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Quantum operations describe any state change allowed in
quantum mechanics, including the evolution of an open sys-
tem or the state change due to a measurement. In this letter
we present a general method based on quantum tomography
for measuring experimentally the matrix elements of an arbi-
trary quantum operation. As input the method needs only a
single entangled state. The feasibility of the technique for the
electromagnetic field is shown, and the experimental setup is
illustrated based on homodyne tomography of a twin-beam.

The typical state change in quantum mechanics is the
unitary evolution, where the final state is related to the
initial one via the transformation ρ → E(ρ) ≡ UρU †,
with U unitary operator on the Hilbert space H of the
system. Unitary transformations describe only the evolu-
tions of closed systems, and non-unitary transformations
occur when the quantum system is coupled to an en-
vironment or when a measurement is performed on the
system. What is the most general possible state change
in quantum mechanics? The answer is provided by the
formalism of “quantum operations” by Kraus [1]. Here
input and output states are connected via the map

ρ→
E(ρ)

Tr
(

E(ρ)
) . (1)

The quantum operation E is a linear, trace-decreasing
map that preserves positivity (more precisely the map
must be completely positive (CP) [2]). The trace in the
denominator is included in order to preserve the normal-
ization Tr(ρ) = 1. The most general form for E can be
shown to be [1]

E(ρ) =
∑

n

KnρK
†
n , (2)

where the operators Kn satisfy the bound

∑

n

K†
nKn ≤ I . (3)

The transformation (2) occurs with generally non-unit
probability Tr

(

E(ρ)
)

≤ 1, and the probability is unit
only when E is trace-preserving, i.e. when the bound (3)
is achieved with the equal sign. The particular case of
unitary transformations corresponds to having only one
term K1 = U in the sum (2), with U unitary. However,

one can consider also non-unitary operations with only
one term, i. e.

E(ρ) = AρA† , (4)

with A a contraction, i. e. ||A|| ≤ 1: we’ll call these last
operations pure, since they leave pure states ρ as pure.
Indeed, for ρ = |ϕ〉〈ϕ| we can rewrite Eq. (1) in the form

|ϕ〉 →
A|ϕ〉

||A|ϕ〉||
(5)

Such an operation could, for example, describe the state
reduction from a measurement apparatus for a given fixed
outcome, which occurs with probability Tr

(

ρA†A
)

≤ 1.
Suppose now that we have a quantum machine that

performs an unknown quantum operation E , and we want
to determine E experimentally. This problem has been
posed in several papers, with solutions given in some spe-
cial cases [3–5].
How can we do? This would be the case, for example,

if we want to determine the unitary transformation U
performed by a quantum device, or the state-reduction
achieved by a measuring apparatus that performs an in-
direct measurement on the system. In Refs. [6,7] as a
method it was suggested to carry on a tomographic recon-
struction at the machine output for a varying input state.
However, the availability of all possible input states is a
practically unsolvable problem. For example, the method
of Ref. [7] in the optical domain works only for phase-
insensitive devices, since for phase-sensitive ones one
would need input superpositions of two photon-number
states, superpositions which are currently not feasible.
As we will show in this letter, we can exploit the quantum
parallelism of entanglement [8] to run all possible input
states in parallel using only a single entangled state as
the input in the tomographic reconstruction. In this way
we have at our disposal a general method for experimen-
tally determining the quantum operation matrix, using
any available quantum-tomographic scheme for the sys-
tem in consideration, and a single fixed state at the input,
which is an entangled (not even maximally) state. In the
optical domain we will show that one can achieve the to-
mographic reconstruction of the operation using exactly
the same apparatus of the recently performed experiment
of Ref. [9].
Let’s consider for simplicity a “pure” quantum opera-

tion in the form (5). Given an orthonormal basis {|j〉}
corresponding to some physical observable, how can we
determine the matrix Aij = 〈i|A|j〉 experimentally? In-
stead of acting with the contraction A on a “isolated”
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system, we perform the map on a system which is entan-
gled in the state |ψ〉〉 ∈ H ⊗H with an identical system,
i. e.

|ψ〉〉 → |φ〉〉 =
A⊗ I|ψ〉〉

||Aψ||HS

. (6)

With the double ket we denote bipartite vectors |ψ〉〉 ∈
H ⊗ H, which, keeping the basis {|j〉} as fixed, are in
one-to-one correspondence with matrices as follows

|ψ〉〉 =
∑

ij

ψij |i〉 ⊗ |j〉 . (7)

In the following we will also use the simple notation of
using the same symbol A for both the matrix A = {Aij}
and the corresponding operator A =

∑

ij Aij |i〉〈j| for

fixed basis {|j〉}. With this notation the norm ||A||HS

in Eq. (6) denotes the Hilbert-Schmidt norm ||A||HS =
[

Tr
(

A†A
)]

1

2 . We’ll also denote by A∗ the operator cor-
responding to the complex conjugated matrix of A (with
respect to the same fixed basis {|j〉}), and analogously
AT will denote the transposed-matrix operator. With
consistent notation we’ll write A = {Aij} ≡ [A(j)] to
denote the column vectors A(j) of the matrix A, and use
|A(j)〉 = A|j〉 ≡

∑

iAij |i〉 for the corresponding vectors
in H. Using this simple formalism, the quantum oper-
ation matrix A in terms of the input and output state-
matrices writes as follows

A = φψ−1
√

pA(ψ) , (8)

where pA(ψ) = ||Aψ||2HS denotes the occurrence proba-
bility of the quantum operation, and the entangled state
is assumed to have invertible matrix ψ (which is always
the case in practice). In our matrix formalism the ma-
trix φ corresponding to the output state can be written
in terms of measurable ensemble averages as follows

φij ≡ 〈〈i, j|φ〉〉 = eiθ
〈 |i0, j0〉〉〈〈i, j| 〉

√

〈 |i0, j0〉〉〈〈i0, j0| 〉
, (9)

where 〈. . .〉 ≡ 〈〈φ| . . . |φ〉〉 denotes the ensemble at the
output, |i, j〉〉 ≡ |i〉⊗ |j〉, i0, j0 are suitable fixed integers,
and eiθ is an irrelevant (unmeasurable) overall phase fac-
tor corresponding to θ = arg(〈〈i0, j0|φ〉〉). Using Eq. (8)
we can write the matrix Aij in terms of only output en-
semble averages as follows

Aij = κ〈Eij(ψ)〉 , (10)

where the operator Eij(ψ) is given by

Eij(ψ) = |i0〉〈i| ⊗ |j0〉〈ψ
−1∗(j)| , (11)

and the proportionality constant is given by

κ = eiθ

√

pA(ψ)

〈 |i0, j0〉〉〈〈i0, j0| 〉
. (12)

Since Aij is written only in terms of output ensemble
averages, it can be estimated through quantum tomogra-
phy. Quantum tomography [10] is a method to estimate
the ensemble average 〈H〉 of any arbitrary operator H
on H by using only measurement outcomes of a quorum
of observables {O(l)}. A quorum is just a set of opera-
tors {O(l)} which are observable (i.e. have orthonormal
resolution), and span the linear space of operators on
H. This means that any operator H can be expanded
as H =

∑

l Tr[Q
†(l)H ]O(l), where {Q(l)} and {O(l)}

form a biorthogonal set such that Tr[Q†(i)O(j)] = δij .
Hence, the tomographic estimation of the ensemble av-
erage 〈H〉 is obtained as the double average—over both
the ensemble and the quorum—of the unbiased estima-
tor Tr[Q†(l)H ]O(l) with random l. The most popular
example of quantum tomography is homodyne tomog-
raphy [11], where the quorum (selfdual) is given by the
operators exp(ikXφ) for varying k and φ, Xφ denoting a
quadrature of one mode of radiation. Notice that for es-
timating the density matrix also the maximum-likelihood
strategy can be used instead of averaging [12,13]. More-
over, there is a general method [13] for deconvolving
instrumental noise when measuring the quorum, which
resorts to finding the biorthogonal basis for the noisy
quorum. This is the case, for example, of deconvolution
of noise from non-unit quantum efficiency in homodyne
tomography [11]. Finally, for multipartite quantum sys-
tems, one can simply use as a quorum the tensor product
of single-system quorums [13]: this means that, in our
case, we just need to make two local quorum measure-
ments jointly on the two systems, and analyze data with
the tensor-product estimators. For example, the estima-
tion of Aij in Eq. (10) resorts to the calculation of the
following ensemble average from the experimental data

Aij =

〈

κ
∑

kl

aij(kl)O(k) ⊗O(l)

〉

, (13)

where the c-numbers aij(kl) are given by

aij(kl) = 〈i|Q†(k)|i0〉〈ψ
−1∗(j)|Q†(l)|j0〉 . (14)

Also the fixed ensemble average 〈 |i0, j0〉〉〈〈i0, j0| 〉 in the
constant κ can be measured via tomography, or even by
coincidence counting, whereas pA(ψ) results from count-
ing the occurrence of A (occurrence is checked by reading
the apparatus, e. g. A is in correspondence with a given
measurement outcome).
The general experimental scheme of the method for the

tomographic estimation of a quantum operation matrix
is sketched in Fig. 1.
The method given above can be easily generalized to

the case of arbitrary non pure quantum operation, as
in Eqs. (1) and (2). Now the output state is the joint
density matrix

|ψ〉〉〈〈ψ| → R(ψ) ≡ E ⊗ I(|ψ〉〉〈〈ψ|)

≡
∑

n

Kn ⊗ I|ψ〉〉〈〈ψ|K†
n ⊗ I . (15)
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One can immediately see that the quantum operation can
be written in terms of the density matrix R(ψ) for ψ = I,
i. e.

E(ρ) = Tr2[I ⊗ ρTR(I)] , (16)

where Tr2 denotes the partial trace on the second Hilbert
space. However, for invertible ψ the two matrices R(I)
and R(ψ) are connected as follows

R(I) = (I ⊗ ψ−1T )R(ψ)(I ⊗ ψ−1∗) . (17)

Hence, the (four-index) matrix R in Eq. (16) which is in
one-to-one correspondence with the quantum operation E
can be obtained by estimating via quantum tomography
the following output ensemble averages

〈〈i, j|R(I)|l, k〉〉 =
〈

E
†
lk(ψ)Eij(ψ)

〉

=

=
〈

|l〉〈i| ⊗ |ψ−1∗(k)〉〈ψ−1∗(j)|
〉

. (18)

❍
❍
❍❥

✟
✟
✟✯

COMPUTER

O(k)

O(l)

E

|ψ〉〉

✛
✚

✘
✙

✛
✚

✘
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✚
✘
✙

FIG. 1. General experimental scheme of the method for
the tomographic estimation of a quantum operation. Two
identical quantum systems are prepared in an entangled state
|ψ〉〉. One of the two systems undergoes the quantum oper-
ation E , whereas the other is left untouched. At the output
one makes a quantum tomographic estimation, photocurrent
by measuring jointly two random observables from a quorum
{O(l)} (see the text).

We now analyze the experimental feasibility of the
method in the optical domain, based on tomographic
homodyning a twin-beam from parametric downconver-
sion of the vacuum. As a simple example of quantum
operation we consider the unitary displacement D(z) =
exp(za† − z∗a), of a single radiation mode with annihi-
lation and creation operators a and a†. The experimen-
tal apparatus is the same as in the experiment of Ref.
[9], with a nondegenerate optical parametric amplifier (a
KTP crystal) pumped by the second harmonic of a Q-
switched mode-locked Nd:YAG laser, which produces a
100-MHz train of 120-ps duration pulses at 1064 nm. The
orthogonally polarized twin beams emitted by the KTP
crystal (one of which is displaced of D(z) by a nearly
transparent beam splitter with a strong local oscillator)
are separately detected by two balanced homodyne se-
tups that use two independent local oscillators derived
from the same laser, with the amplified output noise at
radio-frequencies downconverted to the near-dc by use of
an rf mixer and sampled by a boxcar integrator. The out-
puts of the boxcar channels are a measure of the quadra-
ture amplitudes Xφ′ ⊗Xφ′′ for random phases φ′ and φ′′

with respect to the local oscillators, where the quadra-
turesXφ = 1

2
(a†eiφ+ae−iφ) here represent the quorum of

observables for the tomographic reconstruction (for ad-
ditional details on the experimental setup see Ref. [9],
whereas for a more extensive theoretical treatment see
Ref. [14]).

FIG. 2. Homodyne tomography of the quantum operation
A corresponding to the unitary displacement of one mode
of the radiation field. Diagonal elements Ann (shown by thin
solid line on an extended abscissa range,) with their respective
error bars in gray shade, compared to the theoretical prob-
ability (thick solid line). Similar results are obtained for all
upper and lower diagonals of the quantum operation matrix
A. The reconstruction has been achieved using an entangled
state |ψ〉〉 at the input corresponding to parametric downcon-
version of vacuum with mean thermal photon n̄ and quantum
efficiency at homodyne detectors η. Top: z = 1, n̄ = 5,
η = 0.9, and 150 blocks of 104 data have been used. Bottom:
z = 1, n̄ = 3, η = 0.7, and 300 blocks of 2 ·105 data have been
used. The bottom plot corresponds to the same parameters
of the experiment in Ref. [9].

In Fig. 2 the results from a homodyne tomography
of an optical displacement of one of the two twin beams
from parametric downconversion of the vacuum are pre-
sented for a simulated experiment, for displacement pa-
rameter z = 1, and for some typical values of the quan-
tum efficiency η at homodyne detectors and of the mean
thermal photon number n̄ of the twin beam. As one
can see a meaningful reconstruction of the matrix can
be achieved in the given range with 106 ÷ 107 data, but
this number can be decreased of a factor 100− 1000 us-
ing the tomographic max-likelihood techniques of Ref.
[12], however at the expense of the complexity of the
algorithm. Homodyne overall quantum efficiencies and
amplifier gains (for the twin-beam) typical of the experi-
mental setup of Ref. [9] are considered. Improving quan-
tum efficiency and increasing the amplifier gain (toward
a maximally entangled state) have the effect of making
statistical errors smaller and more uniform versus the
photon labels n and m of the matrix Anm. Meaningful
reconstructions can be achieved with as few as n̄ ∼ 1
thermal photons, and with quantum efficiency as low as
η = 0.7.
We want to mention that the present quantum tomo-

graphic method for measuring the matrix of a quantum
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operation can be much improved by means of a max-
likelihood strategy aimed at the estimation of some un-
known parameters of the quantum operation (such max-
likelihood strategy should not be confused with the max-
likelihood method of for the tomographic reconstruction
in Ref. [12]). In this case, instead of obtaining the ma-
trix elements of R(I) from the ensemble averages in (18),
one has R(I) parametrized in terms of unknown quanti-
ties to be experimentally determined, and the likelihood
is maximized for the set of experimental data at various
randomly selected (tensor) quorum elements, keeping the
same fixed entangled input state. This method is espe-
cially useful for a very precise experimental comparisons
between the characteristics of a given device (e.g. the
gain and loss of an active fiber) with those of a quantum
standard reference [15].
In conclusion, in this letter we have presented a gen-

eral tomographic method for measuring the matrix of
any quantum operation of arbitrary quantum system.
The method exploits the quantum parallelism of entan-
glement, with a single entangled state playing the role of
a varying input state, thus overcoming the practically un-
solvable problem of availability of all possible input states
for the tomographic analysis of the quantum operation.
We have shown the feasibility of the method for the case
of the electromagnetic field via homodyne tomography of
a twin-beam from nondegenerate downconversion of the
vacuum. The unilateral displacement of the twin-beam
has been considered, and for displacement parameters of
the order of unit our results show that the tomographic
estimation can be achieved using the same apparatus of
a similar recently performed experiment.
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