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Abstract

The electromagnetic radiation that falls into a Reissner-Nordström
black hole develops a “blue sheet” of infinite energy density at the
Cauchy horizon. We consider classical electromagnetic fields (that
were produced during the collapse and then backscattered into the
black hole), and investigate the blue-sheet effects of these fields on
infalling objects within a simplified model. These effects are found to
be finite and even negligible for typical parameters.

The Reissner-Nordström spacetime is the unique electrically charged, spher-

ically symmetric, static vacuum solution of the Einstein-Maxwell equations.

Although astrophysical black holes are not likely to be significantly charged,

the Reissner-Nordström solution (which is simple to deal with due to its

spherical symmetry) can serve as a toy model for more realistic black holes,
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such as Kerr. This may be physically justified by the similarity of the in-

ner causal structures of the Reissner-Nordström and Kerr solutions – as ex-

pressed, e.g., in similar conformal Penrose diagrams [1].

Even though the causal structure of a Reissner-Nordström black hole

admits a hypothetical journey into another asymptotically flat Universe [2],

it turned out that undertaking such a journey might actually be dangerous

[3]. The “tunnel” inside the black hole is crossed by a null hypersurface

known as the inner horizon. This null hypersurface is also a Cauchy horizon,

i.e., it is the boundary of the domain of dependence for initial data specified

on spacelike hypersurfaces in the external Universe. Electromagnetic (or

gravitational) radiation falling into the black hole becomes infinitely blue-

shifted at the Cauchy horizon, typically causing the energy density to blow up

[3, 4, 5]. This could cause two kinds of problems: First, the divergent flux of

energy carried by the electromagnetic waves might heat any infalling physical

object unboundedly, thus burning it up. Second, acting as a source term in

the Einstein equations, the divergent energy density leads to a divergent

curvature at the Cauchy horizon. The infalling object would then experience

an unlimited tidal force, which might lead to its ultimate destruction due

to the tidal distortion. (A more direct cause for the diverging curvature at
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the Cauchy horizon is the infinite blue-shift of the gravitational waves, which

leads to the divergence of the gradient of the metric perturbations.)

Recently, there has been growing evidence [6], that the divergence of the

curvature at the Cauchy horizon is rather weak. Namely, the actual tidal

deformation suffered by a physical object as it reaches the Cauchy horizon is

finite, and (for typical parameters) even negligible. If this is indeed the case,

the ability of physical objects to traverse the Cauchy horizon may depend

crucially on the other potential problem, i.e., the possible annihilation due

to the divergent electromagnetic radiation. The main goal of this letter is to

investigate this issue within a simplified model.

In what follows, we consider an isolated charged black hole, surrounded

by electromagnetic waves, which we treat as a linear perturbation. (In fact,

because of the non-vanishing electric field of the background, this linear per-

turbation consists of both electromagnetic and gravitational waves [4, 5].)

First, we calculate the asymptotic behavior of the electromagnetic perturba-

tion near the Cauchy horizon. Then, we use a simplified model to evaluate the

possible effects of this field on (test-) infalling objects. Let us denote byM,Q∗

the mass and charge of the black hole, and by r the radial Schwarzschild co-

ordinate. Let ∆ = r2 − 2Mr +Q2
∗
. The horizons of the Reissner-Nordström
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black hole are the event horizon r+ and the inner horizon r−, which are lo-

cated at the roots of ∆, namely, at r± = M ± (M2 − Q2
∗
)1/2. We define the

null co-ordinates u = r∗ − t and v = r∗ + t, where r∗ is the Regge-Wheeler

“tortoise” co-ordinate defined by d/ dr∗ = (∆/r2)d/ dr. The co-ordinate t is

spacelike between the event and the Cauchy horizons, and we take t = +∞

at the event horizon. In this letter we are interested in the section u = −∞

of the event horizon and the section v = +∞ of the inner horizon. (These are

the sections which intersect in the standard Penrose diagram at future time-

like infinity of the external Universe.) We assume that the object moves along

a typical radial world-line that intersects the event horizon and the Cauchy

horizon at some finite values v = v0 and u = u0, respectively. Accordingly,

the trajectory of the object can be described by the function r(τ) and by u0,

where τ is the proper time of the infalling object. We set τ(r = r−) = 0.

The details of r(τ) are unimportant to our discussion. (The only piece of

information that enters the calculations is the value of ṙ near r−, where a

dot denotes differentiation with respect to proper time. However, our results

are not sensitive to this parameter.)

The class of perturbations that we consider here is the one which is inher-

ent to any non-spherical gravitational-collapse; these are the electromagnetic
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perturbations which result from the evolution of non-vanishing electromag-

netic multipole moments (in the star) during the collapse. When these per-

turbations propagate outwards, some fraction of them is backscattered off

the spacetime curvature and captured by the black hole. This process leads

to a “tail” of infalling radiation at the event horizon which, at late times

(v ≫ M), decays like (v/M)−(2l+2), where l is the multipole order of the mode

[7]. This electromagnetic field can be treated by the formalism developed in

[4, 5, 8]. We studied the asymptotic behavior of infalling electromagnetic

perturbations at the Cauchy horizon for polar modes [9]. Assuming v0 ≫M

(which also implies −u0 ≫ M), the divergent components of the Maxwell

field strength tensor, as expressed in the rest frame of an infalling observer,

are given by the following approximate expression to the leading order in

κ−τ and (κ−u0)
−1:

E = −B ≈ C ′(κ−τ)
−1
(

ln |κ−τ |+
1

2
κ−u0 + ln |ṙ|

)−(2l+3)

, (1)

where κ− = (r+−r−)/r
2
−
is the surface gravity of the Cauchy horizon; E(B) is

the electric (magnetic) field, which points toward the ∂ / ∂θ (∂ / ∂φ) direction;

C ′ is a slowly varying function of θ,φ (through the Legendre polynomials)

and is also proportional to the initial value of the perturbing fields on the

surface of the collapsing star (or on the event horizon). The choice of the

5



polar modes is not expected to cause any loss of generality, since similar

qualitative behavior is to be anticipated for axial modes too.

The next stage of our analysis is to consider the interaction of the diver-

gent electromagnetic field (1) with the matter comprising the infalling object.

We assume that the object is much smaller than the radius of curvature be-

tween the event and the inner horizons, and hence the effects of curvature

are negligible. Consequently, we can construe the object as being at rest in

its locally co-moving Minkowski frame when an electromagnetic impulse of

the shape (1) comes from null infinity and interacts with it. Even in flat

spacetime, the interaction of matter with such an electromagnetic impulse is

enormously complicated. There are many types of radiative processes, which

may depend on the details of the specific matter intricately. We therefore

ignore all the details of these radiative processes, and use a simplified toy-

model to describe the radiation–matter interaction. Imagine that the object

is made of classical “atoms”. (Later, we also consider a quantum analogue.)

Each “atom” consists of two electrically charged structureless particles with

charges +e and −e, separated from each other by some internal force (e.g., a

“spring”). With the lack of external forces, the system is static. In our case,

the Lorentz force induced by the blue-shifted electromagnetic field changes
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the separation between the two particles. Having in mind a small deviation

from equilibrium (which is justified a posteriori), we assume a linear restor-

ing force F = −µω2X , where X is the deviation (of the particles’ separation)

from equilibrium, ω is the resonance frequency, and µ is the reduced mass.

(The phrase “atom” refers here to an elementary unit of matter; we do not

consider a solar-type system here.) The dipole is chosen to be aligned in

the ∂ / ∂θ direction (to allow for a maximum interaction with the field). We

take the initial conditions to be X = 0 and Ẋ = 0. The system’s energy

absorption is described by its “excitation”, i.e., by the gain in kinetic and

potential energy. Although this model is extremely simplified, it may provide

some insight into the interaction of classical radiation with matter.

The equation of motion is µẌ +µω2X = eE(τ), where E(τ) is the diver-

gent component of the electric field (1). (The contribution of the magnetic

field is neglected, as the ratio of the electric and the magnetic terms in the

expression for the Lorentz force is proportional to the system’s internal ve-

locity Ẋ , which is taken to be small – a presumption which is justified a

posteriori.) The solution of this equation is

X(τ) = −
1

2iω
e−iωτ

∫ τ

−T

e

µ
E(τ ′)eiωτ

′

dτ ′ + c.c, (2)
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where T is the time of infall from the event horizon to the Cauchy horizon.

It can be shown that the total absorbed mechanical energy of the system Ec

up to proper time τ is

Ec(τ) =
1

2
µ

∣

∣

∣

∣

∣

∫ τ

−T

e

µ
E(τ ′)eiωτ

′

dτ ′
∣

∣

∣

∣

∣

2

. (3)

We assume that ω is of the order of magnitude of typical molecular or

atomic frequencies (or higher). For typical astrophysical black holes we

have ωM ≫ 1. This implies T ≫ ω−1. Hence, to evaluate the integral

in (2) and (3) we divide the infall period into three qualitatively different

regions, denoted as regions a, b, and c, respectively. In region a, defined by

−T < τ ≪ −ω−1, the slowly varying electric field can be taken outside the in-

tegration, and therefore the absolute value of the integral follows the electric

field adiabatically. [This property means that the system has no records of

its past, so the results are insensitive to the behavior of E(τ) at τ ≪ −ω−1.]

In region c, defined by −ω−1 ≪ τ < 0, the exponent in the integrand can be

taken outside the integral, and the remaining integration is easily solvable.

In between (region b), our assumption ω−1 ≪ M ≪ −u0 implies that the

variation in the logarithmic term in (1) is negligible throughout the region.

Taking this logarithmic term to be constant, the integral is easily solvable

for region b too. Matching the solutions for the different regions, it can be
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shown [10] that the total contribution of all three regions to Ec, X and Ẋ on

the Cauchy horizon is, to the leading order in (κ−u0)
−1,

Ec(τ = 0) ≈
1

2(2l + 2)2
C ′2

κ2−
µ

(

e

µ

)2 (
1

2
κ−u0

)−2(2l+2)

,

Ẋ(τ = 0) ≈
C ′

(2l + 2)κ−

(

e

µ

)

(

1

2
κ−u0

)−(2l+2)

,

X(τ = 0) ≈ −
1

2

π

ω

C ′

κ−

(

e

µ

)

(

1

2
κ−u0

)−(2l+3)

.

Now, it is easy to show that for fixed r(τ) there is a one-to-one correspondence

between v0 and u0. In fact, du0/ dv0 = −1. Therefore, the infalling observer

can increase |u0| by simply waiting outside the black hole before jumping in

and thus increasing the value of v0. For a sufficiently large |u0| we find that

Ec, X and Ẋ are finite and small. Therefore, the behavior of the charged

classical system obtained by the above analysis is regular, and although the

external force acting on the system diverges on the Cauchy horizon, the

energy absorbed by it is finite and negligible for a sufficiently large v0.

A quantum analogue can be conceived as a non-degenerate two-level sys-

tem (the ground state |ψi〉 and the excited state |ψf 〉) obeying Schrödinger’s

equation. We take the system to be initially in its ground state |ψi〉. The

excitation of the system can be described by the amplitude af of the excited

9



state |ψf〉 in the wave-function. This amplitude can be given [10] in the

Coulomb gauge by first order time-dependent perturbation theory to be

af (τ) = −
1

h̄Ωfi

e

m
〈ψf |

(
∫ τ

−T
eiΩfiτ

′

E dτ ′
)

p |ψi〉 ,

where p is the component of the momentum 3-vector in the direction of

∂ / ∂θ, h̄Ωfi is the energy gap between the states, and m is the electron

mass. The integral here is the same as in eq. (3). It can then be shown that

on the Cauchy horizon the absorbed energy Eq(τ) is, to the leading order in

(κ−u0)
−1,

Eq(0) =
1

(2l + 2)2
1

h̄Ωfi

(

e

m

)2 C ′2

κ2−

∣

∣

∣〈ψf |e
−iΩfiz̄p|ψi〉

∣

∣

∣

2
(

1

2
κ−u0

)−2(2l+2)

,

where z̄ is a spatial Cartesian co-ordinate in the system’s rest- frame, pointed

in the radial direction. The treatment here can be generalized to a many level

system. There is a remarkable correspondence between our results for the

classical system and for the quantum system as can be clearly seen from the

similarity of the expressions for the absorbed energies in the two cases.

We have shown (in both the classical and the quantum models) that in

spite of the divergence of the radiation’s energy density (or even its integral

over proper time) as a consequence of the infinite blue shift, an infalling

observer may experience just a finite effect upon crossing the Cauchy horizon.
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Moreover, it is possible to reduce the extent of that effect to a negligible

impact, depending only on how long after the collapse generating the black

hole the observer jumps into it. (Note, however, that physical effects beyond

the Cauchy horizon are as yet unknown.)

Obviously, the toy-model used here for the radiation–matter interaction

is a very simplified one. We believe, however, that this model captures the

main essence of the problem. We also note that our treatment here is based

on a first order perturbation analysis; yet we do not expect higher-order

contributions to change the qualitative picture significantly.

We have not considered here possible Qed effects. In addition, a more re-

alistic model should consider other sources of electromagnetic fields (e.g., the

cosmic background radiation). After the completion of this research we be-

came aware of the the possibility that these effects may have a much stronger

impact than the classical electrodynamic effects studied here. We are espe-

cially worried about pair-production due to the interaction of the infalling

matter with the highly blue-shifted cosmic-radiation photons. Preliminary

estimates suggest to us that this process could be fatal for a human-being

observer (due to his high vulnerability to γ-rays), but typical physical objects

of similar or smaller size might survive it. These effects are currently under
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investigation.

Further details of this work will be published elsewhere [10].
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