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Superbroadcasting of mixed states
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We derive the optimal universal broadcasting for mixed states of qubits. We show that the no-
broadcasting theorem cannot be generalized to more than a single input copy. Moreover, for four or
more input copies it is even possible to purify the input states while broadcasting. We name such

purifying broadcasting superbroadcasting.

PACS numbers: 03.65.-w, 03.67.-a

Broadcasting—namely distributing information over
many users—suffers in-principle limitations when the in-
formation is quantum, and this poses a critical issue
in quantum information theory, for distributed process-
ing and networked communications. For pure states an
ideal broadcasting coincides with the so-called quantum
cloning, corresponding to an ideal device capable of pro-
ducing from a finite number N of copies of the same
state 1) a larger number M > N of output copies of the
same state, for a given set of input states. Since such a
transformation is not isometric, it cannot be achieved by
any physical machine on a generally nonorthogonal set
of states (this is essentially the content of the no-cloning
theorem |1, B, @]). The situation is more involved when
the states are mixed, since from the point of view of each
single user the local mixed state is indistinguishable from
the partial trace of an entangled state, and there are in-
finitely many joint states corresponding to ideal broad-
casting. For this reason in the literature M] the word
broadcasting is used technically to denote a map whose
output has identical local states, versus the word cloning
used for the case of tensor product of identical states.

Since ideal cloning is not possible, the quantum in-
formation encoded on pure states can be broadcast only
approximately, and this posed the problem of optimizing
the broadcasting e. g. by maximizing an input-output
fidelity equally well on all pure states. In the literature
this kind of optimized broadcasting is called optimal uni-
versal cloning ﬂa, E, ﬁ, ] For mixed states the no-cloning
theorem is not logically sufficient to forbid ideal broad-
casting. In Ref. the impossibility of broadcasting has
been proved in the case of one input copy and two out-
put copies for a set of density operators generally non
mutually commuting. Later, in the literature (see, for
example, Ref. [d]) this result has been often implicitly
considered as the generalization of the no-cloning theo-
rem to the case of mixed input states. In the present
paper we will show that this assertion cannot be gener-
alized to more than a single input copy. In particular,
for numbers of input copies N > 4 the no-broadcasting
theorem does not hold, and it is even possible to purify
while broadcasting. We named such a procedure super-
broadcasting. We now present the theoretical derivation
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FIG. 1: With four or more input copies the no-broadcasting
theorem can be violated. One can actually increase the purity
of local states while broadcasting, corresponding to a stretch-
ing of the Bloch vector. In this purifying broadcasting mech-
anism, called superbroadcasting, the available information on
the state of the input copies cannot increase due to the detri-
mental correlations among the output copies.

of our result.

Let us consider a general broadcasting channel from N
to M copies, namely a completely positive (CP) trace-
preserving map from states on Hi, = H®Y to states on
Hout = H®M that is invariant under permutations of in-
put copies and of output copies. Moreover, we take the
broadcasting to be universal, namely the broadcasting
map B is covariant under the group of unitary transfor-
mations of H, more precisely

B(U®NP®NUT®N) _ U®MB(p®N)UT®M. (1)

We will restrict attention to qubits, namely H ~ C2.
Upon using the Choi-Jamiolkowsky representation m]

Rg =B @ I(|T))(1]),
B(Q) = Trin[(lout ® Q7)Rp]

where @) denotes a state on H;,, and Rp is a positive
operator on Houe ® Hin, the covariance condition () is
equivalent to invariance of Rp under the group repre-
sentation UPM @ Ur®N, U, denoting the j = & rep-
resentation, for g € SU(2) [the symbol |I)) denotes the
maximally entangled vector [I)) = Y |n) ® |n), and 7

denotes transposition with respect to the orthonormal

(2)
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basis {|n)}]. In the Choi-Jamiolkowsky representation
the trace-preserving condition on the CP map reads

’I‘rout [RB] - Iin 5 (3)

where [, denotes the identity on H;,. For the unitary
group SU(2) the complex conjugate representation of any
unitary representation, say Vj, is unitarily equivalent to
the direct representation, i. e. V' = CVgC’T, under the
m-rotation C' around the y axis. The explicit form of C'
actually depends on the particular representation V;: for
the tensor representation U ®N one has C' = iay ON Tt is
then convenient to rewrite the map as follows

B(Q) = Trin[(Iout & Q)SB] (4)

with

Q=0CQCt,  Sp= (Iow ®C)Rp(Ion ® CT), (5)

and now covariance of the CP map B corresponds to in-
variance of Sp under the representation Uy SINEM) A
tensor product representation Ug ®L decomposes into ir-
reducible components according to the Wedderburn de-

composition of spaces

L/2

P necy, (6)
J=(L/2)

where ((z)) denotes the fractional part of z (i. e. (L/2)) =
0 for L even and ((L/2)) = 1/2 for L odd), and the multi-
plicity d; can be evaluated by recurrence on L by adding
a qubit at a time, giving d; = %(L/gﬂ) [11]. Eq.
@) is also called Clebsch-Gordan series. The spaces
H; and C% are called representation and multiplicity
spaces, respectively. With the above decomposition the

L/2 (9)
ZiwoyUs” ® Loy,
whereas an operator invariant under UfL has the form

@fﬁ@ﬂ» I; W), I; denoting the identity over the rep-

group representation writes U(;@L = @;

resentation space H;, and W) an operator on the multi-
plicity space C%. On the other hand, an operator invari-
ant under the permutation group Py, of the L copies of
the representation has the form &’ /<<L/2>> Z;® Iq,, where
Z; is any operator on the representatlon space H; (this is
the so-called Schur-Weyl duality) [12]. Since the opera-
tor Sp is invariant under Py; x Py it must be of the form
Sg = @jj\i/(?M/Q» @ii/(?N/Q)) Sjl & Id]. ® I4,, where Sjl is a
positive operator over H; ® H;. By further decomposing
H P H;

posing invariance of Sg under
general form

= @?,HI o ”’H 7 into invariant subspaces and im-

U®(M+N) one obtains the

M/2 N/2 G4

@ @ @ Sjl, ]P (7,1) ®Id ®Idl, (7)

=(M/2)) I=(N/2)) J=|5=1

Syt =

2

for positive coeflicients s;; 7, P}J b denoting the orthog-
onal projector over the irreducible representation J com-
ing from the couple j,!.

The trace preservation condition is now equivalent to

Trout [SM] = (8)

M/2 G+l

Z @ Tr; @ dijyl”]P‘SjJ)

J=((M/2)) I=(N/2)) J=[j—=l

® Ig, = Iin -

Since TI“[P(J )] is invariant under Uél), one can easily
see that Tr; [P( ’l)] = 22{:11 1I;, whence the latter condition
becomes

N/2 M/2 G

P D DI

2J—|—1

1 Il®Idl = Iy, (9)

SJlJ

=(N/2) j=(M/2)) T=|i—1|
namely
M/2 g+l

2J+1 N
S dsuaat— =1, VN2 <I< S
‘ 20+1 2
J={(M/2) J=|5-1|
(10)
with positive coefficients s;; s.
Upon writing the input state @ = p®V in the Bloch
vector form, we have the decomposition

- QN
poN =[Sk 5)]
N/2 (11)
= (ror_)N/? @ Z < ) [In)({In| ® I, ,
={(N/2)) n=-1
where 0 < 7 < 1, and 74 = 3(1£7), and [In) denotes

the eigenstate of the angular momentum component % -

JO with eigenvalue n. From Eq. ([[[) we see that the

broadcasting channels from N to M make a convex set,

with the extreme points classified by functions ¢ and

® corresponding to a given choice j = ¢(1), J = ®(1),
namely to the choice of coefficients

(0,®) 20+1 1

st LT s -

Ut 2J +1d;

or to the Choi-Jamiolkowsky operator

0jo(1)07,3(1) 5 (12)

N
Sls;f)@) _ @ e _P(S"(l)xl) ® Id ® Id .
20() + 1dy . 20 P
V2 (1) + Ldyq
(13)

Using the expression (@) for extremal broadcasting
channels and Eq. ([dJ) for the input state we can evaluate
the output state

N/2

20+ 1
M QN _ _ N/2 -
(0. 2)(p77) = (ryr-) 1—91\?/2» 20(1) + Ldy
1 n
r_ @(1),l
x> (T) Tur[(Lpqy @ ) {in)) PAS) @ La

(14)



In terms of Clebsch-Gordan coefficients, this can be

rewritten as

M(so,cb)(P@N) = (7°+7°—)N/2
NZ/Q A+1 4 zl: (r__)"
=72 2(1)(1) +1 dga(l) — Ty
»(l)
x> (@()m + nle)m, n)2lp)m)(p(l)m| @ Ia,,, .
m=—¢(l)

(15)

Now, we are interested in the single output copy, which
is the broadcast state. This is given by the partial trace
of Eq. () over M —1 copies. The evaluation of the par-
tial trace needs the matching between the Wedderburn
decomposition and the qubit tensor product representa-
tion. According to the Schur-Weyl duality the multi-
plicity space of the Wedderburn decomposition supports
a unitary irreducible representation of the permutation
group Pys of the M qubits. Therefore, one has the iden-
tity for any operator X; on H; @ C%

Zﬁlel—M

TI‘Cd [XJ] ® Id]. (16)
1EP ]

where 7; denotes the generic permutation. In particular,

for X; = |jm)(jm|®|1)(1], |1) denoting any fixed vector
of C%, one has
. d; ,
lm)(Gm| © Lo, = 35 > mX;m) (17)
T 1EPy

Clearly, one can always choose the given vector of the
irreducible representation as [[11]

gm) ® [1) = |jm) @ [2_)®% 7, (18)
where |U_) denotes the singlet. We can then take the
partial trace of both sides of Eq. (). For each per-
mutation, say ms, which exchanges the last qubit with
one belonging to a singlet, one has Trys_1[7s X;7]] = g,
and we have (M —25)(M —1)! permutations of this kind.
On the other hand, for each permutation, say m,,, which
exchanges the last qubit with one belonging to the j-
multiplet, one has Tras—1[m, X7} ] = Tr;_1[ljm)(Gml]
and there are 2j(M — 1)! permutations of this kind. Us-
ing the explicit form of the Clebsch-Gordan coefficients
one can derive the following identity

Te, s [ljm)im|] =

1 m -
Sy L 19
SRRIET I (19)

Substituting the above formula when performing the par-
tial trace of both sides of Eq. (), one obtains the follow-
ing expression for the single copy output density operator

N/2

= (7"+7”7)N/2 Z

I=(N/2)

»(l)
d Y
m=—¢(l)

le: (T_—)n (@(l)m-i—nkp(l)m,ln)?% (1+ %m/% 5).

(20)

20+ 1
23(0) + 1

We are now in position to analyse the broadcast state,
in particular its Bloch vector. In Eq. () we see that
the input and the output Bloch vectors are parallel, and
clearly [p’, p] = 0. On the other hand, the length of the
output Bloch vector is given by

N/2

TE%@) (r) = (7"+7"7)N/2 Z
I=(N/2)

> l ) 2m
DIP> (=) @@m -+ nlptom,im2 2

A+1
20(l)+ 1"

(21)

We are now interested in maximizing the length of the
output Bloch vector. Since 7’ is linear on the convex
set of broadcasting channels, we just need to consider
extremal maps, and look for the maximum rj ,(r) =
max(%@){rz%q,) (r)}. Tt is possible to prove[l3] that the
maximal ’I“E%(I)) (r) is achieved for ¢(I) = M/2 and for

o(l) = ‘l - %|, independently on r. For pure states
these optimal maps coincide with those of optimal uni-
versal cloning transformations|3, i, 4, €]. Also, it can be
shown[13] that our optimal map gives the same results
achievable using the procedure of Ref. [L1].
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FIG. 2: The scaling factor p(r) versus r. On the left: for M =
N +1 and N = 10,20, 30, 40, 50, 60, 70, 80, 90, 100 (from the
bottom to the top. On the right: for N =5and 5 < M <9
(from the top to the bottom).

As an example, in Fig. B we plot the scaling factor
p(r) = 14y (r)/r for the maps maximizing r’ for N =5
and several values of M. One can see that for a wide
range of values of r, one has p(r) > 1. This corresponds
to a purification of the local states, and since one also
has a number of copies at the output M > N greater
than the number of inputs, it is actually a broadcasting
with simultaneous purification, what we call superbroad-
casting. Clearly, for M < N one has more purification



than for M > N, corresponding to the purification pro-
tocol [L1]. The superbroadcasting occurs for N > 4 in-
put copies. As a rule, one has purification below some
value 7. (N, M) of the input purity, for a bounded num-
ber M < M.(N) of the output copies. In Fig. Bl we plot
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FIG. 3: Logarithmic plot versus N of 1 — (N, N + 1) (bot-
tom) and 1—7.(N, M.(N)) (top), where r.(N, M) denotes the
maximum purity for which one has superbroadcasting from N
to M copies, M.(N) being the maximum number of output
copies for N inputs (the area above the lower plot is the region
in which superbroadcasting is possible). The two asymptotic
behaviours are N~! and 2N 2.

r«(N, N +1) and r,(N, M. (N)) versus the number of in-
put copies N. After the threshold at N = 4 correspond-
ing to 7.(4,5) = 0.787, one has a monotonic increase of
r«(N,N + 1) and r.(N, M.(N)) toward asymptotic pu-
rity, with power laws 2N~2 and N !, respectively. For
larger M one has a generally higher threshold for V, and
smaller values of r.(N,M). For N = 4 one has super-
broadcasting for up to M =7, for N =5 up to M = 21,
and for N = 6 up to M = oco. Notice that perfect broad-
casting (corresponding to p(r) = 1) can be achieved un-
der the same conditions of superbroadcasting, (clearly
generally by a different map). We remind that we have
considered boradcasting of universally covariant sets of
mixed states. Indeed, for smaller sets of input states it
can be shown that superbroadcasting is possible also for
N = 3 input copies (as for equatorial phase-covariant
mixed states|[1d]), and, for even smaller sets one cannot
exclude superbroadcasting also for N = 2.

In conclusion, we have derived the optimal universal
broadcasting for mixed states of qubits, optimal in the
sense that it maximizes the purity of local states. For
pure states and M > N the map coincides with the opti-
mal universal cloning transformation[d, Ifl, 4, I§], whereas
for N > M it is equivalent to the optimal purifica-
tion map of Ref. [11]. Thus our optimal broadcasting
map generalizes/interpolates between optimal cloning
and optimal purification. We have shown that the no-
broadcasting theorem[4] for noncommuting mixed states
cannot be generalized to more than a single input copy,
and for N > 4 input copies one can even purify the

state while broadcasting, below some maximum value of
the purity. We named such phenomenon superbroadcast-
ing. The possibility of superbroadcasting does not corre-
spond to an increase of the available information about
the original input state p, due to detrimental correla-
tions between the local broadcast copies, which does not
allow to exploit their statistics. This phenomenon was
already noticed in Ref. [14], in an asymptotic analysis of
the rate of optimal purification procedures. Notice that
the correlations alone among qubits cannot be erased by
any physical process, since the de-correlating map which
sends a state to the tensor product of its partial traces
is non linear. From the point of view of single users our
broadcasting protocol is actually a purification (for states
sufficiently mixed), and the same broadcasting process
transfers some noise from the local states to the corre-
lations between them. We think that the present result
opens new interesting perspectives in the ability of dis-
tributing quantum information in a noisy environment.
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