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We have created an analogue of a black hole in a Bose-Einstein condensate.  In this sonic black 

hole, sound waves, rather than light waves, cannot escape the event horizon.  A step-like potential 

accelerates the flow of the condensate to velocities which cross and exceed the speed of sound by 

an order of magnitude.  The Landau critical velocity is therefore surpassed.  The point where the 

flow velocity equals the speed of sound is the sonic event horizon.  The effective gravity is 

determined from the profiles of the velocity and speed of sound.  A simulation finds negative 

energy excitations, by means of Bragg spectroscopy. 

 

 

The event horizon is a boundary around the black hole, enclosing the region from which 

even light cannot escape.  It has been suggested that an analogue of a black hole could be 

created in a variety of quantum mechanical [1-6] or classical [7-9] systems.  In the case of 

a quantum fluid such as the Bose-Einstein condensate studied here [3], it is sound waves, 

rather than light waves, which cannot escape.  This sonic black hole contains regions of 

subsonic flow, as well as regions of supersonic flow.  Since a phonon cannot propagate 

against the supersonic flow, the boundary between the subsonic and supersonic regions 

marks the event horizon of the sonic black hole.  The analogy was later extended to 

include excitations with a non-linear dispersion relation, in addition to phonons [10-12]. 
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The experimental challenge is to create a steady flow which exceeds the speed of sound 

[1,3,13,14].  Consider a phonon with momentum k .  In the reference frame of the 

moving fluid, the phonon has energy kcE = , where c is the speed of sound.  In the 

laboratory frame, by a Galilean transformation [15], this energy becomes vk ⋅+=′ EE , 

where v is the flow velocity.  For the case of supersonic flow (v > c), E′  can be zero, 

resulting in the unstable production of phonons.  This instability is thought to prevent the 

supersonic flow required to realize a sonic black hole, a phenomenon referred to as the 

Landau critical velocity [3,13,15].  By momentum conservation however, the production 

of such phonons requires an additional body such as an impurity particle [16] or a 

container with a rough wall [15].  This body provides momentum in the opposite 

direction to the flow.  Thus, we have arranged an experimental apparatus which does not 

supply much momentum in this direction, allowing for supersonic flow during the 

timescale of the experiment [3].  The free flow required to overcome the Landau critical 

velocity also helps prevent the production of quantized vortices, which usually limit the 

flow to speeds much lower than the speed of sound [17]. 

 

Suggested schemes for forming a sonic black hole in a condensate include a Laval nozzle 

[18, 19], flow along a ring or a long, thin condensate [3, 20], a gradient in the coupling 

constant [21,22], a soliton [2,23], an expanding condensate [24], and repulsive potential 

maxima [5,25].  We achieve the black hole horizon by a step-like potential combined 

with a harmonic potential, as shown in Fig. 1.  We translate the harmonic potential to the 

left as indicated by the horizontal arrow, moving the condensate towards the stationary 
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step.  While crossing the step, the condensate accelerates to supersonic speeds.  Thus, the 

region to the left of the step is supersonic, and the region to the right is subsonic.  There is 

therefore a black hole horizon at the location of the step. 

 

The condensate consists of 1 × 105 87Rb atoms in the F = 2, mF = 2 state, and is initially 

prepared in the harmonic part of the potential, a magnetic trap with oscillation 

frequencies of 26 Hz and 10 Hz in the radial and axial (y) directions respectively.  The x-

coordinate of the minimum of the harmonic trap is controlled by adjusting the trap 

frequencies, which adjusts the sag due to gravity (in the -x direction).  The step-like 

potential is created by a large diameter, red-detuned laser beam with a Gaussian profile 

(1/e2 radius of 56 µm, wavelength 812 nm).  Half of this beam is blocked, so that the 

boundary between the dark and light regions forms the potential step of height 

kHz 0.2/0 =hV .  Initally, the condensate is located to the right of the step, as shown in 

Fig. 1.  Starting at t = 0, the harmonic potential is accelerated until it reaches the constant 

velocity of roughly 0.3 mm s-1.  The condensate then passes over the potential step, as 

shown in Figs. 2a and 2b.  We observe no increase in the thermal fraction in this process.  

Furthermore, it is seen that the density of the condensate is much smaller to the left of the 

potential step, whose location approximately coincides with the dashed lines in Figs. 2a 

and 2b.  By conservation of mass, the decrease in density corresponds to an increase in 

flow velocity. 

 

The images of Fig. 2a and 2b can be converted into density profiles, averaged over the 

cross section of the condensate, as shown in Fig. 2f.   This average density is found by the 
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relation /n N xAδ= , where N is the number of atoms in a column of pixels of Fig. 2a 

and 2b, μm46.0=xδ is the length of a pixel, and A is the cross-sectional area of the 

condensate in the y-z plane, seen in Figs. 2c and 2d.  To calibrate N, the sensitivity of the 

imaging system is required.  This sensitivity is found by studying the condensate in the 

harmonic potential only, shown in Fig. 2e.  The observed radius and length of this 

condensate, combined with the known trap frequencies, give the total number of atoms 

CN  in the condensate [26].  CN , divided by the sum of the pixels of Fig. 2e, gives the 

sensitivity of the imaging system. 

 

By comparing the two curves of Fig. 2f, it is seen that the density in the left region of the 

figure increases with time, while the density in the right region decreases.  We can use 

this redistribution of density to compute the flow velocity via the continuity equation, 

given by tnvn ∂−∂=⋅∇ /)(  [26].  In Figs. 2a and 2b, the flow appears to be largely in the 

x-direction.  This unidirectional flow is further verified by Figs. 2c and 2d, which show 

no dynamics in the y-z plane.  The shape in this plane remains similar to the shape of the 

condensate in the harmonic trap, shown in Fig. 2e.  Assuming that the flow is in the x-

direction only, the continuity equation gives 

 

∫ ′
∂
∂−=

x

xd
t
n

n
v

0

1 .      (1) 

 

The integrand of Eq. 1 is given by the ratio tn ΔΔ / , where nΔ  is the difference between 

the profiles in Fig. 2f (after normalizing them to the same total atom number), and tΔ  is 
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the time difference between the profiles.  This integrand is discretized by the pixels of the 

imaging system.  The origin 0=x  is the left edge of Fig. 2f.  Fig. 2g shows the resulting 

velocity profile.  This calculation is repeated for various times, giving the velocity 

profiles of Fig. 3a.  The error bar indicates the standard error of the mean.  We attribute 

this variability to fluctuations in the initial position of the harmonic magnetic trap.  The 

experimental results agree well with a 3D simulation of the Gross-Pitaevskii equation 

shown in Fig. 4b. 

 

For comparison with v, the profile of the speed of sound can be computed from the 

density profiles of Figs. 2f and 2h, via the relation mgnc ave /=  [27], where g is the 

interaction parameter, m is the atomic mass, and aven  is the average of the several density 

profiles shown in the figure.  In contrast to v, the computation of c relies on the absolute 

calibration of n discussed above.  The profiles of c are indicated by the solid black curves 

in Figs. 2g and 3a. 

 

As seen in Fig. 3a, the peak flow velocity mv−  exceeds c by an order of magnitude.  The 

black hole horizon Hx  is indicated by a filled circle.  The flow decreases below the speed 

of sound again at the white hole horizon, indicated by a "+" [3].  In order to find the 

position-dependent profiles of the horizons, v and c are computed for 3 horizontal slices 

in Figs. 2a and 2b, rather than for the entire image. The dashed and dash-dotted lines 

indicate the resulting profiles of the black hole horizon and white hole horizon, 

respectively. 
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The black hole analogy requires that v and c be stationary (independent of time).  We find 

that the motion of the black hole horizon itself is a reasonable overall check of 

stationarity.  Specifically, the speed Hv  of the black hole horizon should be much less 

than c.  In Fig. 3a, the total change in Hx  over 20 ms gives cv 12.0H = .  Thus, the flow is 

almost stationary, even in the laboratory frame. 

 

In analogy with a black hole which traps photons, the supersonic region of a sonic black 

hole can trap a range of Bogoliubov excitations [3].  Due to the flow, the group velocity 

measured in the laboratory frame is decreased by –v.  An excitation is trapped (dragged 

away from the horizon) when it has a negative group velocity.  Due to the non-linear 

dispersion relation, excitations with very short wavelengths can certainly escape.  The 

minimum trapped wavelength is approximately μm 6.1/2 =− mmvπ .  However, the 

wavelength of the excitation must be shorter than the 18 μm width of the supersonic 

region between the horizons [3].  Thus, wavelengths between 1.6 μm and 18 μm are 

trapped.  Phonons are among the trapped excitations, since phonons have wavelengths 

greater than 2πξ = 5.2 μm, where ξ is the healing length. 

 

Finally, we address the possibility of using the sonic black hole for a future study of 

analogue Hawking radiation [28].  Hawking radiation requires that the trapped excitations 

have negative energy, which we verify by simulating Bragg spectroscopy.  In the 

simulation, a pair of far-detuned laser beams are focused onto the supersonic region, as 

indicated in the inset of Fig. 4d.  There is a slight frequency difference between the 

beams, given by 21 ωωω −= .  If the condensate absorbs a photon from beam 1 and emits 
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a photon into beam 2, then an excitation with energy ω  is created.  The momentum k  

of the excitation is in the x-direction, and is predetermined by the angle between the 

beams.  The solid curve of Fig. 4d shows the momentum pΔ  transferred to the 

condensate during a 2 ms pulse of the Bragg beams.  The peak B corresponds to 

absorbing photons from beam 1, since 0>Δp .  However, 0<ω , so the excitation indeed 

has negative energy.  Fig. 4e shows the dispersion relation, the locations of the peaks as a 

function of k.  The green curve indicates the trapped excitations with negative energy. 

 

Further insight into the negative energy excitations can be obtained by looking at the 

wavefunction, Fig. 4f.  The high frequency oscillations in the supersonic region 

correspond to a well-defined momentum.  This momentum Doppler-shifts peak B of Fig. 

4d to negative energies, in contrast to peak C of the subsonic region.  It is interesting to 

note that a grey soliton has v and c profiles which are qualitatively similar to Fig. 3a.  

However, the wavefunction has no oscillations [29], so Bragg spectroscopy would find 

no negative energy excitations for a grey soliton. 

 

Hawking radiation was first considered for excitations in the phonon regime [1].  This 

computation relied on a negligible quantum pressure term in the flow equation 

[1,3,26,30].  The simulation shows that this term is indeed much smaller than the other 

terms, as seen in Fig. 4c. 

 

The effective temperature of Hawking radiation is given by HHHB cgTk π2/=  [1], where 

Hc  is the speed of sound at the black hole horizon, and the effective surface gravity is 
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given by ( )
HxxHH dxdvdxdccg

=
+= //  [18].  The opposite sign of the slopes seen for -v 

and c in Fig. 3a serves to increase gH and TH, which are shown in Fig. 3b.  In order for the 

Hawking radiation to have a thermal spectrum, the flow should be sufficiently 

hydrodynamic, meaning that the gradients in v and c should be sufficiently small [11,22].   

The relevant parameter is λ , which is the number of healing lengths required for vc +  to 

change by c2 .   For the present work 7=λ , which is sufficiently large to give an 

approximately thermal spectrum with an effective temperature close to TH. 

 

We can write the Hawking temperature as 

πλ
μ=HBTk       (2) 

Where 2mc=μ  is the chemical potential of the condensate.  This implies that HBTk  

should be somewhat less than μ.  A thermal cloud with such a low temperature might be 

difficult to differentiate from the condensate or from other excitations [31].  Therefore, it 

might be useful to employ correlation techniques [11,21,22], or perhaps the region of Fig. 

3a between the white and black hole horizons could serve as a resonator for the lasing of 

phonons, which could amplify the Hawking radiation [32].  The Hawking radiation 

should have a wavelength shorter than the width of the supersonic and subsonic regions 

[3].  This implies TH > 2 nK.  In order to observe Hawking radiation, the width should be 

increased, or TH should be increased by an order of magnitude (see Fig. 3b).  By Eq. 2, 

the latter can be achieved by increasing the density, as well as the gradients in v and c.  

Furthermore, it is seen in Fig. 3b that the black hole horizon is maintained for at least 20 

ms.  This time period corresponds to at least one period of 2 nK radiation.  Thus, the 
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lifetime of our sonic black hole should be sufficient or almost sufficient for observing 

Hawking radiation.  In addition, Fig. 3a shows that the white hole horizon is stable for the 

duration of the experiment [3,14]. 

 

In conclusion, a sonic black hole/white hole pair has been realized in a Bose-Einstein 

condensate.  The supersonic flow field results from a step-like potential.  The Landau 

critical velocity is exceeded by an order of magnitude.  The effective surface gravity is 

extracted from the profiles of the in-situ velocity and the speed of sound.  The flow field, 

combined with increased velocity gradients and density, could potentially be used in a 

study of Hawking radiation. 
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FIG. 1.  The profile of the potential, shown at a time before the harmonic potential (a) has 

reached the step-like potential (b).  The horizontal arrow indicates the motion of the 

harmonic potential relative to the stationary step-like potential.  The dashed line indicates 

the chemical potential of the condensate.  Gravity is in the -x direction.  The profile of the 

potential step is derived from an image of the laser beam.  The harmonic potential is 

derived from the measured frequency of the harmonic magnetic trap. 
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FIG. 2.  In-situ absorption images of the sonic black hole, with the potentials on.  Gravity 

is in the -x direction.  (a)  Condensate in the presence of the step-like potential, at 200 ms.  

The average of 2 images is shown.  The dashed (dash-dotted) line indicates the position-

dependent profile of the black hole (white hole) horizon.  (b)  Like (a), at 205 ms.  (c) and 

(d)  Side views (y-z plane) of (a) and (b), imaged simultaneously with (a) and (b).  (e) 

Side view of the condensate in the harmonic potential only.  (f)  Density profiles, derived 

from (a) and (b) in blue and green, respectively.  The density is averaged over the y-z 

plane (see text).  (g)  -v (red curve) and c (black curve).  These curves are derived from 

(f), as described in the text.  The filled circle and plus indicate the black hole and white 

hole horizons, respectively.  (h)  Time evolution of the density profile.  The red, green, 
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cyan, blue, magenta, and black curves indicate equal intervals from 200 ms to 225 ms.  

Each curve is derived from an average of 2 images.   
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FIG. 3.  Time evolution of the flow velocity.  (a)  The flow velocity versus the speed of 

sound.  The red, green, cyan, blue, and magenta curves show –v at equal intervals from 

202.5 ms to 222.5 ms, derived from adjacent curves in Fig 2h (see the text).  The dashed 

curve indicates the average –v from 202.5 ms to 222.5 ms.  The black solid curve 

indicates the average c (see the text).  The filled circles (pluses) indicate the black hole 

(white hole) horizon.  The fringes near the velocity maximum are an artifact of the 

imaging.  (b)  Hawking temperature and effective surface gravity.  The filled and open 

circles correspond to the entire condensate and the central slice, respectively.  The dashed 

curve corresponds to the average (dashed) velocity curve of (a).  The dash-dotted curve 

corresponds to the average velocity curve of the central slice of the condensate. 
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FIG. 4.  3D Gross-Pitaevskii simulation of the experiment.  The central axis of the 

condensate is shown.  (a)  The density.  The filled circle indicates the black hole horizon.  

(b)  The flow velocity versus the speed of sound.  The green curve shows –v and the 

black curve indicates c.  Here, the simulation is analyzed with the same technique and 

resolution as in Fig. 3a from the experiment.  (c)  The energy terms in the flow equation.  

The thick black curve shows the quantum pressure term ( )nnm 22 2/ ∇− .  The green 

curve shows the interaction term gn .  The red curve shows the inertial term 2/2mv .  The 

cyan curve shows the potential term V.  The latter two terms are off-scale for much of the 

figure.  The dashed line indicates the black hole horizon.  (d)  The momentum transferred 
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by a Bragg pulse.  The solid (dashed) curve corresponds to the supersonic (subsonic) 

region.  Peaks A and B correspond to A and B in (e).  The inset shows the two Bragg 

beams incident on the condensate.  (e)  The dispersion relation in the supersonic region.  

The circles result from Bragg spectroscopy.  The solid line is the Bogoliubov dispersion 

relation.  The green curve indicates the trapped excitations with negative energy.  (f)  The 

real part of the wavefunction. 
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