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The Strange Star Surface: A Crust with Nuggets
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We reexamine the surface composition of strange stars. Strange quark stars are hypothetical
compact stars which could exist if strange quark matter was absolutely stable. It is widely accepted
that they are characterized by an enormous density gradient ( 1026 g/cm4) and large electric fields
at surface. By investigating the possibility of realizing a heterogeneous crust, comprised of nuggets
of strange quark matter embedded in an uniform electron background, we find that the strange star
surface has a much reduced density gradient and negligible electric field. We comment on how our
findings will impact various proposed observable signatures for strange stars.

PACS numbers: 25.75.Nq, 26.60.+c, 97.60.Jd

The conjecture that matter containing strange quarks
could be absolutely stable is several decades old [1, 2, 3,
4]. In the intervening years numerous authors have inves-
tigated how such matter would manifest in nature (for re-
cent reviews see Refs. [5, 6, 7]). Possibilities include tiny
(dimensions of a few Fermi) quark lumps called strange
nuggets and large (dimensions km) compact stars made
entirely of strange quark matter [8, 9, 10]. Strange stars,
as discussed to date, have bulk homogeneous quark mat-
ter containing up, down and strange quarks extending all
the way to the surface, which is uniquely qualified by (i)
a steep density drop ∆ρ ∼ 1015 g/cm3 over a distance
of several Fermi; and (ii) large electric fields due to less
rapid variation of the electron density [10]. In this letter,
we reexamine the surface region of these strange stars and
find that, contrary to conventional wisdom, a heteroge-
neous (solid) crust made of strange nuggets and electrons
is likely, leading to a much reduced density gradient and
negligible electric fields in the surface region. This is
very different from the conventional picture, suggested
by Alcock et al [10], of a tiny nuclear crust suspended
a few hundred Fermis above the quark star, supported
by large electric fields near the surface. Our proposal
shares some apparent features of the quark-alpha crust
scenario, based on the stability of tightly bound, low-
baryon and absolutely stable strange quark states called
quark-alphas [11, 12], but it is otherwise fundamentally
different.

In the vicinity of the strange star surface hydrostatic
equilibrium requires the pressure to become vanishingly
small. At the surface the pressure is identically zero.
The pressure of stable quark matter vanishes at a finite
and large quark density n ≃ 1 quark/fm3, correspond-
ing to a quark chemical potential of µ ≃ 300 MeV. Since
the strange quark mass, ms, is large compared to the
up and down quark masses homogeneous quark matter
needs electrons to ensure charge neutrality. In normal
(non-superconducting) quark matter the electron chemi-
cal potential needed to ensure neutrality is µe ≃ m2

s/4µ.
Consequently, when the total pressure (Pquark+Pelectron)
is close to zero, the pressure due to quarks is negative.

We show that in this regime a heterogeneous mixed phase
with nuggets and electrons may be favored if surface and
Coulomb costs are small. This mixed phase is qualita-
tively similar to the mixed phase of nuclei and electrons
in the crust of normal neutron stars and shares several
features with the mixed phase of quark drops and nuclear
matter in hybrid stars [13]. As in these other cases, the
size of nuggets in the mixed phase will be determined
by minimizing the surface, Coulomb and other finite size
contributions to the energy. At low temperature, the
mixed phase will be a solid. Using typical quark model
parameters, we find that strange stars will have a rela-
tively large crust with radial extent ∆R ≃ 50 m for a star
with mass M ≃ 1.4M⊙ (M⊙ ≃ 2 × 1033 g is the mass
of the sun) and radius R = 10 km. The electron density
decreases to zero over this length scale.
To prove that a heterogeneous phase is favored when

surface and Coulomb energies are negligible, we adopt a
model independent approach which is valid when µe ≪

µ. In this case, the quark pressure may be expanded in
powers of µe and to second order in µe, it is given by

Pq(µ, µe) = P0(µ)− nQ(µ) µe +
1

2
χQ(µ) µ

2
e , (1)

where nQ(µ) = −∂P/∂µe is the positive charge density,
χQ(µ) = ∂2P/∂µ2

e is the charge susceptibility and P0 is
the pressure of the electron-free quark phase. They de-
pend on µ, the strange quark massms and strong interac-
tions. To perform a model-independent analysis we will
treat P0, nQ, and χQ as (µ-dependent) parameters. To
appreciate their typical magnitude, we note that in the
Bag model description nQ = m2

sµ/2π
2, χQ = 2µ2/π2 and

P0 = 3(µ4−m2
sµ

2)/4π2−B, where B is the bag constant.
To investigate the regime where the electron contribution
to the pressure is relevant, we should keep terms up to
fourth order in µe. However, this greatly complicates the
analytic treatment and does not provide much new in-
sight. For the time being, assuming the µ3

e and µ4
e terms

in the quark pressure to be numerically small compared
to the electron pressure (which we include explicitly), we
work to second order in µe and return to a more complete
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treatment of the problem later.

A heterogeneous state of positively charged quark mat-
ter coexisting with negatively charged electron gas is pos-
sible if Pq = 0 and ∂Pq/∂µe ≤ 0. Since electrons reside
both inside and outside quark matter, Gibbs phase equi-
librium requires Pq = 0. We require ∂Pq/∂µe ≤ 0 to
ensure that quark matter is positively charged - which is
necessary to satisfy global charge neutrality. At fixed µ,
from Eq. 1 we see that Pq is zero and quark matter is
positively charged when µe takes on the value

µ̃e =
nQ

χQ
(1−

√

1− ξ) where ξ =
2P0χQ

n2
Q

. (2)

Hence a mixed phase is possible when 0 < ξ < 1. In this
regime, the mixed phase has lower free energy (larger
pressure) than homogeneous matter. Relaxing the con-
dition of local charge neutrality allows us to reduce the
strangeness fraction in quark matter and thereby lower
its free energy. ξ = 1 characterizes the critical point
where this becomes possible. The pressure at the critical
point Pc = (µc

e)
4/12π2, where µc

e = nQ/χQ is the elec-
tron chemical potential there. In this phase, electrons
contribute to the pressure while quarks contribute to the
energy density - much like the mixed phase with electrons
and nuclei in the crust of a conventional neutron star.

Although P0, nQ and χQ all depend on µ, and conse-
quently change across the mixed phase we find that only
the variation in P0 is relevant because P0 varies rapidly
with µ inside the mixed phase. For example, in the bag
model, µ changes by less than a percent across the in-
terval 0 ≤ ξ ≤ 1 so that to a good approximation, we
can treat nQ and χQ as constants throughout the mixed
phase. Further, since µ is nearly constant across the
mixed phase the variation of the energy density inside
nuggets is negligible. In what follows, ǫ0 denotes the en-
ergy density inside nuggets.

To characterize the mixed phase we need to determine
how the electron chemical potential and the volume frac-
tion of the quark phase change with ξ. We have already
obtained Eq. 2 which determines how µe changes with ξ.
The volume fraction of the quark phase, denoted by x, is
determined by the condition of global charge neutrality
Q(µ̃e) x = ne(µ̃e) where Q(µ̃e) = − (∂Pq/∂µe)µe=µ̃e

is
the quark charge density in the mixed phase. We find

x =
µ̃3
e

3π2 nQ

(

1−
χQµ̃e

nQ

)−1

. (3)

The mixed phase will be penalized by Coulomb, sur-
face, and other finite size contributions to the energy. Its
stability at fixed pressure is guaranteed if its Gibbs free
energy (per quark) is lower than the homogeneous phase.
The Gibbs energy per quark g = (E + PV )/N , where
E is the energy, P is the pressure and N is the num-
ber of quarks in volume V. In the homogeneous phase,

gH = µH where µH is the quark chemical potential. Sim-
ilarly, gM = µM in the mixed phase if finite size contri-
butions are neglected. We now calculate the Gibbs free
energy gain ∆g = µH − µM in the mixed phase.
Using the local charge neutrality condition µe =

nQ/χQ and Eq. 1, we find the pressure of the homo-
geneous phase

PH(µ) = P0(µ)−
1

2

n2
Q

χQ
. (4)

The Gibbs energy µH at fixed total pressure P is then
determined by the equation P0(µH) = P+n2

Q/2χQ. Since
we expect ∆g ≪ µ, a Taylor series expansion of the form

P0(µH) = P0(µM) + n ∆g +O(∆g2µ2) , (5)

where n = (∂P0/∂µ)µ=µM
is justified. When µe ≪ µ, n

is the quark number density inside nuggets. Using Eq. 2
and µ̃e = (12π2 P )1/4, the gain in Gibbs energy per quark
is

∆g =
n2
Q

2χQn

(

1−
2χQµ̃e

nQ
+

χ2
Qµ̃

2
e

n2
Q

)

. (6)

In the bag model when P = 0 , ∆g = m4
s/16π

2n. For
ms = 150 MeV and n = 1/fm3, ∆g ≃ 0.4 MeV per quark.
The surface and Coulomb energy cost in the mixed phase
has been studied in the context of the nuclear mixed
phase [14]. Using these results, which are valid when
corrections due to Debye screening and curvature energy
are negligible, we find that the Coulomb and surface en-
ergy cost per quark

ǫs+C =
6π

n (16π2)1/3
[

(e2 σ d nQ)
2 fd(x)

]1/3
, (7)

where σ is the surface tension, d is the dimensionality
(d=3 for spheres, d=2 for rods, and d=1 for slabs), and
the function fd(x) depends on the dimensionality and the
volume fraction x of the rarer phase. Explicit forms for
fd(x) may be found in Ref. [14]. From Eq. 6 and Eq. 7,
the mixed phase is favored when

σ ≤
n2
Q

6
√

3π fd(x) e2 d χ
3/2
Q

. (8)

In the bag model, this condition may be written in terms
of ms and µ as follows

σ <
∼ 36

( ms

150 MeV

)3 ms

µ
MeV/fm

2
. (9)

The surface tension between quark matter and vacuum
is poorly known. Using the bag model, Berger and
Jaffe [15] estimate the surface energy of strangelets σ ≃ 8
MeV/fm2 for ms = 150 MeV and µ ≃ 300 MeV, while
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σ ≃ 5 MeV/fm2 for ms = 200 MeV (numerical values for
the surface tension are extracted from surface energies
quoted in Ref. [16]). The condition in Eq. 9 implies that
a structured mixed phase is favored even for ms = 150
MeV. The sensitivity to ms in Eq. 9 and other sources
of finite size contributions to the energy which we have
neglected here does not allow us to make a definitive
claim about the stability of the mixed phase. Clearly,
this warrants further work which should include the cur-
vature energy [16], Debye screening [17, 18] and better
estimates of the surface tension. For now, we proceed
by assuming that surface and Coulomb costs are small
enough to favor the mixed phase.

We had assumed that µ3
e and µ4

e terms in the quark
pressure were small compared to the electron contribu-
tion to facilitate a simplified model independent analysis.
We now relax this assumption and work within the Bag
model, retaining terms to all orders in ms and µe. For
B = 65 MeV/fm3 and ms = 150 MeV, the quark compo-
nent of the pressure of homogeneous matter is zero when
µ = µc ≃ 300 MeV and µe = µc

e ≃ 18 MeV. The critical
pressure below which homogeneous quark matter cannot
exist is given by Pc = (µc

e)
4/12π2 ≃ 1.2×10−4 MeV/fm3.

The electron chemical potential decreases from µe = µc
e

at the critical point to zero at zero pressure. In the
mixed phase the pressure is due to electrons, and is given
by Pmixed = µ̃4

e/12π
2 while the energy density is due to

nuggets, and is given by ǫmixed = x ǫ0. The variation of
pressure and energy density across the mixed phase are
shown in Fig. 1. For our choice of bag model parameters,
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FIG. 1: The equation of state of the mixed phase. Inset shows
the variation of the volume fraction of the quark phase as µe

changes across the mixed phase.

we find ǫ0 ≃ 283 MeV/fm3. The inset in Fig. 1 shows
how the volume fraction of the quark phase changes with
µe. Near the critical point, x and consequently the EoS
through ǫmixed = x ǫ0, varies rapidly. Except for the
region very close to Pc, most of the mixed phase is char-

acterized by small x. Here, sparsely distributed spherical
nuggets are preferred.
To estimate the radial extent ∆R of the mixed phase

crust, consider a strange star with mass M and radius
R. For simplicity, ignoring special and general relativis-
tic corrections, and using Newtonian approximations to
hydrostatics

GM

∫ R+∆R

R

dr

r2
=

∫ P=0

Pc

dP

ǫmixed

, (10)

when ∆R ≪ R , ∆R =
R2

GM

∫ Pc

0

dP

ǫmixed

, (11)

where Pc is the critical pressure at which the transition
to the mixed phase occurs. Since the energy density
ǫmixed = x ǫ0 and the pressure P = µ4

e/12π
2, we may

use Eq. 3 to obtain

∆R =
R2

GM

nQ

ǫ0

∫ µc

e

0

dµe

(

1−
χQµe

nQ

)

, (12)

=
R

Rs

n2
Q

χQǫ0
R , (13)

where Rs = 2GM ≃ 3(M/M⊙) km is the Schwarzschild
radius of the star. For ms = 150 MeV and µc ≃ 300 MeV
we find that nQ ≃ 0.045 fm−3, χQ ≃ 92 MeV/fm, and
ǫ0 ≃ 283 MeV/fm3. Substituting these value in Eq. 13
we find that ∆R ≃ 100 meters for a star with mass
M = 1.4M⊙. The Newtonian estimate for ∆R which was
obtained using the simplified EoS provides useful insight.
To obtain a more accurate value for ∆R, we use the bag
model EoS shown in Fig. 1 and numerically solve general
relativistic equations for hydrostatic equilibrium. The
resulting density profile of the crust is shown in Fig. 2.
Here we find that ∆R ≃ 40 m.
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FIG. 2: Density profile of the crust for a strange star with
mass M = 14 M⊙ and radius R = 10 km.

We expect the presence of a crust with nuggets to have
several phenomenological consequences.
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(i) Photon radiation: In recent years there have been sev-
eral proposals to look for interesting spectral features in
the photon radiation from bare strange stars [19, 20]. In
the conventional picture, the high electron chemical po-
tential at the surface of the star leads to the formation
of an electro-sphere with a high plasmon frequency at its
inner edge. This has been shown to result in unique sig-
natures in the photon radiation especially in the gamma
ray region. In our scenario the presence of the crust ob-
viates the need for the electro-sphere, or large photon
luminosities thereof.
(ii) Moment of Inertia: We find that the moment of in-
ertia of the solid crust Icrust ∼ I0 Mcrust/Mstar where I0
is the moment of inertia of the star and Mcrust/Mstar ∼

10−3−10−2 is the fractional mass in the crust. This rela-
tively large crustal moment of inertia would imply that a
”star-quake” in the nugget crust, which changes its mo-
ment of inertia by one part in 104 − 106, could account
for the observed spin-up in the Vela and Crab pulsars.
(iii)Thermal Conductivity: The small mean free path for
electrons scattering off nuggets implies that the thermal
conductivity in the crust is much smaller than in the core.
Much work has been done on calculating the thermal
conductivity in the nuclear crust [21]. Using the approx-
imate expressions in [22], we find that the quark crust has
a thermal conductivity only slightly less than the nuclear
crust. This is relevant to the thermal evolution of such
stars, since the crust will act as an insulator effectively
keeping the surface temperature low even while the core
is hot. Scattering off nuggets is also likely to impact neu-
trino transport during the early evolution of the strange
star subsequent to its birth in a supernova event[23].
To reiterate our main findings, a homogeneous and lo-

cally charge neutral phase of quarks and electrons could
become unstable to phase separation at small pressure.
In strange stars, this will lead to the formation of a het-
erogeneous solid crust where strange nuggets are embed-
ded in a degenerate electron gas. Such a crust shares
several similarities to the conventional nuclear crust on
normal neutron stars, and can drastically alter the ther-
mal and transport properties of the surface. An interest-
ing exception is stable color-flavor-locked (CFL) quark
matter [24]. In this phase Cooper pairing between up,
down and strange quarks leading to color superconduc-
tivity ensures that their numbers are equal [25, 26]. The
energy gain due to pairing compensates for the larger
strange quark mass. The CFL phase is neutral without
electrons and stars made entirely of CFL matter would
not have a crust of the type proposed here.
Ultimately, the question of whether or not strange stars

have strange crusts depends on the value of the surface
tension between strange quark matter and the vacuum.
To establish that large strange nuggets are indeed unsta-
ble with respect to fission at low pressure we also need
to properly account for the role of Debye screening and

curvature energy. These finite size contributions to the
energy and their model dependence are currently being
investigated. They will be reported elsewhere. If these
are small enough, then almost all strange stars should
have a crust and strange nuggets at zero pressure should
have a finite stable size.
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