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The Gravitomagnetic Influence on Gyroscopes and on the Lunar Orbit
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Gravitomagnetism—a motional coupling of matter analogous to the Lorentz force in
electromagnetism—has observable consequences for any scenario involving differing mass currents.
Examples include gyroscopes located near a rotating massive body, and the interaction of two or-
biting bodies. In the former case, the resulting precession of the gyroscope is often called “frame
dragging,” and is the principal measurement sought by the Gravity Probe-B experiment. The lat-
ter case is realized in the earth-moon system, and the effect has in fact been confirmed via lunar
laser ranging (LLR) to approximately 0.1% accuracy—better than the anticipated accuracy of the
Gravity-Probe-B result. This paper shows the connnection between these seemingly disparate phe-
nomena by employing the same gravitomagnetic term in the equation of motion to obtain both
gyroscopic precession and modification of the lunar orbit. Since lunar ranging currently provides
a part in a thousand fit to the gravitomagnetic contributions to the lunar orbit, this feature of
post-Newtonian gravity is not adjustable to fit any anomalous result beyond the 0.1% level from
Gravity Probe-B without disturbing the existing fit of theory to the 36 years of LLR data.

PACS numbers: 04.80.-y; 04.80.Cc; 95.10.Eg, 96.20.Jz

Part of the post-Newtonian gravitational interaction
between two mass elements, when both are in motion,
has been called “gravitomagnetism,” in analogy with the
magnetic force between moving charges. The gravito-
magnetic interaction is part of the more general 1/c2-
order motional corrections to Newtonian gravity that re-
sult from field theories such as Einstein’s general rela-
tivity and scalar-tensor generalizations [1, 2]. A total
package of velocity-dependent corrections is required so
that the gravitational equation of motion remains consis-
tent when expressed in different asymptotic inertial ref-
erence frames. If Lorentz invariance of local gravitational
physics is imposed by empirical constraint, the package of
motional corrections is additionally limited in structure.

The gravitomagnetic interaction of general relativity
was first studied by Lense and Thirring in 1918, and it
was shown to produce both accelerations of and torques
on two neighboring rotating bodies. Others, viewing this
phenomenon geometrically, have coined the interpretive
name “inertial frame dragging” from rotating matter. It
has also been shown that the gravitomagnetic interaction
plays a part in both shaping the lunar orbit at a level
(part in a thousand) readily observable by laser ranging
[3], and in contributing to the periastron precession of
binary and especially double pulsars [4]. 1

1 Although the present analysis uses the equation of motion from
the parameterized post-newtonian (PPN) formulation of long
range, metric gravity, the conclusions we draw are not con-
strained by this choice. The phenomenology we explore—the
vi × (vj × gij) acceleration of Eq. (1)—generically results from
modified metric field expansions or even non-metric models of
gravity at the 1/c2 post-Newtonian level. If such an interaction
is used to explain precessional effects in a gyroscope experiment,

For applications to the analysis of gravitational phe-
nomena, a general metric tensor field expansion for the
gravitational potentials in a broad class of theories was
developed by Will and Nordtvedt [5, 6]. This parameter-
ized post-Newtonian (PPN) framework yields a gravito-
magnetic contribution to the equation of motion, which
in the Lorentz-invariant case is

ai = (2 + 2γ)
∑

j

µj

c2r3ij
vi × (vj × rij), (1)

where vi and vj are the velocities of bodies i and j in
the chosen asymptotic inertial coordinate system [3]. The
vector rij , when combined with the fraction µj/r

3
ij con-

stitutes the Newtonian gravitational acceleration of mass
i toward mass j. In geometric language, the PPN fac-
tor γ quantifies the amount of space curvature produced
per unit mass. In general relativity, γ = 1. Metric the-
ories allowing preferred inertial frame effects (absence of
local Lorentz-invariance) add the parameter α1/4 to the
(2 + 2γ) pre-factor in Eq. (1), but lunar laser ranging as
well as other solar system observations constrain α1 to
be less than 10−4 [7].

then it will also be present to perturb the lunar orbit and bi-
nary pulsar orbits, regardless of its parameterized strength in any
particular model. Any attempt to suppress the gravitomagnetic
influence on the lunar orbit relative to that on a low-orbiting
gyroscope by a Yukawa-like modification to gij—whether met-
ric or non-metric—would clash with strong constraints on the
inverse-square nature of gij determined via satellite and lunar
laser ranging. Eq. (1) is, of course, dependent on the asymptotic
inertial frame in which analysis is performed, just as are magnetic
forces within an electromagnetic system. Consistent formalisms
can be used in any choice of frame to calculate observables; this
permits using the convenient solar system barycentric frame for
our analysis.
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We can ask what effect the gravitomagnetic term of
Eq. (1) has on a gyroscope outside of a rotating spherical
mass. We define the gravitomagnetic field by

Gij ≡ (2 + 2γ)
∑

j

µj

c2r3ij
(vj × rij), (2)

so that ai = vi × Gij in analogy to the electromag-
netic Lorentz force. Considering a small gyroscope, the
Gij vector field is calculated at the gyroscope center,
and will be nearly constant across its body. To obtain
the cumulative effect of mass elements moving within a
body rotating at angular velocity Ω, the gravitomagnetic
field is integrated over all mass elements, j, each with
dµj = Gρ(rj)d

3
rj , where G is Newton’s gravitational

constant, and ρ(rj) is the mass density at radius rj from
the body center. Adopting a spherical coordinate system
aligned with the rotation axis of the body, we describe
the Cartesian vector rj = r sin θ cosφi + r sin θ sinφj +
r cos θk, and the vector to the gyroscope (placed in
the φ = 0 plane) is ri = a sinψi + a cosψk, so that
r2ij = a2+ r2−2ar(sinψ sin θ cosφ+cosψ cos θ). The ve-
locity of mass element j is vj = Ωr sin θ(− sinφi+cosφj),
so that

dGij = (2 + 2γ)
Ωr sin θdµj

c2r3ij

× {(r cos θ − a cosψ)(cosφi + sinφj)

+ (a sinψ cosφ− r sin θ)k}. (3)

For the special case of a gyroscope situated over the
pole for simplified integration (ψ = 0), and recognizing
that the k component of the Gij vector will be the only
one to yield a non-zero angular integral, we find that

Gij(ψ = 0) = −
(2 + 2γ)GΩk

c2

×

∫ 2π

0

dφ

∫ 1

−1

du

∫ R

0

dr
ρ(r)r4(1− u2)

(a2 + r2 − 2aru)
3

2

= −
8π(2 + 2γ)GΩk

3c2a3

∫ R

0

drρ(r)r4 . (4)

Here we used the identity u = cos θ, and note that the
integral over u eliminates the r-dependence in the de-
nominator. Recognizing that the moment of inertia of a
spherical body is

I =
8π

3

∫ R

0

ρ(r)r4dr, (5)

we see that

Gij(ψ = 0) = −
(2 + 2γ)GIsΩ

c2a3
k, (6)

where the s-subscript represents the massive rotating
body.

Orienting the gyroscope so that its spin axis is along
the i direction: ω = ωi, the velocity of an element within
the gyroscope is vi = ω×ri = −ωr cos θj+ωr sin θ sinφk,
where ri is the vector position of a mass element within
the gyroscope with respect to its center. Now all pieces
are at hand to evaluate the acceleration of each mass ele-
ment within the gyroscope due to the gravitomagnetic
term. The force on each element is dFi = dmiai =
dmivi ×Gij , and the torque on the gyroscope from this
element is then dτ = ri × dFi. Combining these steps,

dτ =
(2 + 2γ)GIsΩωr

2 cos θdmi

c2a3
(cos θj− sin θ sinφk).

(7)

Integrating this torque over the volume of the gyro-
scope, the k component integrates to zero in the φ inte-
gral, yielding

τ =
(2 + 2γ)GIsΩω

c2a3
j

∫ 2π

0

dφ

∫ 1

−1

u2du

∫ R

0

ρ(r)r4dr

=
(1 + γ)GIsΩIgω

c2a3
j, (8)

where the integral is seen to be one-half the rotational
inertia of the gyroscope, which is denoted with subscript,
g. This torque will change the angular momentum vector
of the gyroscope, Lg = Igω, such that the angle of the

axis, Φ, precesses at a rate of Φ̇ = |τ | / |Lg|, so that

Φ̇ =
(1 + γ)GIsΩ

c2a3
. (9)

The direction of precession indicated by Eq. (8) is
one that takes the angular momentum—originally in the
i direction only—toward the j direction, meaning that
the precession has the same sense as the rotation of
the massive body. Had we developed an expression for
Gij(ψ = π

2
) at the equator of the rotating body, we would

have found half the magnitude of the polar case and in
the opposite direction. In general, the field

Gij = −
(1 + γ)GIsΩ

c2a3
[3(k · r̂)r̂ − k] , (10)

where r̂ is the unit radial vector. In a circular polar orbit
with uniform angular rate in ψ, the gravitomagnetic field
averages to

〈Gij〉 = −
(1 + γ)GIsΩ

2c2a3
k, (11)

so that the net field shares the same direction as that
over the pole, and therefore the net precession will be in
the same sense as the rotating mass, but at one-fourth
the polar rate. Summarizing,

Φ̇polar orbit =
(1 + γ)GIsΩ

4c2a3
. (12)



3

Putting this in another form, where we reduce the ro-
tational inertia to Is = fMsR

2, where f = 0.33 for the
earth [8], we have the more convenient form:

Φ̇polar orbit =
(1 + γ)f

4

GMs

Rc2

(

R

a

)3

Ω. (13)

For Gravity Probe-B (GP-B), in a 640 km altitude polar
orbit, Eq. (13) yields 0.042 arcseconds per year, matching
the mission expectation [9, 10]. GP-B anticipates mea-
suring this precession to < 1% accuracy, and perhaps as
well as 0.1–0.3%. Note that the gyroscope spin was not
treated as an intrinsic property in deriving the gyroscope
precession. Rather, the effect results from the integrated
mass currents of mass elements in rotational motion.
In obtaining the effect of the gravitomagnetic term

(Eq. (1)) on the lunar orbit relative to Earth, we treat the
gravitomagnetic acceleration as a perturbation about an
otherwise circular orbit. We start with an orbit obeying
the two-body equation of motion:

r̈ = −
GM

r2
+ rω2 = a(r) +

l2

r3
, (14)

where a(r) is the central acceleration, and l = r2ω is
the (specific) angular momentum. We idealize the un-
perturbed orbit to have zero eccentricity and zero incli-
nation, so that the end result is accurate for the moon
at the 10% level or better. The deviation, δr, resulting
from a periodic acceleration perturbation, ~δa, then obeys

δ̈r + ω2
0δr = δar + 2ω0

∫ t

δaτdt
′, (15)

where ω0 is the natural frequency for orbital perturba-
tions, with ω2

0 ≈ 3ω2− da
dr

≈ ω2. The acceleration, ~δa, has
been decomposed into radial and tangential components,
and t′ is a time variable.
Expressing the triple cross-product in Eq. (1) as the

equivalent dot-product relationship, we find that the
gravitomagnetic acceleration of the moon is

am ≡ ~δa =
µe(2 + 2γ)

c2a2
[r̂(vm · ve)− ve(vm · r̂)] , (16)

where r̂ is the unit vector from the earth to the moon,
and a is the earth-moon distance. Eq. (16) is re-written
as

~δa =
(2 + 2γ)GM

c2a2
[

r̂(V 2 + V · u)− V (V · r̂ + u · r̂)
]

,

(17)
with the earth’s velocity around the sun being V and the
moon’s velocity being V + u, where u is approximately
thirty times smaller than V in magnitude.
Note that u represents to sufficient accuracy the

geocentrically-viewed orbital velocity of the moon around
the earth. Thus under the assumption of a circular orbit
(about which we examine the perturbation), u · r̂ = 0.

Likewise, if we define τ̂ to be the tangential orbit vector
at the moon that is perpendicular to r̂, u · τ̂ = u. Under
the assumption that the earth is in a circular orbit about
the sun, the relationship between V (perpendicular to
earth-sun line) and r̂ and τ̂ picks out the synodic phase
angle of the moon, D. Specifically, V · r̂ = −V sinD and
V · τ̂ = −V cosD. Similarly, V · u = −V u cosD. Leav-
ing off the pre-factor from Eq. (17) for now, and dealing
only with the vector math, the radial component is

δar ∝ V 2 − V u cosD − (−V sinD)2

=
1

2
V 2 +

1

2
V 2 cos 2D − V u cosD, (18)

and the tangential component is

δaτ ∝ −(−V cosD)(−V sinD) = −
1

2
V 2 sin 2D. (19)

The periodic accelerations consist of two categories: V 2

terms that have 2D angular dependence, and V u terms
that have D angular dependence. We can treat each
separately in solving Eq. (15). There is also a constant
term in the expression for δar. We can ignore the con-
stant term since it only acts to rescale the orbit in a
non-periodic way. We will deal first with the 2D terms,
then look at the D terms.
First, we integrate the δaτ term. Noting that the rate

at which D advances is Ḋ = ω − Ω, the difference be-
tween the lunar orbital frequency and the earth’s orbital
frequency, we can construct an arbitrary 2D argument as
[2(ω − Ω)t′ + φ], where φ is an arbitrary phase depend-
ing on the choice of t′ = 0. The integral (without the
numerical pre-factor) is then

2ω

∫ t

sin[2(ω − Ω)t′ + φ]dt′ = −
ω

ω − Ω
cos 2D + const.

(20)
We have consolidated any initial phase in the integration
constant, effectively defining t so that D = (ω −Ω)t. As
above, we can ignore the constant term in our periodic
analysis. The differential equation becomes

δ̈r + ω2δr =
(1 + γ)GM

a2c2
V 2

[

cos 2D +
ω

ω − Ω
cos 2D

]

=
(1 + γ)GM

a2
V 2

c2
2ω − Ω

ω − Ω
cos 2D. (21)

The solution, in meters, is then

δr ≈ −(1 + γ)
V 2

c2
2− η

1− η

a

3− 8η
cos 2D ≈ −6.5 cos2Dm,

(22)
where we have made use of Kepler’s relation (ω2a3 =
GM) and define η ≡ Ω/ω, ignoring terms to second order
in η.
The term proportional to V u has no tangential part,

so we immediately write the differential equation as

δ̈r + ω2δr = −
(2 + 2γ)GM

c2a2
V u cosD, (23)
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for which the solution is

δr = −
(2 + 2γ)GM

c2a2
V u

ω2 − (ω − Ω)2
cosD

≈ −(1 + γ)
V u

c2
ω

Ω
a cosD ≈ −3.4 cosDm. (24)

But a feedback process produced by the interaction of
synodic perturbations and the cos 2D solar tidal distor-
tion of the lunar orbit results in an amplification of cosD
terms by the factor [11]

Qres ≈
1− 2η

1− 7η
≈ 1.79, (25)

so that the corrected range oscillation is

δr ≈ −(1+γ)
V u

c2
ω

Ω

1− 2η

1− 7η
a cosD ≈ −6.1 cosDm. (26)

In summary, the gravitomagnetic perturbations of the
lunar orbit are:

δr2D = −6.5 cos 2Dmeters

δrD = −6.1 cosDmeters. (27)

Lunar laser ranging (LLR) has been used for decades
to provide a number of the most precise tests of general
relativity, including tests of the weak and strong equiv-
alence principles, time-rate-of-change of Newton’s grav-
itational constant, G, geodetic precession, among oth-
ers [12]. Equivalence principle violations would produce
a cosD signal [13], though no cos 2D signal. Current
fits to the archive of LLR data limit any net devia-
tion of the cosD term in the lunar orbit to less than
≈ 4 mm from the orbit prescribed by general relativity
[12]. Likewise, the cos 2D term is constrained at roughly
the 8 mm level. Thus barring a chance simultaneous vio-
lation of the equivalence principle and gravitomagnetism,
the 4 mm constraint translates to a check on the ∼6 m
gravitomagnetism amplitude to better than 0.1% accu-
racy. Allowing for such a conspiracy, we must use the
8 mm cos 2D constraint (which is not influenced by equiv-
alence principle violation) to establish a ≈ 0.15% verifi-
cation of the gravitomagnetic phenomenon. At this time,
LLR provides the most precise test of this phenomenon—
far better than the LAGEOS tests of the Lense-Thirring
effect [14] and tests from binary pulsars [4]. This result is
also likely better than the ultimate result from the GP-B
experiment [9].
A new effort in LLR is poised to deliver order-of-

magnitude improvements in range precision [15], which
will translate into tighter constraints on the cosD and
cos 2D amplitudes in the lunar orbit. Because these
are periodic effects, their accurate determination requires
only about a year of new data collection. Thus a signifi-
cantly improved test of this phenomenon is not far away.

Whether the mass elements in a body are moving
commonly—as for the Earth and the Moon in orbital
motion in the solar system—or as mass currents in the
rotational manner of the spinning Earth and gyroscope
in GP-B, the total interaction between bodies must be
dominated by a linear-order integration over the bod-
ies’ mass elements in both situations. Breaking weak-
field superposition would be a radical and ultimately
non-viable modification to gravity theory. If this linear-
order gravitomagnetic interaction from PPNmetric grav-
ity, Eq. (1), is altered in order to fit any anomalous GP-B
observation, then either the cosD or cos 2D amplitudes,
or both, in Earth-Moon range as measured by LLR to
half-centimeter accuracy will show anomalies under this
new modeling—establishing a profound empirical clash.
An added likely consequence of modifying gravitomag-
netism would be destroying the total fit to the binary
pulsar 1913+16 data which includes a better than one
percent match to General Relativity’s predicted gravi-
tational radiation-reaction accelerations in that system.
Existing and robust observations already encumber the
gravitomagnetic interaction.
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