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Cd3As2 is a candidate three-dimensional Dirac semi-metal which has exceedingly high mobility and non-

saturating linear magnetoresistance that may be relevant for future practical applications. We report magneto-

transport and tunnel diode oscillation measurements on Cd3As2, in magnetic fields up to 65 T and temperatures

between 1.5 K to 300 K. We find the non-saturating linear magnetoresistance persist up to 65 T and it is likely

caused by disorder effects as it scales with the high mobility, rather than directly linked to Fermi surface changes

even when approaching the quantum limit. From the observed quantum oscillations, we determine the bulk

three-dimensional Fermi surface having signatures of Dirac behaviour with non-trivial Berry’s phase shift, very

light effective quasiparticle masses and clear deviations from the band-structure predictions. In very high fields

we also detect signatures of large Zeeman spin-splitting (g ∼ 16).

PACS numbers: 75.47.-m, 71.18.+y, 74.25.Jb

A three-dimensional (3D) Dirac semi-metal is a three-

dimensional analogue of graphene, where the valence and

conduction bands touch at discrete points in reciprocal space

with a linear dispersion. These special points are protected

from gap formation by crystal symmetry and such a topolog-

ically non-trivial band structure may harbour unusual elec-

tronic states. A Dirac semi-metal may be tuned to attain a

Weyl semi-metal phase through breaking of inversion or time

reversal symmetry [1]. Alternatively, if the symmetry protec-

tion from gapping is removed a three dimensional topologi-

cal insulator could be stabilized on the surface [1]. 3D Dirac

semi-metals are rare and an opportunity to realize such a state

in Cd3As2 has generated a lot of interest. Surface probes, such

as ARPES and STM [2–5], found that the linear dispersion

extends up to high energy 200-500 meV, strongly dependent

on the cleavage directions [6]. Furthermore, the large non-

saturating linear magnetoresistance (MR) found in Cd3As2
[7, 8] in high mobilities samples was assigned to the lifting

of protection against backscattering caused by possible field-

induced Fermi surface changes [7, 8].

In this paper we report a magnetotransport study in high

magnetic fields up to 65 T of n-doped Cd3As2 approaching

the quantum limit that reveal no discernable Fermi surface

change except those caused by the large Zeeman splitting. We

observe Shubnikov-de Haas (SdH) quantum oscillations that

allow us to characterize the three-dimensional Fermi surface

and its relevant parameters. The observed linear MR in ultra-

high magnetic fields and the values of the linear magnetoresis-

tance are closely linked to the mobility field scale. This sug-

gests that the unconventional, non-saturating, large and linear

magneto-resistance in our electron-doped crystals of Cd3As2
is likely to originate from mobility fluctuations caused by As

vacancies. We also discuss the deviations of experiments from

the standard density functional theory (DFT) calculations.

Methods Crystals of Cd3As2 were grown both by solid

state reaction and solution growth from Cd-rich melt due to

its very narrow growth window [9, 10]. X-ray diffraction

shows that our single crystals of Cd3As2 crystallize in the

tetragonal symmetry group I41/acd with lattice parameters

a=12.6595(6) Å and c=25.4557(10) Å, cleaving preferen-

tially in the (112) plane, in agreement with previous studies

[9] [see Supplementary Material (SM)]. Band structure cal-

culations were performed with Wien2K including the spin-

orbit coupling [11] using the structural details from Ref.[9].

We have performed magnetotransport measurements in the

standard Hall and resistivity configuration using ac lock-in

technique by changing the direction of the magnetic field, B,

to extract the symmetric (ρxx) and the anti-symmetric (ρxy)

component of the resistivity tensor, respectively. The trans-

verse magnetoresistance (I ⊥ B) was measured for differ-

ent orientations, θ being the angle between B and the nor-

mal to the (122) plane. Measurements were conducted on

three different batches (a, b and c), mostly on crystals from

batch a (Sa
1 , Sa

2 , etc.) having the lowest carrier concentration.

Measurements were performed at low temperatures (1.5 K) in

steady fields up to 18 T in Oxford and in pulsed fields up to

65 T at the LNCMI, Toulouse. We also measured skin depth in

pulsed fields using a tunnel diode oscillator technique (TDO)

by recording the change in frequency of an LC tank circuit

with the sample wound in a copper coil, reported data being

corrected for the magnetoresponse of the empty coil.

Fig. 1a) shows the magnetoresistance, ∆ρxx (B)/ρxx(0) as

a function of magnetic field up to 65 T for sample Sa
2 at fixed

temperatures between 4 K and 300 K. The MR is linear and

unusually large, ∼ 20000% and shows a strong temperature

dependence. Both the resistance and the magnetoresistance

change by a factor of 5 from 300 K to 4 K [inset of Fig. 1a])

and the link between these two quantities will be discussed in
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FIG. 1: High magnetic field data. a) Field dependence of ρxx and

the relative change in magnetoresistance, ∆ρxx/ρxx(0) for sample

Sa
2 up to 65 T for temperatures between 4 K and 300 K. b) Field

dependence of Hall resistance, Rxy, for sample Sa
1 up to 18 T. c) The

oscillatory part of symmetrized ρxx for Sa
2 approaching the quantum

limit. The arrows indicate the position of different spin-split Landau

levels crossing the Fermi level. d) The field dependence of resonant

frequency, ∆FTDO, of a tunnel diode oscillator for sample Sc
2 up

to 55 T. The inset shows the oscillatory part of ∆FTDO. e) FFT

frequencies corresponding to oscillatory signal at low temperatures

from c) for Sa
2 and inset of d) for Sc

2.

detail later. Fig. 1b) show the Hall component, ρxy up to 18 T

for Sa
1 up to 75 K (raw data also in SM). Quantum oscilla-

tions are discernible, on a highly linear background, from as

low as 3 T with a characteristic frequency varying for different

samples between 30 to 50 T, shown in Fig.1c-e) and listed in

Table 1. Spin-splitting effects are evident in very high mag-

netic fields approaching the quantum limit (n=1) in Fig.1c.

The field dependence of resonant frequency from TDO mea-

surements for sample Sc
2 is shown in Fig. 1d) together with

subtracted quantum oscillations. This frequency variation,

∆FTDO , tracks the change in impedance of the coil and is

a measure of the skin depth of the sample, δ ∝ ρ0.5xx .

Quantum oscillations The quantum oscillations in conduc-

tivity are given by ∆σxx ∝ cos(2π
[

F
B
−

1

2
+ β

]

), where β is

the Berry’s phase and F is the SdH frequency of the oscilla-

tions, corresponding to an extremal area of the Fermi surface

perpendicular to the magnetic field, B. Fig. 2a) shows the an-

gular dependence of SdH frequencies by rotating away from

the (112) plane for different samples. The SdH frequencies

show very little variation as a function of the orientation in

magnetic field, from 31 T to 45 T for sample Sa
1 (see also

Table 1). This behaviour is expected for a three-dimensional

elliptical Fermi surface with kF vector, extracted from Os-

anger relationship F = ~πk2F /(2πe), and varying between

kF = 0.03 − 0.04 Å−1. This values give a very small car-

rier concentration of nSdH = 1.0(2)× 1018cm−3, consistent

with that from Hall measurements nHall=1.8×1018cm−3 [ex-

tracted from Rxy in Fig.1b as discussed in [12]], assuming

two elliptical pockets, as shown in Table 1. A Lifshitz transi-

tion as a function of doping occurs from two small elliptical

Fermi surfaces centered at the Dirac node (kz ∼ 0.15Å−1

away from Γ) [4] to a larger merged elliptical Fermi surface

centered now at Γ (see SM). Band structure calculations sug-

gest that this transition should occur very close to the Fermi

level (∼ 10 meV), whereas in the surface experiments is not

seen up to 300 meV [4, 5] (see inset Fig.2c and SM). This dis-

crepancy between the band structure and experiments is rather

surprising and requires further understanding.

The temperature dependence of the amplitude of the quan-

tum oscillations up to 90 K can be used to extract the val-

ues of the effective cyclotron mass meff , using the standard

Lifshitz-Kosevich formalism [13], with the thermal damping

term, RT = T/ sinh(2π2Tmeff/~eB), which also holds

for the Dirac spectrum [14, 15], as shown in Fig. 2b). For

parabolic bands, one would expect meff to be constant as a

function of doping, while for Dirac bands meff = ~kF /vF .

The measured effective mass extracted for our samples from

different batches vary from 0.023 to 0.043me, increasing with

F and the corresponding carrier concentration,nSdH , as listed

in Table 1. This suggests a deviation from a parabolic band

dispersion whereas the high mobility values found in Cd3As2
points usually towards a linear dispersion. Having samples

with different concentrations, one could attempt to extract the

Fermi velocity, vF , directly from the slope of 1/meff versus

k−1

F , shown in Fig. 2c, which gives a finite intercept sug-

gesting a departure from a perfect Dirac behaviour [possibly

linked to band structure effects that show hole-like bending

towards Γ (see SM)]. The estimation of vF ≈ 4× 106 is simi-

lar to those extracted from ARPES, 0.8−1.5×106 m/s [2, 4],

with deviations caused by orbitally-averaged effects (see also

Table 1). We have also extracted the values of g-factor from

the spin-split oscillations visible at high fields [see Fig. 1c)],

corresponding to the spin-up and spin-down Landau levels

(±gµBB) that cross the Fermi level and give a large value

of g ∼ 16(4), consistent with previous reports [16, 17].

The Berry’s phase, β, can take values of β = 0 for parabolic

dispersion and β = π for a Dirac point [18]. To extract the

Berry’s phase, we use the conductivity, σxx, by measuring

both ρxx and ρxy simultaneously (see SM) and inverting the

resistivity tensor, as shown in the inset of Fig.2d). The direct

fit of ∆σxx gives a value of β = 0.84(8)π for Sa
2 , in agree-

ment with previous reports [19], as shown in Table 1. Another

method to extract β is given by the linear intercept of an index

plot of the conductivity minima versus inverse magnetic field;

for samples Sa
1 and Sa

2 in the low-field region (from n=4) that

gives β = 0.8(1)π [solid line in Fig.2d]). In high magnetic
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fields the position of the minima are strongly affected by the

spin-splitting and a non-linear fan diagram analysis detailed

in Ref.[18, 20] gives β = 0.9(1)π for Sa
2 [dashed line in

Fig.2d)].

a) b)

c) d)

ΓΓΓΓ

k
z

FIG. 2: Fermi surface parameters. a) The angular dependence of

SdH oscillation frequencies away from the (112) plane. The solid

line is the expectation for a two-dimensional Fermi surface. b) The

temperature dependence of the oscillation amplitude that gives meff

for different samples (Sa
1 , Sa

2 and Sa
3 ). Inset shows the Dingle plots

of the FFT amplitude for samples from different batches (a, b and c).

c) Extracting the Fermi velocity from a linear fit of 1/meff versus
√

(π/F ) (in atomic units, a.u.), as described in main text (solid line).

The dashed line indicates the expected behaviour for a perfect Dirac

system. The inset show a schematic Fermi surface before and after

the Lifshitz transition. d) Index plot to extract the Berry’s phase for

samples Sa
1 and Sa

2 (as detailed in the text). Inset show quantum

oscillations in conductivity σxx for Sa
2 fitted to the Lifshitz-Kosevich

formula (dashed line) [13] with a phase of β = 0.84(8).

Scattering The field dependence of the amplitude of quan-

tum oscillations at fixed temperatures [inset Fig.2b)] gives ac-

cess to the Dingle temperature, which is a measure of the field

dependent damping of the quantum oscillations due to impu-

rity scattering. For sample Sa
1 the quantum scattering time

given by τq = ~/(2πkBTD), corresponds to a quantum mobil-

ity of µq ∼ 6000 cm2/Vs and mean free path ℓq = vF τq of

∼ 122(8) nm. These values are in good agreement to some

of the reports for single crystals and thin films, as shown in

Table 1. Another way to estimate the mobility is to apply

a simple Drude model to the Hall and resistivity data. Us-

ing the carrier concentration estimated from the Hall effect

nH = 1.8 × 1018cm−3 and ρxx0 = 42µΩcm for sample Sa
1

(shown in SM), the classical mobility from 1/ρxx = nHµce
is µc=80,000 cm2/Vs, a factor up to 13 larger than the mo-

bility from quantum oscillations, µq . This difference in the

two mobilities is common as they measure different scatter-

ing processes. The SdH estimated mobility is affected by all

processes that cause the Landau level broadening, i.e quan-

tum scattering time, τq, measures how long a carrier stays in

a momentum eigenstate whereas the classical Drude mobility

is only affected by scattering processes that deviate the cur-

rent path, i.e the classical scattering time (transport time) is a

measure of how long a particle moves along the applied elec-

tric field gradient. Thus, the quantum mobility is susceptible

to small angle and large angle scattering, while the transport

(classical) mobility is susceptible only to large angle scatter-

ing. The ratio µc/µq is a measure of the relative importance

of small angle scattering; Table 1 suggests that small angle

scattering dominates in all our samples, in particular for lower

doping nSdH.

Linear magnetoresistance Now we discuss the origin of

the unconventional linear MR in a transverse magnetic field

for two crystals of Cd3As2 (shown initially in Fig.1a)) plot-

ted in Fig.3a) on a log-log scale to emphasize the low field

behaviour. We observe that the linear MR behaviour is es-

tablished above a crossover field, BL. Interestingly, we

find that BL and the relative change in magnetoresistance,

MR = ∆ρxx(B)/ρxx(0), vary with temperature in the same

ratio as the mobility, µc and, consequently, the resistivity ra-

tio (ρ ∼ µ−1
c )[see Fig.3b)]. Furthermore, we find that all MR

curves collapse onto a single curve in a Kohler’s plot for tem-

peratures below 200 K, suggesting that a single relevant scat-

tering process is dominant in Cd3As2, as shown in Fig.3c).

Small deviations at higher temperatures are caused by the on-

set of phonon scattering, consistent with the Debye tempera-

ture of 200 K [21].

The conventional MR shows a quadratic dependence at low

fields and saturation for Fermi surfaces with closed orbits in

high fields, such that µcBL > 1; in our samples the crossover

field can be estimated as BL >1 T. Linear MR has been pre-

dicted by Abrikosov [24] to occur in the quantum limit, only

beyond the n = 1 Landau level. However, in our crystals the

value of BL is much lower than the position of the n = 1 level

around 32 T.

Another explanation for the presence of linear MR has

its origin in classical disorder models. For example, linear

MR was realized for highly disordered [25, 26], or weakly

disordered-high mobility samples [27], thin films and quan-

tum Hall systems [28]. The linear MR arises because the lo-

cal current density acquires spatial fluctuations in both mag-

nitude and direction, as a result of the heterogeneity or mi-

crostructure caused by non-homogeneous carrier and mobil-

ity distribution [see Fig.3d]. There are a series of experimen-

tal realizations of linear MR in disordered systems, such as

Ag2±δSe and Ag2±δTe [29], two-dimensional systems (epi-

taxial graphite) [30, 31], In(As/Sb)[32], LaSb2 [33], LaAgSb2

[34, 35].

Monte Carlo simulations for a system with a few islands

of enhanced scattering embedded in a medium of high mo-

bility [32], suggest that MR is linked to the generation of an

effective drift velocity perpendicular to cycloid motion in ap-

plied electric field caused by multiple small angle scattering of

charge carriers by the islands (see Fig. 3d). For such a mech-
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TABLE I: Band parameters extracted from quantum oscillations, such as frequencies for two different orientations (F1 for B ‖ [112] axis

and F2 for B ⊥ [112]), Fermi velocities, vF = ~kF /meff , the Berry’s phase, β, the g-factor, the Dingle temperature, TD, the mean free

path, ℓ and the quantum mobility, µq . The carrier concentration, nSdH, was estimated assuming that the Fermi surface is a three-dimensional

ellipsoid. The Hall effect data give the carrier concentration nHall and classical mobilities, µc, and the mobility ratio, µc/µq . The data are

reported for samples from different batches (a, b and c) and they are compared to published data.

F1 F2 nSdH nHall meff vF TD ℓ µq µc µc/µq g β
T T 1018 cm−3 1018 cm−3 me 106 m/s K nm m2/Vs m2/Vs π

Sa
1 31(4) 45(4) 1.0(2) 1.8(2) 0.023(4) 1.54(4) 15.4(8) 122(8) 0.60(1) 8.0(5) 13.3(4) 16(4) 0.83(8)

Sb
1 42(4) 52(4) 1.5(2) 2.5(2) 0.031(3) 1.33(4) 14.4(8) 112(8) 0.47(1) 3.4(3) 7.1(4) 15(3) 1.08(6)

Sc
1 67(4) 74(4) 3.1(2) 3.8(2) 0.043(4) 1.21(4) 9.8(8) 150(8) 0.51(1) 2.9(3) 5.7(4) - 0.84(4)

Lit. 20-90 20-90 0.1-8 2-20 0.03-0.08 0.4-12 11-17 - 0.1-104 1-103 1-104 2-100 -

Refs. [7, 22] [22] [7, 8] [7, 8] [7, 22] [2, 22] [23] - [7, 8] [8] [8] [5, 16, 17] -

anism the mobility µc is determined by the island separation

and depending on the value of δµc

µc

, the linear MR emerging

from this process will be associated with BL ∼ µ−1
c , which

tracks the island separation if δµc

µc

< 1 and tracks δµ−1
c if

δµc

µc

> 1. Thus, the absolute value of the linear MR and BL

would vary like µ−1
c (linked to ρ values) [Fig.3b]. This scal-

ing is consistent with the classical disordered model originat-

ing from fluctuating mobilities for the observed linear MR in

Cd3As2,

a) b)

c) d)

Sa2

FIG. 3: Linear MR and mobilities. a) Log-log plot of resistance ver-

sus field for Sa
2 and Sa

1 (inset). The crossover field, BL, to the linear

MR is indicated by arrows. b) The temperature dependence of ratios

of mobility, ρ ∼ µ−1c (solid lines), BL (squares) normalized to the

4 K values, and the change in MR (triangles) show the same temper-

ature dependence. c) Kohler’s plots for Sa
2 showing the collapse of

all magnetoresistance curves into one curve (below the Debye tem-

perature, 200 K [21]). d) Schematic diagram of scattering processes

in Cd3As2.

Lastly, we comment on the possible source of disorder in

Cd3As2. STM measurements found disordered patches with a

typical size of 10 nm and separated by distances of 50 nm, at-

tributed to As vacancy clusters [5], likely to appear during the

growth in a Cd-rich environment with a small width forma-

tion for Cd3As2 [9]. Assuming a disorder density comparable

to the carrier concentration, nSdH, and a dielectric constant of

ǫ=16 (see Ref.[36]), one can estimate the classical mobility as

being 30000 cm2/Vs for Cd3As2, which is similar to our mea-

sured classical mobilities, µc. The lower quantum mobility,

µq corresponds to small angle scattering when carriers travel

over the mean free path, ℓ ∼ 110− 150 nm, which is similar

to the distribution of As vacancy clusters imaged by STM [5]

[see Fig.3d)]. Furthermore, a mobility ratio µc/µq > 1 points

towards As vacancies as being the small angle scatterers in

Cd3As2 [37]. Concerning the possible changes of the Fermi

surface induced by magnetic field in in Cd3As2 our data that

approach quantum limit [for Sample Sa
1 in Fig.1c)] we find no

evidence of additional frequencies (only spin-splitting due to

the large g factors) or changes in scattering (Dingle term) up

to 65 T.

In conclusion, we have used ultra high magnetic fields to

characterize the Fermi surface of Cd3As2 and to understand

the origin of its linear magnetoresistance. The Fermi surface

of Cd3As2 has an elliptical shape with a non-trivial Berry’s

phase. We find that the linear MR enhancement scales with

mobility in Cd3As2 and likely originates from fluctuating

mobilities regions that caused inhomogeneous current paths.

Close to the quantum limit we find no evidence for Fermi sur-

face reconstruction except the observed spin-splitting effects

caused by the large g factors. The large and growth sample de-

pendent linear MR suggest a possible avenue for tuning sam-

ple quality and further enhancing its MR for useful practical

devices.
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