetic crystal structure contains one spin
lattice (or the opposite-spin sublattices are not connected by
any spin-space-group transformation).

The second type of nontrivial spin Laue group is given
by RII

s ¼ ½EkG� þ ½C2kG�. Here, the ½C2kE� symmetry
(recall that G is a group containing the real-space identity
E element) implies spin degeneracy of ϵðs;kÞ for all
k-vectors in the Brillouin zone. The 11 differentRII

s groups
describe nonrelativistic spin-degenerate time-reversal
invariant band structures with zero magnetization of con-
ventional collinear antiferromagnets (see Fig. 1). The
corresponding antiferromagnetic spin arrangements on
crystals have a symmetry ½C2kt� in their spin-space group,
which interchanges atoms and rotates the spin by 180°
between opposite-spin sublattices. Here, t on the right side
of the double vertical bar is a real-space translation. Examples
[62,63] are antiferromagnets FeRh or MnBi2Te4. The RII

s
groups also describe nonrelativistic spin-degenerate collinear
antiferromagnetism in crystals with the opposite-spin-
sublattice transformation symmetry ½C2kĒ�, where Ē on
the right side of the double vertical bar is the real-space
inversion. This is because of the spin-only group symmetry
½C̄2kT � that implies the inversion symmetry of the bands,
i.e., that the bands in all nonrelativistic collinear magnets are

d/g/i-wave symmetry

compensation symmetry

time-reversal-symmetry breaking

nontrivial spin group
(number of groups)

En
er

gy

En
er

gy

Type-I Type-II Type-III

reciprocal space 
band structure

and energy isosurfaces

direct space 
magnetisation density

opposite spin-sublattice 
transformation

Phase

En
er

gy

FIG. 1. Illustration (in columns) of the three nonrelativistic collinearmagnetic phases. Topbox: Illustrative collinear spin arrangements and
magnetization densities on crystals. Opposite spin directions are depicted by blue and red color. Spin arrows are placed outside the real-space
cartoons to highlight that the overall spin axis orientation is not related to the real space coordinates for the nonrelativistic spin-group
symmetries. 1st magnetic phase (conventional ferromagnetism) crystal corresponds to Fe, 2nd magnetic phase (conventional antiferromag-
netism) to MnPt, and the 3rd unconventional magnetic phase (altermagnetism) to RuO2. Magenta arrow and magenta label highlight
opposite-spin-sublattice transformation symmetries characteristic of the 2nd magnetic phase (real-space translation or inversion) and the
3rd magnetic phase (real-space rotation). Bottom box: Cartoons of band-structures and corresponding energy iso-surfaces show
ferromagnetically spin-split bands (opposite spin states depicted by blue and red color), a spin-degenerate antiferromagnetic band, and
bands in the 3rd magnetic phasewith alternating sign of the spin splitting. The opposite-spinsublattice transformation of the spin Laue group
whichmaps the same-energy eigenstateswith opposite spins on the samek-vector in the 2ndmagnetic phase and ondifferentk-vectors in the
3rd magnetic phase is again highlighted. The remaining rows give the spin Laue group structure for the given phase with the number of
different groups in brackets, and presence/absence of time-reversal-symmetry breaking, compensation and d-,g-, and i-wave symmetries.
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invariant under the transformation ½EkĒ�. Symmetries ½C2kĒ�
and ½EkĒ� give the ½C2kE� symmetry that implies the spin
degeneracy across the Brillouin zone (for a more detailed
derivation, see Supplemental Material Sec. II [30]). Here, the
examples [50,64] are antiferromagnets CuMnAs or Mn2Au.
The remaining third distinct type of nontrivial spin Laue

group describes the third magnetic phase and is given by

RIII
s ¼ ½EkH� þ ½C2kA�½EkH� ¼ ½EkH� þ ½C2kG −H�:

ð1Þ

Here,H is a halving subgroup of the crystallographic Laue
group G and the coset G −H ¼ AH is generated by
transformations A that can be only real-space proper or
improper rotations and cannot be real-space inversion.
(Note that this implies that the real-space inversion that
is always present in G is contained in H.) We see from
Eq. (1) that for RIII

s , G is expressed as a sublattice coset
decomposition, where the halving subgroup H contains
only the real-space transformations which interchange
atoms between same-spin sublattices, and the coset
G −H contains only the real-space transformations which
interchange atoms between opposite-spin sublattices.
The third magnetic phase corresponds to the magnetic
crystal structures in which opposite-spin sublattices are
connected by rotation (proper or improper and symmorphic
or nonsymmorphic) and are not connected by translation or
inversion.
The third-phase magnets have nonrelativistic spin-split

band structures with broken time-reversal symmetry and
zero magnetization [1] (see Fig. 1). The broken time-
reversal symmetry is seen when multiplying ½C2kG −H�
by the spin-only group symmetry ½C̄2kT �, which gives
½ĒkT ðG −HÞ� [or equivalently, ½T kT ðG −HÞ�]; i.e., spin
groups of the third type do not contain the time-reversal
symmetry element. (Recall that the coset G −H does not
contain the identity element.) Lifted spin degeneracies in
theRIII

s groups are allowed for crystal momenta whose little
group does not contain AH elements. They satisfy AHk ¼
k0 ≠ k, implying that ϵðs;kÞ¼ ½C2kAH�ϵðs;kÞ¼ ϵð−s;k0Þ
(see Fig. 1). It guarantees that the spin-up and spin-down
energy isosurfaces are split, but have the same number
of states. These nonrelativistic band-structure signatures of
the RIII

s phase are unparalleled in the RI
s or RII

s phases.
Simultaneously, there are ten differentRIII

s groups which is
comparable to the number of RI

s or RII
s groups, suggesting

that the third phase is abundant. The ten nontrivial spin
Laue groups of the third phase are listed in Fig. 2, where we
adopt Litvin’s notation of the spin groups [25], with the
upper index 1 refers to the spin-space identity and the upper
index 2 to the spin-space rotation C2. Note that they are
constructed from only eight different crystallographic Laue
groups. However, the third-phase spin Laue groups cannot
be constructed for the three remaining crystallographic

Laue groups, namely, from G ¼ 1̄, 3; or m3. In the
Supplemental Material Sec. II Table S1 [30], we list all
37 nontrivial spin point groups of the third magnetic
phase, together with their corresponding ten nontrivial
spin Laue groups.
Before moving to the analysis of the spin-momentum

locking protected by the symmetries of the third-phase spin
groups, we emphasize the additional differences from the
magnetic groups. The latter are constructed by combining
crystallographic groups (with the same transformations
acting simultaneously on coordinates of atoms and com-
ponents of magnetic moment vectors) with one group
containing the identity element alone, and a second group
containing the identity and the time reversal. Comparing
this construction to the spin-group formalism with S1 also
containing only the identity element and S2 with again two
elements, implies that for describing all magnetic struc-
tures, the relativistic symmetry formalism has the same
number of different magnetic groups as is the number of
different nonrelativistic spin groups describing exclusively
collinear spin arrangements. For the Laue (point) groups,
the total number is 32 (122). Our nonrelativistic spin groups
then split into 11 (32) nontrivial spin Laue (point) groups of
the ferromagnetic phase, 11 (53) of the antiferromagnetic
phase, and ten (37) of the third magnetic phase (see
Supplemental Material Sec. II Table S1 [30]).
We also note that because of the crystallographic

operations applied in the coupled real and spin space,
there is no counterpart in the magnetic groups of the
sublattice coset decomposition form of theRIII

s spin groups
(see Supplemental Material Sec. II [30]). As we further
highlight below, the decomposition into same-spin- and
opposite-spin-sublattice transformations in RIII

s plays a
central role in understanding the third magnetic phase.

III. SPIN-MOMENTUM LOCKING PROTECTED
BY SPIN SYMMETRIES

We now discuss the basic characteristics of the spin-
momentum locking in the third magnetic phase as derived
from the spin Laue group symmetries, i.e., from the
symmetries of the direct product of the spin-only group
and the nontrivial spin Laue groups. We derive above that
the nonrelativistic collinear magnetic order described by
the spin-only group symmetries implies that spin is a good
quantum number with a common k-independent quantiza-
tion axis, and that the bands are space-inversion symmetric
(symmetric with respect to the inversion of k). We also
derive that the bands in the third phase described by the
nontrivial spin Laue groups RIII

s break the time-reversal
symmetry. The space-inversion symmetry implies that the
bands are even in momentum around the Γ-point.
Moreover, the Γ-point is invariant under all real-space
transformations. The ½C2kA� symmetry present in the RIII

s
groups thus guarantees spin degeneracy of the Γ-point.
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On the other hand, lifted spin degeneracies in the rest of the
Brillouin zone, including other time-reversal invariant
momenta, are not generally excluded in the third phase.
These basic spin-momentum locking characteristics

of the third phase are in striking contrast to the spin-
momentum locking in crystals with Kramers spin degen-
eracy lifted by the relativistic spin-orbit coupling. The
relativistic spin-momentum locking has the form of a
continuously varying spin texture in the momentum space,
it is not symmetric with respect to the inversion of k
because of the required broken real-space inversion sym-
metry of the crystal, the bands are time-reversal invariant,
and all time-reversal invariant momenta are spin de-
generate. These distinct characteristics of the relativistic

spin-momentum locking apply to nonmagnetic systems
[65], as well as to conventional antiferromagnets with
broken real-space inversion symmetry and spin-orbit-
coupling effects included. An example is the relativistic
time-reversal invariant band structurewith Rashba spin split-
ting in a noncentrosymmetric antiferromagnet BiCoO3 with
the opposite-spin sublattices connected by translation [52].
Other prominent spin-momentum locking features in the

third phase are protected by the specific ½C2kA�½EkH�
symmetries present in the given RIII

s group. For example, a
symmetry ½C2kMc�, where c is the axis perpendicular to the
a-b mirror plane, defines a spin-degenerate ka − kb nodal
plane at kc ¼ 0, or other kc separated from Mckc ¼ −kc
by a reciprocal lattice vector. This is because ½C2kMc�

FIG. 2. Classification of spin-momentum locking in the third magnetic phase protected by spin-group symmetries, and material
candidates. The columns describe the characteristic planar (P) or bulk (B) spin-momentum locking on model Hamiltonian bands with
the characteristic spin-group integer and the even-parity wave form of altermagnetism, the crystallographic Laue group G, the halving
subgroupH of symmetry elements which interchange atoms between same-spin sublattices, a generator A of symmetry elements which
interchange atoms between opposite-spin sublattices, the nontrivial spin Laue group RIII

s (in brackets we list the number of symmetry
elements), and material candidates of the third magnetic phase. The model Hamiltonian bands on which we illustrate the spin-
momentum locking character are described in Supplemental Material Sec. III [30]. References describing the materials are in the main
text and Supplemental Material Secs. V–VI [30].
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transforms a wave vector from this plane on itself, or on an
equivalent crystal momentum separated by the reciprocal
lattice vector, while spin is reversed. Similarly, a ½C2kCn;c�
symmetry, where Cn;c is an n-fold rotation symmetry
around the c axis, imposes a spin-degenerate nodal line
parallel to the kc axis for wave vectors with ka ¼ kb ¼ 0, or
other kaðbÞ separated from Cn;ckaðbÞ by a reciprocal lattice
vector. We note that the high-symmetry planes or lines are
typically of main focus when assessing the electronic
structures. This may explain why, apart from the omission
by the conventional magnetic groups, the third phase
remained unnoticed during the decades of DFT and
experimental studies of band structures.
Each of the ten RIII

s spin Laue groups classifying the
spin-momentum locked band structures can be assigned a
characteristic even integer, which we define as follows.
When making a closed loop in the momentum space around
the Γ-point in a plane orthogonal to a spin-degenerate
nodal surface crossing the Γ-point, the spin rotates by 360°
following two discrete reversals. Each spin-degenerate
nodal surface crossing the Γ-point that is present in the
crystal momentum space generates such a spin rotation. We
define the characteristic spin-group integer as a number of
these spin-degenerate nodal surfaces crossing the Γ-point.
The spin-group integer is given in Fig. 2, and it is an even
number ranging from 2 to 6. As an illustration, we show
in the Supplemental Material Sec. III and Fig. S2 [30]
spin-degenerate nodal planes crossing the Γ-point corre-
sponding to mirror-symmetry planes combined with spin-
space rotation for representative RIII

s groups from Fig. 2.
In Fig. 2, we show the characteristic spin-group integer

next to a spin-momentum locking depicted on top of model
Hamiltonian bands. The six model Hamiltonians, with
anisotropic d-wave, g-wave, and i-wave harmonic sym-
metry are listed in Supplemental Material Sec. III [30] and
are derived to have the same spin-degenerate nodal planes
crossing the Γ-point as the nodal planes corresponding to
the representative RIII

s groups in Supplemental Material
Fig. S2 [30]. We obtain either planar or bulk nonrelativistic
spin-momentum locking, with the characteristic spin-group
integer from 2 to 6. The planar spin-momentum locking is
relevant for (quasi)two-dimensional and three-dimensional
crystals, while the bulk spin-momentum locking only for
three-dimensional crystals. We note that the earlier reported
materials [1,2,4–11,16–22,66–68] FeF2, MnO2, RuO2,
κ-Cl, MnF2, Mn5Si3, LaMnO3, FeSb2, and CaCrO3

referred to as unconventional spin-split antiferromagnets
in these studies, all correspond to the third magnetic phase
with the characteristic planar spin-momentum locking and
spin-group integer 2.
The presence of nonrelativistic anisotropic spin-

dependent conductivities in the third-phase magnets and
the corresponding giant-magnetoresistance and spin-torque
phenomena [16,17] is symmetrywise more restrictive than
the presence of the phase itself [17]. Only the RIII

s spin

Laue groups with the characteristic spin-group integer 2
(RIII

s ¼ 2m2m1m, 24=1m, 24=1m2m1m, and 22=2m) have a
sufficiently low symmetry that allows for these prominent
time-reversal symmetry-breaking spintronic effects in the
third magnetic phase.

IV. SPIN SPLITTING BY THE ELECTRIC
CRYSTAL POTENTIAL

In Supplemental Material Sec. IV [30], we summarize the
properties of the third magnetic phase derived from the spin
Laue group symmetries. Among those, we highlight here the
symmetry principles which guide us to the discovery of an
extraordinary spin-splitting mechanism, which we illustrate
on KRu4O8 and RuO2. The latter example, in which the
amplitude of the extraordinary spin splitting is on the eV
scale, is the workhorse material in the emerging research
field of time-reversal symmetry-breaking spintronic phe-
nomena in the third magnetic phase [1,3,16–18,20–22].
The spin-symmetry guiding principles for the extraor-

dinary spin splitting by the electric crystal potential are as
follows: (i) The magnetic crystals should be anisotropic to
allow for the symmetries defining the third magnetic phase
½C2kG −H�, which separate opposite-spin equal-energy
states in the momentum space. (ii) The symmetries inter-
changing atoms within the same-spin sublattice ½EkH�
should be low enough to generate a sufficient anisotropy in
the momentum space of the bands dominated by the given
sublattice. (iii) The symmetries of G are high enough to
allow for the orbital degeneracy at the Γ-point; this is
fulfilled in all groups G allowing for the third magnetic
phase, except for G ¼ mmm or 2=m. (iv) The chemistry
should allow for these degenerate orbitals to be present in
the material and in the desired part of the energy spectrum
(e.g., near the Fermi level).
We first illustrate how these principles for identifying

outlier spin splittings materialize in a pristine way in
ruthenate KRu4O8 when hosting the third magnetic phase.
The signature of the extraordinary microscopic spin-
splitting mechanism is that its size and momentum depend-
ence are determined by the electric crystal potential of
the nonmagnetic phase. The material fulfills all the above
spin-symmetry guiding principles, including its corre-
sponding G ¼ 4=m. (In contrast, LaMnO3, κ-Cl, FeSb2,
or CaCrO3 have G ¼ mmm [2,6,10,11,68] that excludes
this electric-crystal-potential mechanism of the spin
splitting.)
The real-space crystal structure of KRu4O8, as reported

in earlier studies [69,70], is schematically illustrated in
Fig. 3(a). The symmetry of the lattice is body-centered
tetragonal (crystallographic space group I4=m). Red and
blue color in Fig. 3(a) represent the collinear antiparallel
spin arrangement on the crystal. In addition, the A and B
symbols label the real-space sublattices corresponding to
the opposite spins in the third magnetic phase. The A and B
real-space sublattices are strongly anisotropic and related
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by a mutual planar rotation by 90° (C4z). Correspondingly,
the nontrivial spin Laue group describing the spin-
momentum locking in the third magnetic phase is 24=1m.
According to Eq. (1), it can be decomposed as

24=1m ¼ ½Ek2=m� þ ½C2kC4z�½Ek2=m�: ð2Þ

Figure 3(b) shows the DFT calculation of the spin-
momentum locking protected by the spin-group sym-
metries, on top of two selected KRu4O8 Fermi surface
sheets. (The band structure is obtained using the DFT
full-potential linearized augmented-plane-wave code ELK

within the local-spin-density generalized-gradient approxi-
mation [71].) In particular, the ½C2kC4z� symmetry leads to
three spin-degenerate nodal lines parallel to the kz axis,
½0; 0; kz�, ½2; 0; kz�, and ½0; 2; kz� marked by gray points in
Fig. 3(b) (here the wave vectors are in units of π divided by
the lattice constant). The latter two correspond, for kz ¼ 0,
to time-reversal invariant momenta S1 and S2. On the other
hand, the spin degeneracy is strongly lifted at time-reversal
invariant momentaX and Y corresponding to the directions
of the real-space anisotropy axes of the two sublattices.
Consistently, the little crystallographic Laue group at theX
and Y wave vectors is 2=m, which coincides with the

halving subgroup of same-spin-sublattice transformations.
The spin-momentum locking is planar, reflecting the real-
space planar mutual rotations of the crystal anisotropies of
the opposite-spin sublattices, and the characteristic spin-
group integer is 2.
We now move on to the demonstration of the spin

splitting whose size and momentum dependence are
determined by the electric crystal potential and compare
this extraordinary microscopic mechanism to the more
conventional magnetic spin-splitting mechanism. The
analysis is presented in Figs. 3(c)–3(g). Energy bands in
the nonmagnetic and third magnetic phase are shown in
Figs. 3(c) and 3(d). The high-energy band around 0.9 eV
in the depicted portion of the Brillouin zone is twofold
spin degenerate in the nonmagnetic phase [upper part of
Fig. 3(c)]. The magnetic component of the internal electro-
magnetic crystal potential in the magnetic phase generates
an anisotropic k-dependent spin splitting, as shown in the
upper part of Fig. 3(d) where the red and blue color
correspond to opposite spin states. The sign of the spin
splitting alternates, following the symmetries of the spin
group. This type of spin splitting belongs to a family
generally referred to as internal magnetic-interaction mech-
anisms [4,7,8,17].

FIG. 3. Spin splitting by the electric crystal potential in KRu4O8 in the third magnetic phase. (a) Schematic spin arrangement on the
KRu4O8 crystal with opposite-spin directions depicted by red and blue color. Magenta arrow and its label highlights the opposite-spin-
sublattice transformation containing a real-space fourfold rotation. (b) Calculated spin-momentum locking with the characteristic spin-
group integer 2 on top of two DFT Fermi surface sheets. (c),(d) DFT band structure of the nonmagnetic phase and the third magnetic
phase, respectively. Gray shading highlights the k-dependent splitting by the anisotropic electric crystal potential. (e),(f) Projection of
bands on the sublattices A and B in the nonmagnetic phase (black) and third magnetic phase (red and blue) for the upper bands and lower
bands, respectively. Color shading in (f) highlights the nearly k-independent magnetic splitting of the lower bands, and its opposite sign
for the sublattices A and B bands. (g) Real-space DFT spin density around the Ru atom in sublattices A and B.
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The other bands of KRu4O8 for energies near the Fermi
level also show a spin splitting within the DFT band-
structure theory. However, here the microscopic origin is
fundamentally distinct from the internal magnetic-interac-
tion mechanisms. In the nonmagnetic phase, we observe in
the lower part of Fig. 3(c) a couple of twofold spin-
degenerate bands whose mutual splitting (highlighted by
gray shading) by the electric crystal potential is k depen-
dent, merging at the fourfold degenerate Γ, S1, and S2

points. Remarkably, the k-dependent spin splitting in the
magnetic phase in the lower part of Fig. 3(d) (highlighted
again by gray shading) copies the size and k dependence of
the band splitting by the electric crystal potential of the
nonmagnetic phase. Its microscopic explanation is pro-
vided in Figs. 3(f) and 3(g).
We start the discussion of Fig. 3(f) from the projections

of the bands on the sublattices A and B in the nonmagnetic
phase (black lines). The projections are dominated by
Ru dxz and dyz orbitals. This is in agreement with earlier
report [70], which showed the presence of Ru t2g orbitals
near the Fermi level. At the Γ-point, the A and B projected
bands are degenerate, which is consistent with the octahe-
dral environment with the tetragonal symmetry [72].
Including spin, the Γ-point is then fourfold degenerate in
the nonmagnetic phase.
The band whose dominant weight is on sublattice A is

strongly anisotropic with respect to kwhen moving toward
the X and Y points [left panel of Fig. 3(f)]. The same
applies to the sublattice B band; however, the sense of the
anisotropy reverses [right panel of Fig. 3(f)]. The band
anisotropies reflect the strong crystalline anisotropy, con-
spiring with the favorable symmetry of the involved
orbitals. By adding up the A and B projections, we obtain
the bands shown in Fig. 3(c). They progressively split by
the electric crystal potential when the k-vector moves
from the Γ-point toward, e.g., the X point, with the lower
band dominated by one sublattice and the upper band by
the other sublattice. Along the Γ − Y line, the sublattice
indices of the lower and upper bands switch places.
The bands in the magnetic phase projected again

on sublattices A and B are also plotted in Fig. 3(f). As
in Fig. 3(d), the red and blue colors correspond to opposite
spins. We see that for bands with dominant weight on
sublattice A, spin states shown in red move up in energy,
while the opposite spin states shown in blue move down
[left panel of Fig. 3(f)]. The magnetic component of the
internal crystal potential in the magnetic phase generates in
this case a splitting (highlighted by light-blue shading),
which is nearly k independent. This scenario is funda-
mentally distinct from the strongly k-dependent magnetic
splitting of the high-energy band shown in Fig. 3(e). It is
reminiscent of ferromagnets. However, unlike the common
ferromagnetic case, the nearly k-independent magnetic
splitting reverses sign for the sublattice B bands [right
panel of Fig. 3(f)]. This locality, in which band states near

the Fermi level with one spin have a dominant weight on
one sublattice, is again distinct from the delocalized nature
of spin states in the high-energy bands shown in Fig. 3(e). It
also starkly contrasts with the conventional mechanisms of
the ferromagnetic splitting of band spin states experiencing
the global magnetization or the relativistic spin-orbit
splitting due to the global electric inversion asymmetry.
An additional illustration of the locality is shown in
Fig. 3(g) where we plot the real-space DFT spin density
around the Ru atom in sublattices A and B. Consistent with
the spin-group symmetry and the dominant dxz and dyz
orbitals near the Fermi level, the opposite-spin local
densities in the two sublattices are highly anisotropic with
the mutually rotated real-space anisotropy axes.
Adding up the A and B sublattice projections of

Fig. 3(f) then explains the formation of two pairs of
spin-split bands seen in Fig. 3(d). The mutual magnetic
splitting between the two pairs is nearly k independent,
while the spin splitting within each pair is a k-dependent
copy of the band splitting by the anisotropic electric
crystal potential of the nonmagnetic phase [Fig. 3(c)]. It
also explains that the two pairs have opposite sign of the
spin splitting and that, within each pair, the spin-splitting
sign is opposite when moving from the Γ-point toward the
X or Y points. We see from Figs. 3(d) and 3(f) that even if
the nearly k-independent magnetic splitting were small,
the electric crystal potential of the nonmagnetic phase
would still determine the splitting between the two nearest
bands with opposite spin in the magnetic phase at
k-vectors sufficiently close to the Γ-point. This is a
consequence of the nearly k-independent magnetic band
splitting and of the spin degeneracy of the Γ-point in the
third magnetic phase.
In the studied KRu4O8, the spin splitting originating

from this extraordinary electric-crystal-potential mecha-
nism reaches a 300-meV scale. In Supplemental Material
Sec. V and Fig. S3 [30], we show that in RuO2, a spin
splitting reaching a 1-eV scale [1,4,17] is also due to the
electric-crystal-potential mechanism. These spin-splitting
magnitudes are comparable to spin splittings in ferromag-
nets but, unlike ferromagnets, are accompanied by a zero
net magnetization. They also illustrate that spin splittings
in the third magnetic phase can exceed by an order of
magnitude the record relativistic spin-orbit splittings in
bulk crystals with heavy elements [73]. Moreover, unlike
the spin-orbit split bands, the third magnetic phase pre-
serves a common k-independent spin quantization axis.
Finally, we emphasize that relativistic DFT calculations

in RuO2 and KRu4O8 presented in Supplemental Material
Sec. V and Figs. S3 and S4 [30] show the expected weak
effect of the spin-orbit coupling on the bands. This high-
lights that the apparent prominent features of the relativistic
bands, including the spin-momentum locking character-
istics and the electric-crystal-potential mechanism of the
spin splitting, still reflect the nonrelativistic spin-group
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symmetries. In contrast, these prominent symmetries are
omitted by the relativistic magnetic groups of RuO2 and
KRu4O8. In general, as also illustrated in Supplemental
Material Secs. III and IVand Figs. S3 and S4 [30], only the
spin-group formalism facilitates the sublattice coset decom-
position into transformations which interchange atoms
between same-spin and opposite-spin sublattices, which
plays the central role in understanding the third magnetic
phase. Apart from the spin-symmetry guiding principles
and DFT calculations of the spin splitting by the electric
crystal potential, we also provide a description of this
extraordinary mechanism by a minimal lattice model in
Supplemental Material Sec. V Fig. S5 [30].

V. CANDIDATE MATERIALS

Figure 2 lists the selected candidate materials for the
third magnetic phase. In Fig. 4, we highlight CrSb, a metal
with the critical temperature of 705 K [74]. As shown in
Fig. 4(a), it crystallizes in the hexagonal NiAs-type
structure (crystal space group P63=mmc) [74,75]. The
collinear antiparallel spin arrangement corresponds to
the nontrivial spin Laue group 26=2m2m1m (½Ek3̄m� þ
½C2kC6z�½Ek3̄m�). It contains the ½C2kMz� symmetry, which
makes the spin-momentum locking bulklike. Additional
mirror planes orthogonal to the three hexagonal crystal
axes combined with the spin rotation imply that the
characteristic spin-group integer is 4 (see Supplemental

Material Fig. S2 [30]). This is confirmed by the DFT
calculations in Fig. 4(b).
CrSb has a more complex band structure than KRu4O8,

as shown in Fig. 4(c). Nevertheless, we can trace a pair of
bands with opposite spin [highlighted by gray shading in
Fig. 4(c)] which are degenerate at the Γ, L1, and L2 points
and split when moving away from these high-symmetry
points. The spin splitting is as high as 1.2 eV. We also note
that CrSb hosts an exotic spin-polarized quasiparticle
which is fourfold degenerate at the Γ-point and spin split
away from the Γ-point.
A semiconducting MnTe, which is isostructural to CrSb,

also hosts an extraordinarily large spin splitting in the
valence band of 1.1 eV. In Supplemental Material Sec. V
Fig. S6 [30], we give a summary of the spin splittings vs
critical temperature in selected materials hosting the third
magnetic phase. In Supplemental Material Sec. VI and
Figs. S7 and S8 [30], we discuss additional material
candidates among insulators, semiconductors, and metals,
and give an example illustrating the inversion symmetry of
the nonrelativistic bands of the third magnetic phase even
when the crystal is inversion asymmetric (VNb3S6).
Finally, we discuss the parent cuprate La2CuO4 of a

high-temperature superconductor [27,76]. The band struc-
ture for the collinear antiparallel spin arrangement on this
crystal falls into theRIII

s nontrivial spin Laue group 2m2m1m
(½Ek2=m� þ ½C2kC2y�½Ek2=m�). The symmetry element
½C2kC2y� generates a planar spin-momentum locking

FIG. 4. Metallic high critical temperature CrSb with the third magnetic phase. (a) Schematic crystal structure with DFT spin densities.
Cr sublattices and the respective magnetization densities with opposite orientation of the magnetic moment are depicted by red and blue
color. Magenta arrow and its label highlights the opposite-spin-sublattice transformation containing a real-space mirror or sixfold
rotation. (b) Calculated bulklike spin-momentum locking with the characteristic spin-group integer 4 on top of two selected DFT Fermi
surface sheets. (c) DFT band structure in the third magnetic phase. Wave-vector dependence of the spin splitting between the bands
highlighted by the gray shading is plotted in the lower panel.
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with the characteristic spin-group integer 2. Remarkably,
according to our symmetry analysis based on the spin-
group theory, the energy bands of La2CuO4 are spin split
and break time-reversal symmetry. This is confirmed by the
DFT calculations in Supplemental Material Fig. S9 [30]
and is in contrast with the conventional perception of spin-
degenerate bands in La2CuO4 [76]. The omission of the
spin-splitting physics in earlier electronic-structure studies
of cuprates could be explained by the focus on high-
symmetry lines or planes, such as the kz ¼ 0 plane [61],
where the states are spin degenerate (see Supplemental
Material Fig. S9 [30]).

VI. BROAD RELEVANCE IN
CONDENSED-MATTER PHYSICS

Our spin-group delimitation and description of the third
magnetic phase and the discovery of the extraordinary spin-
splitting mechanism by the electric crystal potential in the
Ru-oxide crystals provides a unifying theory picture of
recent intriguing theoretical and experimental observations
of broken time-reversal symmetry transport anomalies and
spintronic effects in the magnetically compensated RuO2.
These include the large crystal (anomalous) Hall effect,
charge-spin conversion and spin-torque phenomena, and
giant and tunneling magnetoresistance [1,3,16–22]. Our
identification of the third magnetic phase in chalcogenide
CoNb3S6, perovskite CaMnO3, or cuprate La2CuO4 also
sheds new light on puzzling time-reversal breaking mag-
netotransport anomalies reported in earlier studies of these
materials [77–79].
The diversity of the material types illustrates the relevance

of the third magnetic phase for a range of condensed-matter
physics fields prone to generate new discoveries. Spintronics
based on this phase [1,3,6,9,11,12,16–22] would circumvent
the traditional prerequisites of magnetization or relativistic
spin-orbit coupling in conventional ferromagnetic spintronics
[80–83]. Unlike ferromagnets, the third magnetic phase
eliminates stray fields and adds insensitivity to external
magnetic field perturbations, while allowing for the strong
nonrelativistic effects which facilitate the reading and writing
functionalities in commercial spintronics. When comparing
to the relativistic nonmagnetic spin-texture phases, these
textures share with the third magnetic phase the zero net
magnetization. However, large relativistic spin splittings
require rare heavy elements. In addition, the relativistic
phases suffer from spin decoherence even for small-angle
elastic scattering off common isotropic impurities. We
illustrate that this obstacle is diminished in the third magnetic
phase by the collinearity of spins and by the possibility of a
large-k-vector separation in the Brillouin zone of the equal-
energy eigenstates with the opposite spin.
Our results on the ruthenate KRu4O8 illustrate the

distinct features of nonrelativistic valleytronics in the third
magnetic phase, in comparison to valleytronics in non-
magnetic 2D materials [84]. Here the specific merit of the

third magnetic phase are spin-split valleys at time-reversal
invariant momenta. Both the spintronics and valleytronics
fields can take advantage of the spin-conserving nature of
the third magnetic phase, stemming from its nonrelativistic
origin in the nonfrustrated collinear magnetic crystals.
Unexplored connections might also exist between the

third magnetic phase and topological insulators and semi-
metals. In this context, we point out that, on the one hand,
symmetry prohibits a realization of the third magnetic
phase in one-dimensional chains; collinear antiferromag-
netic spin arrangements on one-dimensional chains have
the ½C2kĒ� (and possibly also ½C2kt�) symmetry and,
therefore, have spin-degenerate bands. On the other hand,
we identify candidates of the third magnetic phase among
quasi-one-dimensional, quasi-two-dimensional, and three-
dimensional insulators and metals. This opens the pos-
sibility of searching for unconventional spin-polarized
fermion quasiparticles (cf. CrSb), topological insulators,
and topological semimetals, including Chern insulators
with the quantized Hall effect in high-temperature systems
with vanishing internal or external magnetic dipole.
In the field of electromagnetic multipoles, the zero

magnetic dipole of the third magnetic phase opens a
new route for realizing magnetic toroidal phases [8,85].
Related to this is the field of Fermi-liquid instabilities [86],
where we show that the principally uncorrelated third
magnetic phase represents an unprecedented example
of an anisotropic (d-wave, g-wave, or i-wave) instability.
Certain anisotropic instabilities were expected in the past to
arise in correlated systems [4,86]. Our recognition of the
d-wave spin-momentum locking in the parent cuprate
crystals of high-temperature d-wave superconductors [87]
brings a new element into the research of the coexistence
and interplay of magnetic and superconducting quantum
orders. In addition to bulk systems, intriguing phenomena
can be envisaged also in heterostructures in fields such as
topological superconductivity [88].
An extensive perspective on how the emerging third

magnetic phase can enrich basic condensed-matter physics
concepts and have impact on prominent condensed-matter
research and application areas is given in Ref. [89].

VII. DISCUSSION: UNCONVENTIONAL
MAGNETIC PHASE

A phase of matter is commonly associated with a
uniform state of a physical system and is distinguished
from other phases by, among others, crystal structure,
composition, or type of order (e.g., magnetic). Each phase
in a material system generally exhibits a characteristic set of
physical properties, and symmetry is among the funda-
mental guiding principles for identifying the distinct
phases of matter and for describing their phenomenology
[31,90]. We show in this work that on the basic level of
nonrelativistic physics of nonfrustrated (collinear) magnet-
ism, spin-group symmetries in the crystal-structure real
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space and electronic-structure momentum space allow,
besides the conventional ferromagnetism and antiferromag-
netism, for the third distinct magnetically ordered phase.
As summarized in Supplemental Material Figs. S10 and
S11 [30], the conventional ferromagnetism is characterized
by a type of crystal structure and magnetic order with
nonzero magnetization allowed by the spin-group sym-
metry, while the conventional antiferromagnetism is char-
acterized by a different type of crystal structure and
magnetic order with zero net magnetization protected by
the spin-group symmetry. The key distinction between the
nonrelativistic phenomenologies of the two conventional
magnetic phases is the spin-split time-reversal symmetry-
broken electronic structure and corresponding time-reversal
symmetry-breaking responses in ferromagnets contrasting
with the spin-degenerate time-reversal symmetric elec-
tronic structure and the absence of time-reversal symmetry-
breaking responses in antiferromagnets.
The unconventional magnetic phase classified and

described in this work has a type of crystal structure and
magnetic order that is distinct from the conventional
ferromagnets and antiferromagnets. Its zero net magnetiza-
tion is protected by the spin-group symmetries that,
simultaneously, allow for spin-split time-reversal symmetry-
broken electronic structure and corresponding time-reversal
symmetry-breaking responses. In trying to retain the clas-
sification with only the two traditional basic phases of
magnetically ordered materials, a conflict arises. Placing
emphasis on the phenomenology of the spin-split time-
reversal symmetry-broken electronic structure and responses
would lead to a notion of unconventional ferromagnetism.
In contrast, emphasizing the zero net magnetization would
lead to a notion of unconventional antiferromagnetism.
Our work provides a resolution of the conflict by delimiting
the unconventional magnetic phase of the d-wave (or high
even-parity wave) form as a third distinct symmetry type.
The alternating spin polarizations in both real-space crystal
structure and momentum-space band structure characteristic
of this unconventional magnetic phase suggest a term
altermagnetism.
We note that on the basic level of nonrelativistic spin-

group symmetries, altermagnetism is delimited as an
exclusive separate phase next to the conventional ferro-
magnetism and antiferromagnetism, while ferrimagnets are
a subclass of ferromagnets. Indeed, in general, a distinction
between ferrimagnetic crystals characterized by opposite-
spin sublattices not connected by any symmetry trans-
formation, and crystals commonly referred to as ferromag-
nets can be ambiguous. For example, in crystals referred
to as ferrimagnets, all magnetic atoms can be the same
chemical elements, and the absence of any crystallographic
transformation connecting the opposite-spin sublattices
then originates from different local symmetries of the sites
occupied by magnetic atoms from the opposite-spin sub-
lattices. This can be compared to crystals commonly

regarded as ferromagnets, where the microscopic spin
density changes in magnitude and can also change in sign
as a function of the spatial coordinate within the crystal unit
cell. Whether or not such variations are correlated with
individual atomic species does not change the symmetry of
the system.
Finally, we point out that altermagnetism is a realization

of a long-sought-after counterpart in magnetism of uncon-
ventional superconductivity [91]. Magnetism and super-
conductivity were once regarded as the best understood
fields in many-body solid-state physics. Moreover, they
were connected by a striking analogy: The electron-
electron Cooper pairs forming around the Fermi surface
and driving the conventional s-wave superconductivity
have a counterpart in the majority spin electron—minority
spin-hole pairs distributed isotropically around the Fermi
surface in the conventional model of (s-wave) ferromag-
netism [91]. The discovery of the unconventional d-wave
superconductivity not only opened an entirely new research
landscape of this many-body phase [87] but also raised a
fundamental question of whether and how an unconven-
tional d-wave counterpart could be realized in magnetism
[91]. Earlier considerations focused on possible realizations
of the unconventional d-wave magnetism due to strong
electronic correlations [86,92,93]. In contrast, our identi-
fication is directly linked to symmetries of the crystal
potential and does not require strongly correlated systems.
This makes the altermagnetic materials discussed in our
work realistic candidates for a robust unconventional
d-wave (or higher even-parity wave) magnetism that can
host unconventional time-reversal symmetry-breaking
responses of comparable strength to the conventional
(s-wave) ferromagnets.
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