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A femtosecond optical frequency comb and continuous-wave pulse-amplified laser were used to
measure 12 transition frequencies of antiprotonic helium to fractional precisions of �9–16� � 10�9.
One of these is between two states having microsecond-scale lifetimes hitherto unaccessible to our
precision laser spectroscopy method. Comparisons with three-body QED calculations yielded an
antiproton-to-electron mass ratio of M �p=me � 1836:152 674�5�.
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FIG. 1. Top: Stabilization of cw pulse-amplified laser to fem-
tosecond frequency comb. Bottom: Additional dye lasers used to
measure the 417.8-nm transition.
We report here new measurements on the transition
frequencies of antiprotonic helium atoms ( �pHe� � e� �
�p� 4He2�) [1] using a femtosecond optical frequency
comb [2,3] in conjunction with a continuous-wave (cw)
pulse-amplified laser (Fig. 1). Their experimental precision
is a factor 6–20 better than our previous best ones [4], and
now approaches those of, e.g., the 11s-21s [5] and 11s-21p
[6] transitions in ordinary helium. From the frequencies of
12 transitions measured to the Doppler-broadened limit at
a cryogenic temperature of 10 K, we have deduced the
mass and charge of the antiproton relative to both the
proton and the electron with a precision of the order of
the known proton-to-electron mass ratio [7].

Reference [4] describes how a radio-frequency quadru-
pole decelerator was used to slow down the antiprotons
emerging from the CERN Antiproton Decelerator to 100-
keV energies. They were then stopped in a helium target of
low atomic density �� 1018 cm�3 to produce �pHe�

atoms which filled a volume V � 100 cm3. Antiprotons
in �pHe� states with high principal (n� 38) and angular
momentum (‘) quantum numbers reach the helium nucleus
over a period of several microseconds. The resulting de-
layed annihilation time spectra (DATS), i.e., the annihila-
tion rate versus time elapsed since �pHe� formation, was
measured by Cherenkov counters [Fig. 2(a)]. In all but one
of the present experiments, linearly polarized laser pulses
of energy density " � 0:04–1 mJ=cm2 (e.g., applied here
at t� 1 �s) stimulated transitions with dipole moments
0.02–0.3 D from these �pHe� states, to states with
nanosecond-scale lifetimes against Auger emission [1]
and annihilation. The resulting peak in the DATS signaled
the resonant frequency.

Only pulsed lasers can provide the megawatt-scale in-
tensities needed here to induce the �pHe� transitions.
However, fluctuations in their frequency and linewidth
and the difficulty of calibrating the wide range of �pHe�
06=96(24)=243401(4) 24340
wavelengths � � 264:7–726:1 nm have so far limited our
experimental precision [4]. We have now circumvented
these problems by basing our experiments on a cw laser
whose frequency �cw could be stabilized with a precision
<4� 10�10 against an optical comb. Its intensity was then
amplified [6,8,9] by a factor 106 to produce a pulsed laser
beam of frequency �pl � �cw with an accuracy and resolu-
tion 1–2 orders of magnitude higher than before [4].

This was done as follows: First, a Nd:YVO4 laser
(Coherent Verdi, B in Fig. 1) pumped either a ring
Ti:sapphire or dye laser (Coherent MBR-110 or 899-21),
thus producing cw laser beams covering the required wave-
lengths � � 574:8–941:4 nm with linewidth � � 1 or
4 MHz and power P� 1 W. This seed beam was amplified
in three dye cells pumped by a pulsed Nd:YAG laser
(Coherent Infinity, C) of � � 532 nm, energy E �
200 mJ, and length 3 ns. To decrease the Fourier-limited
1-1 © 2006 The American Physical Society
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FIG. 3. Frequency profiles of the transition
(a) �36; 34� ! �37; 33� in �p3He�, and (b) �37; 35� ! �38; 34�
and (c) �36; 34� ! �35; 33� in �p4He� (see text).
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FIG. 2. (a) DATS of �p4He� with laser-induced transition
�n; ‘� � �39; 35� ! �38; 34�. (b) Heterodyne beat signal of the
pulsed dye laser. (c) Time evolution of frequency chirp with
(dashed line) and without (solid line) chirp compensation.
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FIG. 4. (a) Portion of energy level diagram of �p4He�.
(b) DATS with three lasers fired at t1–t3 to measure the 417.8-
nm transition (see text).
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linewidth of the pulsed dye laser, the pump beam was split
into seven beams, to which incremental delays were added.
These were then merged to produce the stretched (20-ns-
long) pulse that irradiated each cell. The cells emitted laser
pulses with �� 60 MHz and E � 5–20 mJ. The shorter
wavelengths ��264:7–470:7 nm were obtained by (i) fre-
quency doubling the outputs at 574.8 nm and 728.8–
941.4 nm in, respectively, beta-barium borate (BBO) and
lithium triborate (LBO) crystals, or (ii) frequency tripling
the 794.1-nm light using both crystals.

The comb (Menlo Systems FC-8004) [2,3] constituted a
mode-locked Ti:sapphire laser (Femtolasers Femtosource
Scientific) pumped by a cw Nd:YVO4 laser (A in Fig. 1),
which produced 15-fs-long laser pulses of repetition rate
frep � 200 MHz and average power P � 0:7 W. The
spectral width � � 750–850 nm of this pulsed beam was
first broadened to 500–1100 nm by propagating it through
a microstructure fiber. This beam was then used to stabilize
(i) the frequency offset foff � 20 MHz common to all the
modes of the comb [2,3] and (ii) the cw seed laser to
frequency �cw � ncfrep � foff � fdif which was fdif �

20 MHz above the ncth mode of the comb. The value nc �
1 592 190–2 607 811 was measured using a Fizeau wave-
length meter. All frequencies frep, foff , and fdif were
synchronized to a quartz oscillator, which was stabilized
to a timing signal provided by global positioning satellites.
The seed (and consequently the pulsed dye) laser was
scanned over a region 	4 GHz around the �pHe� lines
by changing the above repetition rate from frep �

200:000 to 200.004 MHz. Doppler-free spectroscopy of
Rb and I2 in the seed beam indicated that its frequency
precision was <4� 10�10. A thermally stabilized, sealed
housing permitted 24-h operation of the lasers during these
months-long experiments. Motorized stages optimized the
alignment and polarization of the beam coupled into the
fiber during the 100-s intervals between antiproton pulses.

The frequency �pl of the dye laser pulse can deviate from
the seed value �cw due to sudden changes in the refractive
index of the dye during the amplification [6,9]. This so-
called chirp effect of magnitude ��c�t� � �pl�t� � �cw can
shift the measured �pHe� frequencies �exp from their true
values, so it had to be corrected. The time evolution of
24340
��c�t� was measured by (i) diverting part of the seed laser
and shifting its frequency by 400 MHz using an acousto-
optic modulator (AOM), (ii) superimposing this beam of
frequency �cw � 400 MHz and the dye laser pulse on a
photodiode, and recording their heterodyne beat signal
[Fig. 2(b)] with a digital oscilloscope of bandwidth f �
1:5 GHz and sampling rate 8 GHz, and (iii) using Fourier
analysis [6,8] to isolate any frequency deviation of this
signal from 400 MHz caused by a chirp of value ��c�t�. In
Fig. 2(c), the chirp in a 597.3-nm laser pulse which
changed from ��c�t� � 50 to �70 MHz over its 20-ns
duration is shown by the solid line. We minimized
��c�t� (dashed line) using an electro-optic modulator
(EOM) to apply a frequency shift of opposite sign to the
seed laser, which canceled the chirp induced in the dye
cells [6,9,10]. Theoretical calculations [11] show that any
further shift in �exp caused by chirps induced in the BBO or
LBO crystals is <1–2 MHz.

The profile of the �n; ‘� � �36; 34� ! �37; 33� resonance
in �p3He� (i.e., the area under the DATS peak plotted
against the �pl value) is shown in Fig. 3(a). It contains
(i) eight intense lines (indicated by four arrowed pairs)
corresponding to E1 transitions involving no spin-flip be-
tween the eight hyperfine substates [12] of states �36; 34�
and �37; 33�, and (ii) 12 weak lines wherein one of the
constituent particles flips its spin. Only the two peaks
separated by 1.8 GHz that arise from the interaction be-
tween the orbital angular momentum of the antiproton and
electron spin could be resolved, however, due to the 400-
MHz Doppler broadening caused by the motion of the
1-2



TABLE I. Transition frequencies of �pHe� and its density shifts: experimental (with 1� errors) and theoretical values.

Transition Transition frequency (MHz) Density shift (�10�18 MHz cm3)
�n; ‘� ! �n0; ‘0� Experimental Korobov [15] Kino et al.[14] Experimental Bakalov et al.[17]

�p4He� �40; 35� ! �39; 34� 445 608 558(6) 445 608 568.6 445 608 592 �8:3�3� �6:45
�39; 35� ! �38; 34� 501 948 752(4) 501 948 754.9 501 948 782 �4:2�2� �3:96
�37; 35� ! �38; 34� 412 885 132(4) 412 885 132.0 412 885 143 �3:8�2� �3:22
�37; 34� ! �36; 33� 636 878 139(8) 636 878 151.6 636 878 120 �1:4�1� �1:39
�36; 34� ! �35; 33� 717 474 004(10) 717 474 001.2 717 473 893 �0:59
�35; 33� ! �34; 32� 804 633 059(8) 804 633 058.1 804 633 026 �0:4�1� �0:21
�32; 31� ! �31; 30� 1 132 609 209(15) 1 132 609 223.5 1 132 609 194 0.41

�p3He� �38; 34� ! �37; 33� 505 222 296(8) 505 222 280.1 505 222 260 �4:1�2� �4:58
�36; 34� ! �37; 33� 414 147 508(4) 414 147 508.0 414 147 512 �4:0�2� �3:83
�36; 33� ! �35; 32� 646 180 434(12) 646 180 407.7 646 180 389 �1:7�1� �1:61
�34; 32� ! �33; 31� 822 809 190(12) 822 809 170.7 822 809 199 �0:4�1� �0:34
�32; 31� ! �31; 30� 1 043 128 609(13) 1 043 128 579.6 1 043 128 649 0.3(1) 0.26
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�p3He� thermalized to T � 10 K. The spin-averaged tran-
sition frequency �exp was determined by fitting this profile
with the theoretical line shape (solid line) obtained from
the optical Bloch equations which describe the evolution of
the �pHe� state populations during laser irradiation. The
small remaining chirp [e.g., similar in magnitude to the
dashed line in Fig. 2(c)] introduced a time dependence to
�pl�t� when performing the Bloch equation integration. In
this we took transitions between all hyperfine and magnetic
substates into account, using the theoretical values for their
splittings (precision <1 MHz) and dipole moments [12].
Doppler broadening, laser power broadening, and colli-
sional dephasing effects were also included. The �exp

values of �p4He� resonances [Fig. 3(b)], which contain
four intense, non-spin-flip lines [indicated by arrowed pairs
as in Fig. 3(c)] and four weak, spin-flip ones were similarly
obtained. The ac Stark shifts caused by the laser interacting
with �pHe� are estimated to be
1 MHz, due to the small
scalar (�3 to 2 a.u.) and tensor [�0:1–2� � 10�3 a:u:] terms
of the dynamic polarizability for these transitions [13].

All transitions heretofore accessible to our precision
laser spectroscopy involved a daughter state with a short
Auger lifetime, the natural width �n � 20 MHz [14,15] of
which would ultimately limit the achievable precision on
�exp to around �10�9. We have now extended our studies
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to include one �p4He� transition �36; 34� ! �35; 33� be-
tween two metastable states with �n � 100 kHz. This
implies an ultimate precision of �10�12, although our
present experiments are Doppler rather than natural-width
limited. To measure this transition we developed the fol-
lowing three-laser method [Fig. 4(a)], which also utilizes
the above cw pulse-amplified laser: (i) An additional dye
laser (Lambda Physik Scanmate, E in Fig. 1) pumped by a
355-nm Nd:YAG laser (D) first irradiated the �pHe� with a
3-ns-long pulse at � � 372:6 nm. This depleted the popu-
lation in state �35; 33� at t1 by inducing the transition
�35; 33� ! �34; 32� to a short-lived state, and thereby pro-
ducing the first peak in Fig. 4(b). (ii) At t � t2, the cw
pulse-amplified laser tuned to �36; 34� ! �35; 33� at � �
417:8 nm equalized the population in the parent and
daughter states. (iii) Another 372.6-nm dye laser (F)
pumped by the same Nd:YAG laser after a 100-ns-delay
probed the increased population of �35; 33� at t � t3 result-
ing from the transitions stimulated by the 417.8-nm laser
pulse, and produced an annihilation peak at t � t3. The
profile of the �36; 34� ! �35; 33� resonance obtained by
plotting the intensity of this peak against the frequency of
the 417.8-nm laser is shown in Fig. 3(c).

Collisions between �pHe� and helium atoms cause the
transition frequencies � to shift linearly with target density
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l �th (triangles [14] and squares [15]) transition frequencies.
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[16]. We measured the shifts in ten transitions using the
above Scanmate dye lasers at densities � � 2� 1018–3�
1021 cm�3, and determined the gradients d�=d� (Table I).
The results agreed with ab inito quantum chemical calcu-
lations [17]. The in vacuo values �exp�� � 0� were ob-
tained by correcting the experimental results using a shift
between �� � �14 and 1 MHz corresponding to density
�� 2� 1018 cm�3. The experimental 1 standard devia-
tion (1�) error �exp � 4–15 MHz (Fig. 5) was the qua-
dratic sum of the statistical one associated with the above
fitting (3–13 MHz), and systematic ones �syst arising from
the chirp (2–4 MHz), collisional shifts (0.1–2 MHz), and
the harmonic generation (1–2 MHz).

The �exp values agree with previous experiments [4,16]
within the order-of-magnitude lower precision of the latter
[Fig. 6(a)]. They are compared with two sets of theoretical
values �th [14,15] in Fig. 5, both of which include QED and
nuclear-size (�Enuc � 2–4 MHz) effects. Values from
Ref. [14] scatter within 7–8� of �exp. Those of Ref. [15],
the only calculation claiming precision �th � 1–2 MHz
commensurate with �exp, agree within <1� 10�8 with
the four highest-precision measurements in �p4He�, and
�36; 34� ! �37; 33� in �p3He�. Four of its �p3He� frequen-
cies were �2� below our �exp values. Concerning
Ref. [14], unpublished results from the authors have re-
cently moved by 3–100 MHz from those in Table I. We
therefore use only the Ref. [15] values in the following.

The mass ratios between the proton, 4He and 3He nuclei,
and electron Mp=me � 1836:152 672 61�85�, M�=me �

7294:299 536 3�32�, and M3He=me � 5495:885 269�11�
[7] and other Committee on Data for Science and
Technology (CODATA) 2002 constants were first used
[15] to calculate �th (Table I). These ratios increased by
3–6 ppb between the 1998 and 2002 compilations due to
improved measurements of me and M3He [7]. We next de-
termined the antiproton-to-electron mass ratio as the value
M �p=me � 1836:152 674�5� which results in �th�M �p=me�

values that agree best with experiment, i.e., which mini-
mizes the sum ���th�M �p=me� � �exp

2=�2
exp over the 12

transitions. This is consistent with the above proton value
[Fig. 6(b)]. Here �exp is mostly statistical. When we
24340
changed Mp=me by 3 ppb, the resulting 3–5 MHz change
in �th was comparable with �exp. The error 5 on the last
digit ofMp=me is the quadratic sum of 4 (the minimization
error) and the systematic ones 3 (arising from �syst) and 2
(from �th). We can also set a new upper limit � �p on any
CPT-violating difference [18] between the antiproton and
proton charges (Q �p,Qp) and masses using the values of �th

and �exp in Table I and the equation [1,4] � �p � �Qp �

Q �p�=Qp � �Mp �M �p�=Mp � ��th � �exp�=�exp�. Values
for � � 2:5–6:1 were estimated [14] by increasing Q �p

and M �p by 1 ppm under the constraint on Q �p=M �p against
Qp=Mp of <9� 10�11 [19] and noting the change in �th.
The average value of � �p over 12 transitions was ��3	
14� � 10�10, which implies that the antiproton charge and
mass agree with the proton’s to a precision of 2� 10�9 at a
confidence level of 90%. The precisions of these determi-
nations were partially limited by the differences between
�th and �exp in �p3He�.
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