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Hund’s paradox and the collisional stabilization of chiral molecules
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We identify the dominant collisional decoherence mechanism which serves to stabilize and super-
select the configuration states of chiral molecules. A high-energy description of this effect is compared
to the results of the exact molecular scattering problem, obtained by solving the coupled-channel
equations. It allows to predict the experimental conditions for observing the collisional suppression
of the tunneling dynamics between the left- and the right-handed configuration of D2S2 molecules.
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Introduction.—An old problem in molecular quantum
mechanics, first discussed by F. Hund [1], is how to ex-
plain from first principles why molecules often appear
as enantiomers , i.e., either in a left-handed configura-
tion or as the right-handed mirror image. Given the
parity-invariant molecular Hamiltonian, one might rather
expect them in the ground state, corresponding to the
symmetric superposition of these chiral states. Tradi-
tionally, this is explained by the possibly very long tun-
neling time from a left-handed configuration state |L〉 to
a right-handed one |R〉. However, this does not solve the
‘paradox’ since one still needs to understand the seeming
failure of the superposition principle, prohibiting super-
position states of the form |ψξ〉 =

(

|L〉+ eiπξ|R〉
)

/
√
2

with 0 6 ξ < 2 [2, 3].

While this super-selection phenomenon has been linked
with fundamental parity violations [4], a very natural
explanation is offered by the concept of environmental
decoherence [5]. What selects the enantiomer states ac-
cording to this theory is the fact that the typical interac-
tion with environmental degrees of freedom, such as the
collision with a gas particle, can better distinguish the
alternatives |L〉 and |R〉 than, say, between the molecu-
lar eigenstates |ψ0〉 and |ψ1〉. The enantiomer states are
then prevented both from tunneling between each other
and from decaying into a mixture, if these environmen-
tal interactions are sufficiently frequent compared to the
tunneling period. This stabilization can be understood in
analogy to the quantum Zeno effect if one views the envi-
ronment as continuously monitoring the molecular state.
Superposition states |ψξ〉, in contrast, would get quickly
decohered by their ensuing quantum correlation with the
environment.

This environmental distinction of specific molecular
configurations is one of the paradigms in the field of de-
coherence, discussed by many of the path-breaking works
[2, 3, 6]. At the same time, not much is known about the
concrete microscopic mechanism at work with realistic
molecules, nor whether the transition from the tunneling
regime to stabilization can be observed experimentally.

In this letter, we use molecular scattering theory to
identify the dominant microscopic mechanism responsi-

ble for chiral stabilization due to a background gas. We
show that this effect is determined by a parity-sensitive
higher-order term in the dispersive interaction, which is
usually disregarded because it does not affect the equi-
librium properties of gases (due to the orientational av-
eraging involved). In spite of this, and in spite of the
fact that this process can not be used to separate a
racemic mixture into chiral components, it provides a
surprisingly efficient channel for environmental decoher-
ence. This is demonstrated numerically by solving the
full-fledged coupled-channel problem for a simple chiral
molecule, D2S2. Our numerical results motivate and con-
firm a high-energy approximation, which allows to assess
the decoherence effect at room temperature and to pre-
dict when the collision-induced transition from tunneling
to stabilized chiral states can be observed experimentally.

Master equation for collisional stabilization.—The fol-
lowing microscopic analysis is facilitated by the recent
derivation of a master equation yielding the incoherent
dynamics of the internal-rotational molecular state due
to the collisions with a lighter, thermalized background
gas [7, 8]. Crucially, this Markovian description incorpo-
rates the interaction between molecule and gas particle
in a non-perturbative fashion, by means of the multi-
channel scattering amplitudes.

We assume that the kinetic energy transferred in the
collisions is sufficiently small compared to both the Born-
Oppenheimer barrier separating the enantiomer states
and to the excitation energies of the electronic and vi-
brational internal states of the molecule and the gas par-
ticle. This is valid in most cases of interest, and it im-
plies that thermally induced transitions between |L〉 and
|R〉 do not occur. It is then justified to take the inter-
action operator to be diagonal in the enantiomer basis,
V̂ = VL (r̂) |L〉〈L| + VR (r̂) |R〉〈R|, thus restricting the
molecular configuration state to a two-dimensional sub-
space. Here, r̂ is the inter-particle position operator in
the body-fixed molecular system; for simplicity we dis-
regard a possible dependence of V̂ on the orientation of
the environmental gas particle.

The master equation [8] simplifies considerably under
these assumptions. It is formulated in terms of the scat-
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tering amplitudes for the channels corresponding to the
molecular eigenstates |ψ0〉 and |ψ1〉. However, since the
S-matrix for V̂ does not couple subspaces of different
chiral configurations, 〈L|Ŝ|R〉 = 〈R|Ŝ|L〉 = 0, one can
express the proper scattering amplitudes as linear com-
binations of the scattering amplitudes f (L) and f (R) as-
sociated to the unitary scattering operators 〈L|Ŝ|L〉 and
〈R|Ŝ|R〉. The configuration dynamics then no longer de-
pends on the scattering cross section. Rather, it is deter-
mined by

ηαα0
(v) =

∫

dndn0

8π

∣

∣

∣
f (L)
α,α0

(vn, vn0)− f (R)
α,α0

(vn, vn0)
∣

∣

∣

2

,

(1)

which may be called a decoherence cross section. Similar
to a proper partial cross section, this characteristic area
depends on the relative velocity v and on the initial and
final internal state of the molecule, labeled by the multi-
indices α0 and α. In the present case, these are the rota-
tion states of an asymmetric top, α = (j,mj , τ), specified
by the total and azimuthal quantum numbers j and mj ,
and the pseudo quantum number τ . Importantly, the de-
coherence cross section (1) depends on the phase differ-
ence of f (L) and f (R). It may thus be quite large even if
the corresponding scattering cross sections are identical,
|f (L)|2 = |f (R)|2. The presence of the background gas
also gives rise to a coherent modification of the tunneling
dynamics, described by the characteristic area εαα0

(v) =
∫

dndn0 Im[f
(L)
α,α0

(vn, vn0) f
(R)∗
α,α0

(vn, vn0)]/4π.
In the master equation the areas ηαα0

(v) and εαα0
(v)

are multiplied with the current density of the gas par-
ticles to yield the decoherence rate γ and the frequency
shift ωx, respectively. Specifically, the decoherence rate
is given by

γ = ngas〈v η〉 ≡ ngas

∑

α,α0

w (α0)

∫ ∞

0

dvν (v) vηαα0
(v) ,

(2)

where ngas is the number density of the background gas
and ν (v) its velocity distribution. Here, taking the av-
erage over the rotational state distribution w (α0) is an
additional approximation, which is well allowed if the
rotation frequency is much greater than the tunneling
frequency, as is usually the case. The frequency shift
ωx = ngas〈vε〉 is determined by the same average.
The collisional master equation [8] thus reduces to

an equation in the 2d space spanned by the |ψξ〉 =
(

|L〉+ eiπξ|R〉
)

/
√
2. Denoting the tunneling frequency

by ωz and identifying the energy eigenstates |ψ0〉, |ψ1〉
with the eigenvectors of the Pauli matrix σ̂z , it takes the
form

∂tρ =
1

2i
[ωzσ̂z + ωxσ̂x, ρ] +

γ

2
(σ̂xρσ̂x − ρ) . (3)

This equation has the remarkable property of stabilizing
the enantiomer states |R〉 and |L〉, provided γ ≫ ωz, i.e.,

when the decoherence rate is much greater than the tun-
neling rate. The chiral configuration states decay with
the suppressed rate ω2

z/γ ≪ γ, wz in this case, while the
superposition states |ψξ〉 decay at least with rate γ [2, 3].

The parity-sensitive dispersion interaction.—We now
turn to the general van der Waals interaction between
two polarizable particles to identify the relevant part that
distinguishes a left-handed from a right-handed config-
uration and thus gives rise to different scattering am-
plitudes f (L) and f (R). The total London dispersion
interaction is conveniently expressed in terms of the
frequency-dependent multipole-polarizability tensors of
the particles, most prominently those involving virtual
electric dipole (ED) and electric quadrupole (EQ) tran-
sitions [9]. It is dominated by the standard van der Waals
ED-ED/ED-ED interaction, which depends on the inter-
particle distance r as r−6 and is determined by the ED-
ED polarizability tensors α (iω). This bulk interaction
cannot distinguish different chiral configurations since
the α (iω) are parity-invariant.

Among the chirally sensitive parts of the London
dispersion interaction between a chiral and an achi-
ral molecule, the most important contribution is due
to the EQ-ED/ED-ED polarizability combination. It
has a r−7dependence and it combines the EQ-ED po-
larizability tensor Ai,jk (iω) of the chiral molecule [9]
with the ED-ED polarizability of the spherical projec-
tile. One can safely neglect the contributions involving
higher-order electric polarizability tensors due to their
short-ranged nature; among the contributions involving
magnetic susceptibilities, in particular due to magnetic
dipole (MD) and magnetic quadrupole (MQ) transitions,
the ED-MD/ED-MD vanishes if one molecule is achi-
ral, while the ED-MD/ED-MQ and ED-MD/EQ-MD are
suppressed by the square of the fine structure constant
[10, 11]. Also the (parity-invariant) influence of a small
permanent dipole-moment of the chiral molecules can be
usually disregarded, since it gets overshadowed by the
van der Waals interaction.

We note that the chirally sensitive EQ-ED/ED-ED in-
teraction contribution is usually not accounted for in
molecular scattering calculations. This is because its chi-
ral disparity vanishes when averaged over all orientations
of the chiral molecule, implying that the cross sections
of left- and right-handed molecules are equal. However,
such rotational averaging of the coupled-channel equa-
tions, which drastically reduces the calculational effort,
is not allowed in the present case, since the decoherence
cross section (1) crucially depends on the phase differ-
ences of the individual scattering amplitudes f (L) and
f (R). This phase information is lost at the level of stan-
dard scattering cross sections, which indeed remain equal
for left- and right-handed molecules.

Solving the coupled-channel equations.—In order to
evaluate the scattering amplitudes one must calculate the
scattering matrix S by solving the associated coupled-
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channel equations [12]. Our system comprises a chiral
asymmetric top molecule colliding with a noble gas atom,
such that each channel is described by a set of rotational
(pseudo) quantum numbers j, mj , τ , as well as by the
orbital and the total angular momentum, ℓ and J .

The resulting system of differential equations involves
infinitely many closed channels and a finite number of
asymptotically free, open channels, which scales with the
total energy as E3/2. When truncating this infinite sys-
tem, care is needed to ensure that at least all those closed
channels are retained which have an appreciable coupling
to the initial state, even if their asymptotic energies lie
deeply in the energetically forbidden domain.

Since state-of-the-art numerical program packages for
scattering calculations do not accommodate asymmet-
ric molecules with their parity-changing collision dynam-
ics, we developed a numerical method for solving the full
quantum mechanical scattering problem (avoiding pre-
mature rotational averaging). It is based on the log-
derivative algorithm of Johnson [13], and it allows to
ensure the convergence with respect to the truncation
of closed channels by adjusting threshold values both for
the closed channel energies and for the internal angular
momenta to be retained. We checked our program for
the case of symmetric top molecules against the numeri-
cal package Molscat [14].

Model for D2S2.—The transition from tunneling to sta-
bilization is best observed with a molecule of moder-
ate tunneling frequency ωz. Motivated by recent pro-
posals for enantiomer discrimination [15, 16], we fo-
cus on D2S2, one of the simplest chiral molecules, with
ωz/2π = 176 Hz. Since ab initio calculations for the dy-
namic tensors α (iω) and Ai,jk (iω) are not yet feasible for
dihydrogendisulfide (nor for any other chiral molecule)
we extend the bond increment method [17] for the calcu-
lation of static molecular susceptibilities to the dynamic
case. As described in [17], static molecular susceptibil-
ity tensors can be calculated as a sum over bond incre-
ments associated to the constituent atoms a, which ac-
count for the relative positions and orientation of the
atoms and their mutual bonds. The bond increments are
obtained from ab initio values of static molecular sus-
ceptibilities of training compounds, which include the
D2S2 molecule [17]. In a simple extension of this ap-
proach, we replace the static values of the constituent
atomic susceptibilities by a Drude model, α(a) (iω) =

α(a) (0) fa (ω) and A
(a)
i,jk (iω) = A

(a)
i,jk (0) fa (ω), with

fa (ω) = ω2
a/

(

ω2
a + ω2

)

, where ωa is the first excitation
energy, ωD = 0.375a.u and ωS = 0.252a.u. [18]. The con-
figuration of D2S2 is characterized by the bond lengths
rSS =2.05Å, rSD=1.34Å, the inter-bond angle ∠(DSS) =
100.4◦ and the dihedral angle ∠(DSSD) = 90.3◦, and
constants of inertia given in [19]. We take the back-
ground gas to be ground state helium, whose (spherically
symmetric) dipole-dipole polarizability is accurately de-

FIG. 1: Scattering cross section σtot (upper panel, solid line)
and decoherence cross section ηtot (lower panel, solid line) for
the collision of a He atom off a ground state D2S2 molecule, as
a function of the kinetic energy E/kB 6 10K on a logarithmic
scale. The dashed line corresponds to (4), the dash-dotted
lines gives the high-energy behavior (5).

scribed by a sum of four Lorentzians [20].

Numerical results.—It takes substantial numerical ef-
fort to observe the onset of collisional stabilization, since
this regime is characterized by a large number of par-
tial waves, while the standard semiclassical approaches
for cross sections cannot be applied. Moreover, the num-
ber of relevant scattering channels proliferates; at the ki-
netic energy E/kB = 300K of the relative motion about
1.2× 104 coupled differential equations would have to be
solved simultaneously, with as many different initial con-
ditions, for extracting the S-matrix in the subspace of a
single total angular momentum J .

The upper panel of Fig. 1 presents the exact total
scattering cross section σtot (for kinetic energies up to
10K), starting from the rotational ground state of D2S2,
while the lower panel shows the decoherence cross section
ηtot = Σαηαα0

. One observes that a non-negligible effect
of collisional stabilization can be expected already for en-
ergies well below the threshold for the first channel that
directly couples different parity subspaces (Ethres/kB =
17.5K). The decoherence cross section ηtot tends to sat-
urate at about 100a20, corresponding to ηtot/σtot ≃ 10%
at 10K—a remarkably large value, given that the chiral-
ity distinguishing interaction contributes only weakly to
σtot.

High-energy approximation.—In order to understand
this saturation and to assess the stabilizing effect of col-
lisions at larger temperatures we now consider a high-
energy approximation for ηtot and σtot. Since the Born
approximation renders the scattering amplitude a lin-
ear functional of the potential, it follows immediately
from (1) that the asymptotic high-energy behavior of
ηtot is the cross section corresponding to ∆V (r) =
VL (r)−VR (r). We start from the general dependence of
the cross section on the initial state elastic S-matrix ele-
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ment, σtot = 2π
∑

J (2J + 1) (1− Re(〈Ψ0|Ŝ(J)|Ψ0〉))/k2
[12], apply the exponential Born approximation, and take
the high-J asymptotics. For a homogeneous, spherical
potential V (r) = Cnr

−n, this yields the standard result

σ̃
(n)
tot = pn

(

C2
n/E

)1/(n−1)
, with pn a numerical factor de-

pending weakly on n > 2 [12].
Disregarding the molecular core, we can thus approxi-

mate σtot by the dominant, spherically symmetric n = 6
contribution to the van der Waals ED-ED/ED-ED inter-

action, i.e., σtot ≃ σ̃
(6)
tot with C6 = 11.7a.u. Also ∆V (r)

is homogeneous in r, with n = 7, but there is no di-
rect Born contribution to the decoherence cross section
ηtot since 〈Ψ0|∆V (r̂) |Ψ0〉 vanishes. Therefore, we in-
clude all off-diagonal elements that couple the ground
state in the exponential Born expression. This yields

Re(〈Ψ0|Ŝ(J)|Ψ0〉) ≃ cos(
√

∑

f 6=0 |〈Ψ0|∆V |Ψf〉|2), with

Ψf the free channel wave functions in the J subspace.
The lowest channel Ψ1that couples to Ψ0 via ∆V opens

at 17.5K, with j = 3. Expressing the corresponding
coupling as |〈Ψ0|∆V |Ψ1〉| = ~

2β5/
(

2m∗r
7
)

, with β a
convenient parameterization and m∗ the reduced mass,
and replacing the sum by an integral this yields

ηtot ∼= 4π

k2

∫ ∞

1/2

dJ (2J + 1) sin2

{

5π

128
(kβ)

5 Γ
(

J − 1
2

)

Γ
(

J + 11
2

)

}

.

(4)

with E = (~k)
2
/2m∗. This approximation is displayed

as the dashed line in the lower panel of Fig. 1. The com-
parison with the exact results indicates that (5) starts
to apply already at numerically accessible energies. An
asymptotic expansion yields

ηtot ≃ c1
β5/3

k1/3
− c2

β5/6

k7/6
(5)

with c1 = 3.66 and c2 = 14.4 (see dash-dotted line in
Fig. 1).
Discussion.—Our numerical and analytical analysis

suggests that the ratio ηtot/σtot varies only weakly at
larger energies. A typical value at 300K of ηtot/σtot ≃
25% means that environmental stabilization sets in once
the rate of collisions exceeds four times the tunneling
frequency. Noting that D2S2 tunnels with ωz/2π =
176 Hz, we find from (5) that the critical pressure
and temperature of a helium atmosphere must satisfy

(p/mbar) (T/K)
−2/3

> 3.0 × 10−7, i.e., p > 1.6 ×
10−5mbar for T = 300K.
This prediction could be tested in an experiment that

applies laser based coherent control techniques in a Stern-

Gerlach-type setup for separating a molecular beam into
left- and right-handed daughter beams [15, 16]. Passing
one of them through a gas cell, one may analyze the enan-
tiomeric purity with another Stern-Gerlach stage. Since
thermal racemization can be controlled by cooling (given
the 2300KkB barrier height for chiral flipping in D2S2),
it is thus possible to directly observe the expected en-
vironmental stabilization of the chiral configuration as a
function of the gas pressure.

This work was supported by the DFG Emmy Noether
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[1] F. Hund, Z. Phys. 43, 805 (1927).
[2] M. Simonius, Phys. Rev. Lett. 40, 980 (1978).
[3] R. A. Harris and L. Stodolsky, J. Chem. Phys. 74, 2145

(1981); R. A. Harris and L. Stodolsky, Phys. Lett. 116B,
464 (1982).

[4] M. Quack, Angew. Chem. Int. Ed. 41, 4618 (2002).
[5] E. Joos et al., Decoherence and the Appearance of a

Classical World in Quantum Theory (Springer, Berlin,
2003); W. H. Zurek, Rev. Mod. Phys. 75, 715 (2003); M.
Schlosshauer, Decoherence and the Quantum-To-Classical

Transition (Springer, Berlin, 2007).
[6] W. H. Zurek, Phys. Rev. D 24, 1516, (1981); E. Joos and

H. D. Zeh, Z. Phys. B: Condens. Matter 59, 223 (1985).
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