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Photonic Band Structure: The Face-Centered-Cubic Case Employing Nonspherical Atoms
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We introduce a practical, new, face-centered-cubic dielectric structure which simultaneously solves
two of the outstanding problems in photonic band structure. In this new "photonic crystal" the atoms
are nonspherical, lifting the degeneracy at the 8 point of the Brillouin zone, and permitting a full pho-
tonic band gap rather than a pseudogap. Furthermore, this fully three-dimensional fcc structure lends
itself readily to microfabrication on the scale of optical wavelengths. It is created by simply drilling
three sets of holes 35.26 oA' vertical into the top surface of a solid slab or wafer, as can be done, for ex-
ample, by chemical-beam-assisted ion etching.

PACS numbers: 42.50.—p, 41.10.HV, 71.25.Cx, 84.90.+a

There is an interesting analogy between electron waves
in a crystal and light waves in a three-dimensionally
periodic dielectric structure. Both should be described
[1,2] by band theory. The concepts of reciprocal space,
Brillouin zones, dispersion relations, Bloch wave func-
tions, Van Hove singularities, etc. , are now being applied
[3-6] to optical waves.

A search has been underway for three-dimensional to-
pologies in which a "photonic band gap" can open up.
This would be an energy band in which optical modes, ,

spontaneous emission, and zero-point fluctuations are all
absent. Indeed, a photonic band gap would be essentially
ideal since optical dielectric response can be real and dis-
sipationless.

In addition to the obvious applications in atomic phys-
ics, inhibited spontaneous emission can now begin to play
a role in semiconductor and solid-state electronics. If the
photonic band gap overlaps the electronic band edge,
spontaneous electron-hole recombination is rigorously
forbidden. In a semiconductor laser, this would lead to
near unity quantum e%ciency into the lasing mode.
Photon-number-state squeezing [7] into that mode would
be greatly enhanced.

There have been two main challenges in this field. The
first was to show that a full three-dimensional photonic
band gap could actually exist in some type of dielectric
structure. The second was to show that such a forbidden

gap could be created in a microstructure amenable to
practical microfabrication.

At the outset it was realized [1] that a face-centered-
cubic (fcc) array in real space would produce the "round-
est" Brillouin zone in reciprocal space. Such a spherelike
Brillouin zone improves the prospects for a forbidden gap
to overlap all the way around its surface. But it was un-
clear what should be the real-space shape of the atoms in
the fcc array. The original suggestion [1] called for cubic
atoms. Later, the first experimental effort [8] concentrat-
ed on dielectric spheres and on spherical voids in a dielec-
tric background. The spherical-void structure appeared
to perform particularly well.

During this same period, electronic band theorists be-

gan calculating photonic band structure. It rapidly be-

came apparent that the familiar scalar-wave-band theory,
so frequently used for electrons in solids, was in utter
disagreement with experiment on photons [9-12]. Re-
cently, a full vector-wave-band theory [3-51 became
available, which not only agreed with experiment, but

highlighted some discrepancies in experiment. Vector-
wave-band theory showed that spherical atomic symme-

try produced a degeneracy between valence and conduc-

tion bands at the 8' point of the Brillouin zone, allowing

only a pseudogap, rather than a full photonic band gap.
Ho, Chan, and Soukoulis [5] were the first to overcome
this problem. They introduced the diamond structure,
which required two atoms per fcc unit cell.

More generally we find that the symmetry-induced de-

generacy in fcc structures is lifted by making the atoms
nonspherical. This has led to a practical, new fcc struc-
ture which lends itself readily to microfabrication on the

scale of optical wavelengths. It is created by simply dril-

ling three sets of holes 35.26 oA vertical into the top sur-

face of a solid slab or wafer, as can be done, for example,

by reactive ion etching. At refractive index n —3.6, typi-
cal of semiconductors, the 3D forbidden photonic band-

gap width in this new structure is —20% of its center fre-

quency. Calculations indicate that the gap remains open
for refractive indices n ~ 2.1.

The Wigner-Seitz (WS) unit cell of the fcc lattice is a
rhombic dodecahedron as shown in Fig. 1. The problem
of creating an arbitrary fcc dielectric structure reduces to
the problem of filling the fcc WS real-space unit cell with

an arbitrary spatial distribution of dielectric material.
Real space is then filled by repeated translation and close
packing of the %'S unit cells.

Figure 1(a) shows a WS unit cell filled by an oversized

spherical void, a structure which performed rather well in

Ref. [8]. Since the spheres were slightly larger than close

packed, the voids broke through the surfaces of the WS
unit cell as indicated by the dashed circles on the faces of
the rhombic dodecahedron in Fig. 1(a). In Ref. [8] it

was already pointed out that there was a symmetry-
induced degeneracy at the 8' point of the Brillouin zone

1991 The American Physical Society



VOLUME 67, NUMBER 17 PHYSICAL REVIEW LETTERS 21 OCTOBER 1991

I
'~

+35'

35 o

(a)

FIG. l. The Wigner-Seitz real-space unit cell of the fcc lat-
tice is a rhombic dodecahedron. In Ref. [8], slightly oversized
spherical voids were inscribed into the unit cell, breaking
through the faces, as illustrated by the dashed lines in (a). The
current structure, shown in (b), is nonspherical. Cylindrical
holes are drilled through the top three facets of the rhombic
dodecahedron and exit through the bottom three facets. The
resulting atoms are roughly cylindrical, and have a preferred
axis in the vertical direction.

in fcc structures. There was a danger that the valence
and conduction bands could touch at the degeneracy,
closing the photonic band gap. Based on the weight of
experimental evidence, however, Ref. [8] argued that the
degeneracy had only caused adjacent conduction-band
levels to touch, permitting the gap to remain open.
Vector-wave-band theory, which has become quite suc-
cessful recently [3-5], contradicted this. It showed that
the degeneracy did indeed cause valence and conduction
bands to touch at W, permitting only a pseudogap rather
than a full photonic band gap. Unfortunately, the finite-
sized experimental sample in Ref. [8] allowed inadequate
resolution to detect touching at isolated points on the
Brillouin zone.

We have made a close examination [13] of the degen-
erate wave functions at 6' in the nearly free-photon mod-
el, and learned that a distortion of the spherical atoms
along the (111)direction will lift the degeneracy. The di-
amond structure of Ho, Chan, and Soukoulis [5], with
two atoms per unit cell, fulfills this function admirably.
Alternatively, the WS unit cell in Fig. 1(b) also has great
merit for this purpose. Holes are drilled through the top
three facets of the rhombic dodecahedron and exit
through the bottom three facets. The beauty of the struc-
ture in Fig. 1(b) is that a stacking of WS unit cells re-
sults in straight holes which pass clear through the entire
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FIG. 2. The method of constructing an fcc lattice of the
Wigner-Seitz cells as shown in Fig. I (b). A slab of material is

covered by a mask consisting of a triangular array of holes.
Each hole is drilled through 3 times, at an angle 35.26' away
from normal, and spread out 120 on the azimuth. The result-

ing crisscross of holes below the surface of the slab, suggested

by the cross hatching shown here, produces a fully three-
dimensionally periodic fcc structure, with unit cells as given by
Fig. 1(b). The drilling can be done by a real drill bit for mi-

crowave work, or by reactive ion etching to create an fcc struc-
ture at optical wavelengths.

"crystal. " The "atoms" are odd-shaped, roughly cylin-
drical voids centered in the WS unit cell, with a preferred
axis pointing to the top vertex, (111).

An operational illustration of the construction which
produces an fcc crystal of such WS unit cells is shown in

Fig. 2. A slab of material is covered by a mask contain-
ing a triangular array of holes. Three drilling operations
are conducted through each hole, 35.26' oA' normal in-

cidence and spread out 120 on the azimuth. The result-
ing crisscross of holes below the surface of the slab pro-
duces a fully three-dimensionally periodic fcc structure,
with WS unit cells given by Fig. 1(b). The drilling can
be done by a real drill bit for microwave work, or by reac-
tive ion etching to create an fcc structure at optical wave-

lengths. We have fabricated such crystals in the mi-
crowave region by direct drilling into a commercial, low-

loss, dielectric material, Emerson A. Cumming Stycast-
12. Its microwave refractive index, n —3.6, is meant to
correspond to that of the common semiconductors, Si,
GaAs, etc. By simply scaling down the dimensions, this
structure can be employed equally well at optical wave-
lengths. In this paper we will present the measured and
calculated, m vs k, dispersion relations for this new pho-
tonic crystal.

The diamond symmetry of Ho, Chan, and Soukoulis
[5] can be created by supplementing the operations of
Fig. 2 with three additional drilling operations, making a
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total of six drilling directions. These three new drilling
directions, 120 apart, would all lie within the plane of
the slab. Therefore they are somewhat diicult to impless

ment experimentally. The six drilling directions corre-
spond to the six inequivalent (110)channeling holes in di-
amond structure.

%e have experimentally surveyed three fcc structures,
drilled in accordance with Fig. 2, to different ratios d/a of
hole diameter d to fcc unit cube length a: d/a =0.361,
0.433, and 0.469. The removed volume fraction was ap-
proximately 62%, 70%, and 78% in the three cases, re-
spectively. The 78%-empty structure had the largest for-
bidden gap in this set and in this Letter we will present
results on that structure only. We believe 78% is near the
optimal volume fraction for this fcc geometry.

Our procedure is similar to the one we used in Ref. [8],
except that our dynamic range was improved by using an
HP-8510 Network Analyzer for all the measurements.
The experimental aim is to fully explore all 4n sr in re-
ciprocal space, while scanning frequency. The valence-
band edge frequency is defined by a sudden drop in mi-
crowave transmission, while the conduction-band edge is
defined by the frequency at which the transmitted signal
recovers. Conservation of wave-vector momentum paralss

lel to the slab entry face determines the band-edge posi-
tion along the surface of the Brillouin zone. Since there
are two polarizations, we can usually determine the two
valence-band edges and two of the conduction bands.

Sometimes the coupling of external plane waves to
internal Bloch waves is poor, and the experiment can miss
one of the conduction-band edges, as happened in Ref.
[8]. Finite sample size limits the usable dynatnic range,
exacerbating the weak-coupling problem. Therefore it is
important to back up the measurements with numerical
calculations, as we have done here. The scalar dielectric
constant distribution of Fig. 1 is expanded as a Fourier
series in reciprocal space, while Maxwell's equations are
expanded [3] as vector plane waves. The eigenvalues
converge after a few hundred plane waves are summed in

the expansion.
In spite of the nonspherical atoms in Fig. 1(b), the

Brillouin zone (BZ) is identical to the standard fcc BZ
shown in textbooks. Nevertheless, we have chosen an
unusual perspective from which to view the Brillouin zone
in Fig. 3(a). Instead of having the fcc BZ resting on one
of its diamond-shaped facets as is usually done, we have
chosen in Fig. 3(a) to present it resting on a hexagonal
face. Since there is a preferred axis for the atoms, the
distinctive L points centered in the top and bottom hexa-
gons are threefold symmetry axes, and are labeled L3.
The L points centered in the other six hexagons are sym-
metric only under a 360 rotation, and are labeled L ~. It
is helpful to know that the U3-K3 points are equivalent
since they are a reciprocal-lattice vector apart. Likewise
the U~ -K~ points are equivalent.

Normal incidence on the slab of Fig. 2 sends the propa-
gation vector directly toward L3 in reciprocal space ("the
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north pole" ). Tilting the angle of incidence moves the
propagation vector along a "meridian" toward the "equass
tor." By choosing diAerent azimuthal angles toward
which to tilt, the full reciprocal space can be explored.
Figure 3(b) shows the dispersion relations along different
meridians for our primary experimental sample of nor-
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F1@. 3. (a) The Brillouin zone of an fcc structure incor-

porating nonspherical atoms, as in Fig. 1(b). Since the space
lattice is not distorted, this is simply the standard fcc Brillouin

zone lying on a hexagonal face rather than the usual cubic face.
Only the L points on the top and bottom hexagons are threefold

symmetry axes. Therefore they are labeled L3. The L points on

the other six hexagons are labeled L[. The U3-K3 points are
equivalent since they are a reciprocal-lattice vector apart. Like-

wise, the Ui-Ki points are equivalent. (b) Frequency vs wave

vector, m vs k, dispersion along the surface of the Brillouin zone

shown in (a), where e/a is the speed of light divided by the fcc
cube length. The ovals and triangles are the experimental

points for s and p polarizations, respectively. The solid and

dashed lines are the calculations for s and p polarizations, re-

spectively. The dark shaded band is the totally forbidden band

gap. The lighter shaded stripes above and below the dark band

are forbidden only for s and p polarizations, respectively.
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malized hole diameter d/a =0.469 and 78% volume frac-
tion removed. The oval points represent experimental
data with s polarization (perpendicular to the plane of in-
cidence, parallel to the slab surface), while the triangular
points represent p polarization (parallel to the plane of
incidence, partially perpendicular to the slab surface).
The horizontal abscissa in the lower graph of Fig. 3(b)
L3 K3 L ] U3 X-U3-L3 represents a full meridian from
the north pole to the south pole of the Bz. Along this
meridian the Bloch wave functions separate neatly into s
and p polarizations. The s- and p-polarized theory curves
are the solid and dashed lines, respectively. The dark
shaded band is the totally forbidden photonic band gap.
The lighter shaded stripes above and below the dark band
are forbidden only for s and p polarizations, respectively.

Along the meridian L3-8'-K], the polarizations do not
separate neatly, and only the totally forbidden photonic
band gap is shaded. The top of the valence band is at 8'
and is mostly s polarized, but the valence-band peaks at
U3 X, and UI are almost as high. The bottom of the con-
duction band is at I ~, purely p polarized, is only margin-
ally lower than the valley at L3. We have also measured
the imaginary wave-vector dispersion within the forbid-
den gap. At midgap we find an attenuation of 10 dB per
unit cube length a. Therefore the photonic crystal need
not be very many layers thick to eAectively expel the
zero-point electromagnetic field.

At a typical semiconductor refractive index, n =3.6,
the 3D forbidden gap width is 19% of its center frequen-
cy. %e have repeated the calculation at lower refractive
indices, reoptimizing the hole diameter. Qur calculations
indicate that the gap remains open for refractive indices
as low as n =2.1 using circular holes as in Fig. 2. In
reactive ion etching, the projection of circular mask open-
ings at 35 leaves oval holes in the material, which might
not perform as well. Fortunately we found, defying
Murphy's law, that the forbidden gap width for oval holes
is actually improved, fully 21.7% of its center frequency.

In the visible region, there are many transparent opti-
cal materials available with a refractive index above 2.1.

Furthermore, state-of-the-art reactive ion etching [14]
can produce holes that are ~ 20 times deeper than their
diameter, deep enough to produce an fcc photonic crystal
with substantial inhibition in the forbidden gap. It ap-
pears that the application of photonic band gaps to semi-
conductor physics, optical, and atomic physics may soon
be practical.
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