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Onset of collective and cohesive motion
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(Dated: May 28, 2018)

We study the onset of collective motion, with and without cohesion, of groups of noisy self-
propelled particles interacting locally. We find that this phase transition, in two space dimensions,
is always discontinuous, including for the minimal model of Vicsek et al. [Phys. Rev. Lett. 75,1226
(1995)] for which a non-trivial critical point was previously advocated. We also show that cohesion
is always lost near onset, as a result of the interplay of density, velocity, and shape fluctuations.
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Collective motion can be observed at almost every scale
in nature, from the familiar human crowds[1], bird flocks
and fish schools [2], to unicellular organisms like amoe-
bae and bacteria [3], individual cells [4], and even at mi-
croscopic level in the dynamics of actin and tubulin fil-
aments and molecular motors [5, 6]. Whereas biologists
tend to build detailed representations of a particular case,
the ubiquity of the phenomenon suggests underlying uni-
versal features and thus gives weight to the bottom-up
modeling approach usually favored by physicists [7].

In this respect, the simple model introduced by Vicsek
and collaborators [8] stands out because of its minimal
character and the a priori least-favorable conditions in
which it is defined. In the Vicsek model (VM), identical
pointwise particles move at constant velocity and inter-
act locally by trying to align their direction with that of
neighbors. Remarkably, even in the presence of noise and
in the absence of leaders and global forces, orientational
long-range order arises, i.e. collective motion emerges, if
the density of particles is high enough or, equivalently, if
the noise is weak enough. The existence of the ordered
phase was later “proved” by a renormalisation-group ap-
proach based on a phenomenological mesoscopic equa-
tion [9]. More recently, this work was extended to the
case where the ambient fluid is taken into full account,
yielding novel mesoscopic equations for suspensions of
self-propelled particles [10].

The nature of the non-equilibrium phase transition
to collective motion, however, is not well established.
Vicsek et al. concluded from numerical simulations in
two and three dimensions that it is continuous (“second-
order”) and characterized by a set of critical indices, but
these results remain somewhat crude [11], even though
the undeniably minimal character of the VM makes it a
good candidate for representing a universality class.

Moreover, from a modeling point of view, an often de-
sirable ingredient missing in the VM is cohesion: when
put together in an infinite space, particles do not stay to-
gether and fly apart. In other words, no collective motion
is possible in the zero-density limit of the VM. Recently,
we have shown how one can ensure cohesion in simple
models derived from the VM without resorting to leader

particles or long-range or global forces [12].
In this Letter, we study the onset of collective motion

with and without cohesion in this very general setting,
trying to assess the universality of the results of Vicsek
et al. In both cases, we find that the onset of collec-
tive motion in the VM and related models is actually
discontinuous (“first-order”) and that its apparent con-
tinuous character is due to strong finite-size effects. We
also show that without cohesion, the transition point is
nevertheless accompanied by a non-trivial superdiffusive
behavior of particles which, we argue, could be measured
experimentally. In the presence of cohesion, our study
reveals that the onset of collective motion is the theater
of a complex interplay between density, velocity, sound
and shape modes, giving rise to fascinating dynamics.
The original VM is defined as follows: identical point-

wise particles move synchronously at discrete timesteps
∆t = 1 by a fixed distance v0. In two space dimen-
sions —to which we restrict ourselves in the following—
the direction of motion of particle j is just an angle θj ,
calculated from the previous directions of all particles k
within an interaction range r0 = 1 > v0∆t:

θt+1

j = arg





∑

k∼j

eiθ
t
k



+ η ξtj , (1)

where ξtj is a delta-correlated white noise (ξ ∈ [−π, π]).
This introduces a tendency to align with neighboring par-
ticles, with two simple limits: in the absence of noise,
interacting particles align perfectly, quickly leading to
complete orientational order. For maximal noise (η = 1),
particles follow random walks. The transition that nec-
essarily lies in between these two regimes can be charac-
terized by the following instantaneous order parameter:

ϕt ≡
1

N
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(2)

where N is the total number of particles.
Varying either the noise strength η or the particle den-

sity ρ = N/L2 in periodic domains of linear size L, Vic-
sek et al. found that 〈ϕ〉 varies continuously across the
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FIG. 1: Onset of collective motion in cohesion-less models
(1) (original VM, circles) and (3) (vectorial noise, squares).
Variation of order parameter ϕ (a) and Binder cumulant G
(b) with the noise strength η. (v0 = 0.5, L = 32, ρ = 2, and
equivalent statistics for both models.)

transition, suggesting the existence of a critical point [8].
Studying finite-size effects, they estimated a set of scal-
ing exponents. Interested in assessing the universality
of these results and possibly improving these estimates,
we first introduced simple modifications of the original
VM such as changing v0 or adding a repulsive force be-
tween particles to give them a finite extent. Using the
finite-size scaling Ansatz appropriate for XY-model like
systems, domain sizes, and particle numbers similar to
those used in [8], but with much better, well-controlled
statistics, we were only able to estimate a roughly co-
herent set of critical exponents after allowing for rather
strong corrections to scaling [13].
For modeling reasons, we also changed the way noise

is incorporated in the system. In (1), particles make an
error when trying to take the new direction they have
perfectly calculated (“angular noise”). One could argue
that, rather, errors are made when estimating the in-
teractions, for example because of a noisy environment.
This leads to change Eq.(1) into, e.g.:

θt+1

j = arg





∑

k∼j

eiθ
t
k + η nt

j e
iξtj



 (3)

where nt
j is the current number of neighbors of particle

j. In this case of “vectorial noise”, the onset of collective
motion is discontinuous: for large-enough system sizes,
〈ϕ〉 jumps abruptly to zero as η is decreased, whereas
it varies smoothly in the original VM (Fig. 1a). This
is perhaps best seen from the behavior of the so-called
Binder cumulant G = 1 − 〈ϕ4〉/3〈ϕ2〉2 (Fig. 1b). In the
case of vectorial noise, G falls to negative values near ηc,
the sign of a discontinuous transition, together with the
phase coexistence expected then.
Going from angular to vectorial noise is indeed a

less innocent modification than those mentioned earlier:
in model (3), locally-ordered regions are subjected to
weaker noise than disordered ones. However, it was un-
clear to us what precisely would be the mechanism to
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FIG. 2: Discontinuous character of the onset of collective mo-
tion in the original VM at ρ = 1

8
. (a): G vs η at various sys-

tem sizes. (b): transverse density (bottom curve) and order-
parameter profile (top curve) in the ordered phase (L = 1024,
η = 0.18) (c): probability distribution function (PDF) of ϕt

near the transition point, t ∈ [τ ; 500τ ], here the correlation
time is τ ≃ 105 [13], L = 512. (d) snapshot of coarse-grained
density field in disordered phase at threshold, ρ = 2, L = 256.
The arrows indicate the direction of motion of dense, ordered
regions.

change the order of the transition upon introducing this
nonlinear term. Considering in addition the strong cor-
rections to scaling found with angular noise, we strived
to reach larger system sizes in some of these cases, albeit
at the cost of statistical accuracy [13]. The conclusion of
these numerical efforts is that the transition is discontin-
uous in all cases, with finite-size effects being somewhat
weaker at low densities. As an example, the behavior of
G with increasing system size shown in Fig. 2a for the
original VM at ρ = 1

8
reveals the characteristic fall to

negative values. The distribution function of ϕt is bi-
modal around threshold, without any intermediate uni-
modal regime (Fig. 2c). Thus, the continuous transition
reported by Vicsek et al. is only apparent.

In the ordered phase, the particles are organized in
density waves moving steadily in a disordered “vapour
pressure” background of well-defined asymptotic density
(Fig. 2b). These solitary waves become metastable to a
long-wavelength longitudinal instability below the den-
sity threshold ηc (defined to be located at the minimum
of G), leading to an hysteresis loop. At threshold and be-
low, the disordered phase consists of nucleated ordered
patches competing in space and time (Fig. 2d).

At threshold, in the disordered phase, a universal non-
trivial algebraic scaling law is nevertheless found: the
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superdiffusive behavior of particles already reported by
us in [14] is valid in all cases. Trajectories then con-
sist of “flights”, occuring when a particle is caught in a
moving ordered patch, separated by normal diffusion in
the disordered regions. The mean square displacement
of particles 〈δr2〉 varies like tα with α = 1.65(5).
We now turn to the onset of collective motion in the

presence of cohesion. As shown in [12], the cohesion of
a population of particles can be maintained without re-
solving to long-range or global interactions. In the spirit
of the VM, and following [15], a two-body short-range
interaction force competing with the alignment tendency
is introduced, leading to the following model:

θt+1

j = arg



α
∑

k∼j

eiθ
t
k + β

∑

k∼j

f t
jke

iθt
jk + η nt

j e
iξtj



 (4)

where α and β control the strength of alignment and
cohesion, θtjk is the direction of the vector linking particle
j to particle k. The interaction force between these two
particles, of amplitude f t

jk, is actually repulsive up to an
intermediate equilibrium distance re, with a short-range
hard-core at rc and attractive up to the interaction range
r0. In the following, as in [12], we used:

fjk =







−∞ if rjk < rc ,
1

4

rjk−re
ra−re

if rc < rjk < ra ,

1 if ra < rjk < r0 .

(5)

where rjk is the distance between j and k, with rc =
0.2, re = 0.5, and ra = 0.8. Note that vectorial noise
was chosen in (4), in the hope of reaching asymptotic
properties more easily.
The above model has three main parameters, α, β,

and η, only two of which are independent. The phase
diagram in the (α, β) plane (with η = 1 fixed arbitrarily)
was presented in [12], where, moreover, only neighbors in
the Voronoi sense are considered in the sums of (4)). For
large-enough β, cohesion is maintained, even in the zero-
density limit. This “gas/liquid” transition is followed, at
larger β values, by the onset of positional (quasi-) order,
i.e. a “liquid/solid” transition. For large α, these liquid
or solid cohesive groups move, whereas they remain static
(up to finite-size fluctuations) for small α.
In the “liquid case” (intermediate β values), the on-

set of motion is accompanied by a loss of cohesion: while
small groups set in motion smoothly without breaking up
(Fig. 3a, dashed lines), larger groups gradually subdivide
into several parts of roughly equivalent size linked by fila-
mentary structures, in contrast with their more compact
shapes before and after onset (Fig. 4). The filaments
themselves are quite static (Fig. 4d) but are displaced by
the subgroups which move coherently so that they even-
tually break up, as indicated by the dip in the normalized
largest connected cluster size n/N in Fig. 3a. Increasing
α, large groups follow the same precursor of the tran-
sition as smaller groups, but when their fragmentation
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FIG. 3: Onset of motion of cohesive groups in model (4)
with η = 1, v0 = 0.05. (a) 〈ϕ〉 and n/N (normalized size
of largest connected cluster) vs α (ρ = 1

16
, β = 20 (liquid

phase), dashed lines: N = 4096; solid lines: N = 16384). In-
set: solid group (β = 84) of N = 4096 particles; dashed line:
〈ϕ〉; solid line: relative diffusion of initialy neighboring parti-
cles ∆ ≡ 〈 1

nj

∑

k∼j
(1− r2jk(t)/r

2

jk(t+ T ))〉j,t where T ≈ 20N

(∆ ≃ 1 in the liquid phase, while ∆ ≃ 0 in the solid phase,
see [12]). (b) variation with α of the maximal absolute ro-
tation angle |ω| averaged over 100 samples of 1000 vortices
(N = 2048, ρ = 1

32
, β = 30 (liquid phase)). Dashed line:〈ϕ〉

during the same runs. Inset: distribution of rotation times at
the transition with decay exponent ∼ 1.3.

occurs the order parameter falls back, leaving an inter-
mediate peak (around α = 1.7 in Fig. 3a). Increasing α
further, 〈ϕ〉 rises again and finally jumps to 〈ϕ〉 = 1 when
full cohesion is recovered (for α = 1.88 in Fig. 3a). This
discontinuous jump is the true location of the transition:
For an infinite group, the onset of motion must occur
abruptly near this value, as the precursory features de-
scribed above disappear because the population divides
into infinitely-many subgroups whose influences average
themselves out. Meanwhile, cohesion is only lost at the
transition point in this asymptotic picture.

The breakup of large cohesive groups around threshold
is probably closely related to what happens in the case
without cohesion: the subgroups connected by filaments
may correspond to the ordered patches seen in the dis-
ordered phase near threshold in Fig. 2d. The breakup
itself can be seen as resulting from the maximal effect
of acoustic modes on the shape of the group [13]. Also
affecting the shape dynamics are rotational modes: the
subgroups seen in Fig. 4a not only move but they also
rotate slowly [16]. Rotation is not steady, but intermit-
tent. We recorded the rotation times and their corre-
sponding angles. Extremal statistics analysis reveal that
the tendency to rotate is maximal at the onset of motion
(Fig. 3b). Moreover, at threshold, the distribution of ro-
tation times is algebraic with a decay exponent such that
it has no finite mean (inset of Fig. 3b).

The onset of motion of the “solid” groups (large β val-
ues) is accompanied by a loss of positional order: these
crystals melt near the transition (inset of Fig. 3a). Given
the above results in the liquid case, one can expect very
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FIG. 4: Typical shape of a liquid cohesive group of 16384
particles (model (4), ρ = 1

16
, β = 20 arrows indicate direction

of motion). (a): at onset before loss of cohesion, α = 1.78.
(b): static phase, round shape, α = 0.5. (c): in moving phase,
typical triangular form (see [12]), α = 2.5. (d): close-up of a
filament: no local order is apparent.

large solid groups to melt and then subdivide and lose
cohesion in the transition region, making the onset of
motion asymptotically discontinuous.
To summarize, the onset of collective motion in the VM

as well as in related models with and without cohesion is
always discontinuous, and the critical behavior reported
in [8] is only apparent and due to (strong) finite-size ef-
fects. Without cohesion, the ordered phase consists in
density waves propagating steadily in a disordered back-
ground. With a short-range repulsion/attraction inter-
action, the cohesion ensured both in the disordered and
ordered phases is broken at the onset of motion under the
competing influence of sound, density, and shape modes.
The resulting mesoscopic subgroups are linked by fila-
ments which, however, we believe to be probably non-
universal, model-dependent structures.
At the theoretical level, ongoing work is directed to-

wards the understanding of the complex interplay be-
tween shape (surface tension) and acoustic modes, and
of the stability properties of the density waves. At the
experimental level, it remains difficult to study quanti-
tatively bird flocks and fish schools, and moreover we
have no specific prediction as to the onset of motion of
these cohesive groups [17]. Without cohesion, however,
the universal superdiffusive behavior observed in the dis-
ordered phase near threshold could be observed experi-
mentally. As already suggested in [14], bacteria such as
E. Coli might be good self-propelled particles. Human
melanocytes also look promising in this respect as shown
remarkably by the group of Gruler [4]. Finally, “motility

assays” consisting of grafted molecular motors such as
kinesin (resp. myosin) moving filaments made of tubulin
(resp. actin) might provide the simplest setting in which
to investigate superdiffusion at onset, given the available
observation techniques [5, 6].
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