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The elastic properties of neutron star crusts are relevant for a variety of currently observable or
near-future electromagnetic and gravitational wave phenomena. These phenomena may depend on
the elastic properties of nuclear pasta found in the inner crust. We present large scale classical
molecular dynamics simulations where we deform nuclear pasta. We simulate idealized samples
of nuclear pasta and describe their breaking mechanism. We also deform nuclear pasta that is
arranged into many domains, similar to what is known for the ions in neutron star crusts. Our
results show that nuclear pasta may be the strongest known material, perhaps with a shear modulus
of 1030 ergs/cm3 and breaking strain greater than 0.1.

Introduction. The breaking strain of materials in neu-
tron star (NS) crusts are relevant for a variety of elec-
tromagnetic and gravitational wave phenomena. Crust
breaking may occur in magnetar outbursts [1], resonant
crust shattering in NS mergers [2], and in the starquake
model for pulsar glitches [3, 4]. Likewise, the shear mod-
ulus of crust matter may affect the oscillation frequency
of magnetar flares [5], the damping of r-modes [6], and
determine the height and lifetime of mountains on a NS
[4, 7].

The crust comprises the outermost kilometer of the NS,
where the density goes from near vacuum at the surface
to nuclear density (1014 g/cm

3
) at the base. The outer

crust is a bcc lattice of nuclei embedded in a gas of degen-
erate electrons, which becomes increasingly neutron rich
with depth [8, 9]. At the base of the inner crust the sepa-
ration between nuclei becomes comparable to nuclei radii
and nucleons rearrange themselves into complex shapes
known as nuclear pasta [10, 11]. The pasta layer may
be 100-250 m thick, but due to its high density may con-
tain half the total mass of the crust or more [12]. It is
therefore essential to understand the elastic properties of
this material, as it may play an important role in crust
breaking and be the dominant source of continuous grav-
itational waves that aLIGO is now searching for [13].

Past works have studied elastic properties (break-
ing strain and shear modulus) of the ion crust with
both molecular dynamics (MD) and analytic methods
[4, 8, 9, 14–16]. The ion crust is understood to be a poly-
crystalline bcc lattice, i.e., composed of microscopic do-
mains with different orientations. Thus, over sufficiently
large length scales the crust is treated as an isotropic
material whose properties are found by angle averaging
bcc lattice properties [16]. MD simulations suggest that
domains lead to an effective angle-averaged shear mod-
ulus [4, 15] and that high pressure prevents voids from
forming and fractures from propagating, thus, leading to
a relatively high breaking strain ε ≈ 0.1 [15].

Presently, the pasta is less well understood. Unlike

the ion lattice pasta is not a crystal but, rather, a liquid
crystal. Pethick & Potekhin, Ref. [17], were the first to
study the elasticity of nuclear pasta. They considered
the energy of deformation Ed of parallel pasta plates to
be
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B
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2
(∇2
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where B and K1 are elastic constants and u the displace-
ment between plates along the z axis (plate normal) [17].
The first term is the energy due to the separation of the
plates. The (∇⊥u)2 term is due to rotational invariance,
as out-of-plane shear is rotationally equivalent to chang-
ing the plate spacing. The last term is due to splay de-
formations (plate curvature).

These analytic techniques are difficult to apply to
asymmetric pasta or pasta lacking long range order. Even
short range disorder such as helicoidal defects (filaments
connecting the plates) may support shear stresses be-
tween plates. These may be difficult to predict analyt-
ically, but can be studied using MD simulations. The
same is true for the effect of domains and their bound-
aries in nuclear pasta on crust elasticity.

Watanabe et al. compare the typical thermal energy
to the energy of deformation of nuclear pasta and find
that pasta deforms on length scales of order ten times
its spacing [18]. This result is supported by quantum
mechanical simulations that suggest that the pasta, like
the ion crust, does not have a uniform orientation across
the star [19]. Rather, nuclear pasta should be composed
of many microscopic domains with distinct orientations.
Thus, calculations of the elastic properties of the crust
should consider ‘polycrystalline’ nuclear pasta with many
domains. Currently, such studies are limited to MD sim-
ulations since those can simulate large volumes with mul-
tiple domains [20] while quantum mechanical simulations
are limited to a few thousand nucleons [21].

In this Letter we discuss MD simulations (1) deform-
ing nuclear pasta plates, to understand the breaking of
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its elementary units, and (2) deforming a large nuclear
pasta system with multiple domains, to understand angle
averaged elastic properties of nuclear pasta.

Simulations. Our simulations are performed using
the Indiana University Molecular Dynamics code v6.3.1
(IUMD), which has been used extensively to simulate nu-
clear pasta [9, 22, 23]. In our model, two nucleons i and
j separated by a distance r interact via the two-body
potential

Vij(r) = ae−r
2/Λ + [b± c]e−r

2/2Λ +
eiej
r
e−r/λ . (2)

The parameters a, b, c, and Λ are chosen to reproduce
the binding energy of nuclei, pure neutron matter, and
symmetric nuclear matter while λ is the Thomas-Fermi
screening length, fixed at 10 fm for simplicity [22]. The
b+ c (b− c) term sets a weak (strong) attraction between
like (alike) nucleons. The electric charges ei and ej pro-
duce long range Coulomb repulsion between protons. All
systems are simulated at temperature T = 1 MeV and
nucleon number density n = 0.05 fm−3.

Our first simulations contain 102 400 nucleons at a pro-
ton fraction YP = 0.4, where pasta is expected to form
‘lasagna’ plates [9, 23]. This proton fraction is higher
than expected in the inner crust, but is where our model
forms pasta; at more realistic proton fractions the classi-
cal model produces a gas of protons and neutrons [24].

We initialize our simulation with a cubic volume (side
length l0) with periodic boundary conditions and apply
volume preserving deformations. During a simulation,
we apply constant extensional strain along axis r and
contract along the other two, s and t, by adjusting the
box boundary position slightly after each MD timestep,
i.e.,

lr(t) = l0(1 + ε̇t) and ls(t) = lt(t) =
l0√

1 + ε̇t
. (3)

where ε̇ is the strain rate and r, s, and t are permutations
of x, y, and z. Nucleons may have an arbitrary initial
arrangement and respond dynamically to the changing
simulation volume. The induced stresses are calculated
using

σαβ =
1

V

∑
i

−mu(i)
α u

(j)
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α )f
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Above, V is the simulation volume, m the nucleon mass,

x
(i)
α (u

(i)
α ) the α component of the position (velocity) of

nucleon i and f
(ij)
β the β component of the force nucleon

i exerts on nucleon j. Repeated (mixed) lower indices
denote tensile (shear) stress.

Although these are purely tensile strains, they can
be transformed into shear strains by having the pasta
structures oriented at an angle with respect to the sim-
ulation boundaries. Furthermore, nuclear pasta is not

necessarily linearly elastic. Lasagna, for example, has
transverse isotropy implying five independent elastic con-
stants. Misalignment of the pasta structures with respect
to the boundary and their time evolution makes it dif-
ficult to isolate these constants for all but the simplest
cases. For most simulations, we observe a rotated stress
tensor which mixes all σ terms.

We strain at rates ε̇ = 1 × 10−7 and 2 × 10−7 c/fm
until a final strain εr = 1 along the axis of extension
is achieved. This results in a compressional strain of
εs = εt = 1/ 2

√
2 ≈ 0.29 in the other two axes. This

choice of strain rate does not affect our results. Although
these deformations are much greater than those realized
in astrophysical systems, they allow us to observe the
breaking behavior of nuclear pasta.

First we deform ‘perfect’ plates which are aligned with
the xy plane of the simulation volume [26]. In the first
case, Fig. 1a, we strain along the z direction, pulling
the plates apart, while contracting along the plate plane.
For εz > 0.05 the plates start to buckle to maintain their
initial spacing. Tensile stress along z remains constant
from then on, while the stress in the plates decrease as
the plates buckle. The plates deform continuously with-
out breaking up till a strain εz = 1. As expected, no
significant shear stresses are observed in this run.

In the second case, Fig. 1b, we strain along the x
axis, pulling along the plates and allowing their spacing
to contract. Tensile stress along the z direction grows
as Coulomb pressure between plates increases. Mean-
while, in-plane stress decreases with the thinning of the
plates. At εx ≈ 0.3 (εz ≈ 0.13), the plates break and
the stresses abruptly change. The stresses reset and the
process continues until another breaking event occurs at
εx ≈ 0.8. To our knowledge, this breaking mechanism
has not been described elsewhere in the literature so we
describe it here in detail. We observe that (1) for small
strains the spacing between plates decreases while the
plates themselves become thinner. (2) Once the plates
are thin enough, thermal fluctuations nucleate holes in
them. (3) By displacing nucleons in the plate the holes re-
lieves the Coulomb pressure between adjacent plates. (4)
Adjacent plates become convex in the region of the holes.
This partially fills the space vacated by the holes and al-
lows the plates to increase their spacing locally, further
reducing the system’s pressure. (5) Convex lobes from
the adjacent plates connect near the hole, forming short
helicoidal bridges that connects adjacent plates. This
allows connected plates to exchange nucleons. This pro-
cess occurs in several locations simultaneously, allowing
the plates to thicken and increase their interspacing lo-
cally. The bridges then drift through the plates until they
are aligned, as seen in Fig. 1b, suggesting there is long
range attraction between them as predicted by Guven et
al. [27]. Once the plates reach their ideal thickness the
bridges thin and disconnect, resulting in planar lasagna
but with one fewer plate spanning the simulation volume.
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a) Tensile deformations pulling lasagna sheets apart.
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b) Tensile deformation pulling lasagna sheets laterally while compressing them
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c) Lasagna sheets experiencing both tensile and shear strains
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d) Lasagna sheets with defects experiencing both tensile and shear strains, arrows show shear stress due to defects

FIG. 1. Simulations deforming idealized nuclear pasta. Left to right, (1) initial configuration of the pasta, (2) deformed pasta
at some later time, (3) tensile stresses vs. extensional strain, and (4) shear stresses vs. extensional strain. Strain εr = lr(t)− l0,
see Eq. (4), is proportional to time. Animations avaiable in SM1-4 [25].

During the first breaking event we observe that the shear
stresses in the xz and yz planes are briefly nonzero, sug-
gesting that bridges can support shear stresses between
plates.

While the helicoidal bridges were short lived in this
simulation, past work has identified stable configurations
where filaments connecting plates are long lived [28].
These may support shear stresses between plates and,
perhaps, even act as grain boundaries between domains
where pasta plates have different orientations.

We also consider simulations of lasagna plates which
are misaligned with the sides of the box allowing us to
induce shear stresses in the material. In Fig. 1c the pasta
plates are rotated in the xz plane, while in Fig. 1d plates
are similarly oriented but connected by stable long lived
filaments. Both systems have similar energy, suggesting
that pasta has multiple available phases to it [19].

The plates in Fig. 1c are free to adjust their inclina-
tion in response to the applied strain. They first break
near εz ≈ 0.68, implying that pasta breaks less easily
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FIG. 2. Multidomain simulation of strained nuclear pasta.
(Top) Tensile, left, and shear stresses, right. (Bottom) Evolu-
tion of domains, identified by color, from no strain (εx = 0.0),
left, to εx = 0.2, right. Animations in SM5,6 [25].

when the plates can adjust their inclination. The shear
stress in the xz plane grows approximately linearly un-
til the break, transforming a tensile stress into a shear
stress as expected. However, these shear stresses can be
eliminated by applying a rotation matrix to the stress
tensor whose angle is taken from the inclination of the
plates, approximately recovering the stresses seen in Fig.
1b, as expected. This directly confirms that disconnected
plates have near zero shear modulus between plates, as
claimed by Pethick & Potekhin [17].

In the run with inclined plates connected by helicoidal
defects, Fig. 1d, the tensile deformation of the boundary
again produces a shear deformation of the plates in the xz
plane. However, the filaments initially resist this shear.
The filaments break near εy ≈ 0.2, at which point the
evolution proceeds identically to the case discussed in
Fig. 1c.

The difference in σxz at small strains between Fig. 1c
and Fig. 1d cannot be eliminated by applying a rotation
and is a clear indication of a shear modulus produced by
the filaments. Their difference gives a maximum shear
stress of 3× 10−4 MeV/fm

3
; estimating the shear strain

to be 0.1 gives us a shear modulus of 5 × 1030 erg/cm
3
.

The rotation of the plates partially transforms the shear
stress into a tensile stress at small strains, so this shear
modulus may be a factor of two larger.

With the elastic response of individual domains of nu-
clear pasta understood, we now consider a larger sim-
ulation with many domains. This simulation contains
3 276 800 nucleons at proton fraction YP = 0.3. These

parameters are known to produce parallel plates with a
hexagonal arrangement of holes, the ‘waffle’ phase [24].
This proton fraction was chosen for two reasons. First,
the simulation is less computationally expensive and al-
lows us to evolve a larger number of particles. Second,
the filamentary structure of the waffles allow us to study
how domains and asymmetry affect pasta elasticity.

This is the largest simulation of nuclear pasta yet and
its preparation is discussed in detail in Ref. [20]. Briefly,
we evolved a random initial state for over 15,250,000 MD
timesteps and the system formed seven differently ori-
ented domains, see Fig. 2. The plates are misaligned
at domain boundaries, but topologically connected by
filaments. The relative volume fractions of domains re-
mained approximately constant during this initial evolu-
tion, suggesting the domains are long lived.

This simulation was strained at a rate ε̇x = 2 × 10−7

c/fm until εx = 0.25. The stresses are shown in Fig.
2. No breaking was observed. Shear and tensile stresses
with components perpendicular to the strain direction x
grow approximately linearly until εx ∼ 0.12 and then flat-
ten out. Meanwhile, stresses with x components decrease
slightly before flattening out. This is expected for a lin-
ear isotropic material which is misaligned with the strain
axis. Another simulation was strained at ε̇x = 1 × 10−6

c/fm until εx = 0.77 and found similar results. While
it is not possible to extract individual elastic constants
from this simulation, the stresses grow comparably to our
Yp = 40% simulations, suggesting they may be similar.

In Fig. 2 we show our simulation for two different
strains, εx = 0.0 and 0.2. At their boundaries, domains
are connected by filaments similar to the helicoidal de-
fects considered above. When strained, domains move
relative to each other and slide with limited resistance.
At large strains, nucleons flow between adjacent domains
at the boundaries, allowing domains to shrink or grow in
response to the applied stress. This is a mechanism for
plastic flow, possibly preventing catastrophic failures. If
nuclear pasta forms domains, the inner crust may simply
not break for realistic astrophysical strains.
Discussion. We find, using MD simulations, that the

analytic model of Pethick & Potekhin describes well the
qualitative elastic response of idealized lasagna plates
to large deformations. Idealized nuclear pasta is strong
in our model, possibly with a shear modulus as large
as 1031 erg/cm

3
. This is comparable to the strength of

the outer crust extrapolated to the high densities at the
crust-core boundary, which may make nuclear pasta the
strongest material in the known universe.

For comparison, a typical nucleus predicted at pasta
densities by Haensel & Zdunik for an accreted crust
is 88Ti (Z=22) with free neutron fraction Xn = 0.80
[29]. Using the effective shear modulus of Horowitz &
Hughto µeff ∼ 0.11nZ2e2/a (ion number density n,

a = [3/(4πn)]1/3) we find µ = 1.1 × 1030erg/cm
3

[30].
We emphasize that the large shear modulus and break-
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ing strain for our pasta simulations are model dependent.
Our simulations use proton fractions much larger than
those expected in the inner crust of NSs. A lower pro-
ton fraction likely reduces the shear modulus, perhaps
to 1030erg/cm

3
. This motivates further work on pasta

elasticity, especially the role that superfluidity may play,
which is beyond the scope of our simulations [31].

We explicitly describe the breaking mechanism, and
find that the breaking strain of idealized nuclear pasta
in the lasagna and waffle phases is large in our model,
perhaps ε ≈ 0.3. This suggests that the ion crust breaks
significantly earlier than the pasta. This may have con-
sequences for crust breaking in a variety of systems, such
as resonant shattering flares during neutron star mergers
or magnetar outbursts.

Continuous gravitational wave searches [32] probe the
ellipticity e (fractional difference in moments of inertia)
of a rotating NS. The maximum e that an ion crust can
support is emax ≈ 4× 10−6 [15]. If µ and or ε are some-
what larger for pasta than for ions, this could lead to a
larger emax perhaps a few ×10−5 when nuclear pasta is
included. As a result, LIGO observations of the Crab
pulsar may now be sensitive to a maximally deformed
crust that includes nuclear pasta [13].

Lastly, while this work describes the elastic response of
some simple astromaterials, the variety of pasta shapes
and their elastic responses may be difficult to describe
with an analytic theory which motivates their continued
study with molecular dynamics.
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