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We present the first complete optimization of quantum tomography, for states, POVMs, and
various classes of transformations, for arbitrary prior ensemble and arbitrary representation, giving

corresponding feasible experimental schemes.

A crucial issue in quantum information theory is the
precise determination of states and processes. The pro-
cedure by which this task can be accomplished is known
as quantum tomography H,E,B]

The most general quantum measurement is described
by a POVM, namely a collection of positive operators
P; € B(H) satisfying the normalization ), P; = I @]
The probability distribution of the outcome 4 of the mea-
surement is provided by the Born statistical formula

pi = Tr[pPy]. (1)

Tomographing an unknown state p of a quantum system
means performing a suitable POVM {P;} such that every
expectation value can be evaluated from the probability
distribution p; = Tr[pF;]. In particular the expectation
value of an operator A can be obtained when it is possible
to expand A over the POVM as follows

A=>" AP, (2)
fi[A] denoting suitable expansion coefficients. The ex-
pectation of A is then obtained as (A) = >, fi[A|(F;).

When expansion (2]) holds for all operators B(H)—i. e.
B(H) = span{P;}—the POVM is called informationally
complete |3, l6].

It is convenient to associate every operator A € B(H)
to a bipartite vector in H ® H in the following way

d d
D Amalm)(nl & [A) = > Amalmin). (3)

Information-completeness of the POVM along with con-
vergence of the series ([2) rewrite as follows

N
all A3 < Y 1(BIANP < b A3, A€ B(H), (4)

i=1

with 0 < a < b < oco. Sets of vectors |FP;)) satisfying
condition (@) are known as frames ﬂ] This condition
is equivalent to invertibility of the frame operator F =
> [Pi){(Pi].- The expansion in Eq. (@) can be written
as follows
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in terms of a dual frame {D;}, namely a set of operators
satisfying the identity >, |P;)){(D;|] = I. For linearly
dependent frame {P;} the dual {D;} is not unique.

The request for the POVM {P;} to be informationally
complete can be relaxed if we have some prior informa-
tion about the state p. If we know that the state belongs
to a given subspace V C B(H) the expectation value is

(4) = (plA) = (pIQv|A) (6)

@y orthogonal projector on V, whence the set {P;} is
required to span only V.

For the estimation of the expectation (A) of an observ-
able A, optimality means minimization of the cost func-
tion given by the variance §(A) of the random variable
(D;|A)) with probability distribution Tr[pF;], namely

= Z [(Dil A Te[pPi] — | Tx[pA][”.  (T)

In a Bayesian scheme the state p is randomly drawn from
an ensemble S = {pg, pi} of states pr with prior proba-
bility px, with the variance averaged over S, leading to

ds(A ZI (Dil AYI* Tr[ps 7] ZplerpkA]l (8)

where ps = ), prpr. Moreover, a priori we can be inter-
ested in some observables more than other ones, and this
can be specified in terms of a weighted set of observables
G ={A,,qn}, with weight g, > 0 for the observable A,,.
Averaging over G we have

05,6 = Y _(DilGID:) Trlps Pl = > pran| Tr[prAn]?

i k,n
(9)
where G =" ¢n|An)){(An|. The weighted set G yields a
representation of the state, given in terms of the expec-
tation values. The representation is faithful when {4,}
is an operator frame, e. g. when it is made of the dyads
|i)(j| corresponding to the matrix elements (j|pl|é).
Notice that only the first term of ds,¢ depends on {P;}
and {D;}. If p;, € V for all states p; € S, reminding Eq.
[ the first term of Eq. (@) becomes

n="Y (DiQvGQv|D;)

%

Tr[ps Pl (10)

We now generalize this approach to tomography of
quantum operations, keeping generally different input
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and output Hilbert spaces H;, and Hyy:, respectively.
This has the advantage that the usual tomography of
states comes as the special case of one-dimensional H;,,
whereas tomography of POVMs corresponds to one-
dimensional Hoyt-

A quantum operation is a trace non increasing CP-map
T : B(Hin) — B(Hout). In order to gather information
about a quantum operation 7, the most general proce-
dure consists in: 4) preparing a state p € B(Hin, @ Ha)
where H 4 is an ancillary system with the same dimen-
sion of H;p; i) measuring the state (T ® Za)(p) with
a POVM {P;}. The probability of obtaining a generic
outcome 1 is given by

pi = Tr[(T @ Za)(p) P, (11)
which, using the Choi-Jamiotkowski isomorphism IB],
T(p) = Trin[(Lowr®p" )R7], Ry =T@Lu(I)(I]) (12)
becomes
Te[Trin[(Ls ® R7)(p"" @ Louwr)|P3] = Tr[R7IL), (13)
where 6 is the transposition w.r.t. the orthonormal basis
in Eq. (@), and
7 = {Tea(p ® Lou) (Iin @ PP}, (14)

It is convenient to use here the notion of tester along with
the theoretical framework introduced in IE] A tester is
the natural generalization of the concept of POVM from
states to transformations, and is represented by a set of
positive operators {II;} with

ZHi:I®07

The probability distribution in Eq. ([I3) is precisely
represented by a Born-rule with the tester {II;} in place
of {P;}, and the operator Ry in place of p. Such gener-
alized Born rule can be rewritten in terms of the usual
one as follows |9

Tifo] = 1 (15)

pi = Tr[R1L] = Te[T @ Z(v) Py, (16)
with

v=I[Vo){Vol,

This method allows a straightforward generalization of
the tomographic method from states to transformation.
Now tomographing a quantum operation means using a
suitable tester II; such that the expectation value of any
other possible measurement can be inferred by the proba-
bility distribution p; = Tr[R7IL;]. In order to achieve this
task we have to require that {II;} is an operator frame
for B(Hout ® Hin). This means that we can expand any
operator on Heur ® Hipn as follows

A= (AN A€ B(Hou @Hin).  (18)

P, = (Ioo /*)IL;(Ioo~1/?). (17)

where {A;} is a possible dual of the frame {II;}, that is

the condition ), |II;)) (A;| = Ious @ Iiy, holds.
Optimizing the tomography of quantum operations

means minimizing the statistical error in the determi-

nation of the expectation of a generic operator A as in
Eq. ([8). This is provided by the variance

6(4) = Z (A AY? Te[R7IL] — | T[RTA)* - (19)

We assume an ensemble & = { Ry, pi } of possible trans-
formations and a weighted set G = {A,, ¢, } of possible
observables. Averaging the statistical error over these
ensembles we obtain

Se.a =Y (ANi|GIA) Tr[ReIL] — > prgn| Tr[RiAn]|*.
7 k,n

(20)
Optimizing this figure of merit means: i) optimizing the
choice of the dual frame {A;}; i) optimizing the choice of
the frame {II;}. The optimization of the set {II;} reflects
in both choosing the best input state for the quantum
operation and the best final measurement.

In the following, for the sake of clarity we will consider
dim(H;,) = dim(Heue) =: d, and focus on the “symmet-
ric” case G = I; this happens for example when the set
{A,} is an orthonormal basis, whose elements are equally
weighted. Moreover, we assume that the averaged chan-
nel of the ensemble £ is the maximally depolarizing chan-
nel, whose Choi operator is Re = d ' ® I.

With these assumptions the relevant term of figure of
merit becomes

n= Z<<Ai|Ai>>d’1 Tr[IT;]. (21)

K2

Since Ryg is invariant under the action of SU (d)xSU(d)
we now show that it is possible to impose the same co-
variance also on the tester without increasing the value
of . Let us define

i g = Uy @ Vi)IL(US @ V1), (22)
Nign = Uy ® Vi) A(US @ V). (23)

It is easy to check that A; 45 is a dual of 1I; 4, by eval-
uating the group average after the sum on :. Then we
observe that the normalization of 11, 4 5, gives

Z/dgdh Wign=d'Iel (24)

i

corresponding to o = d~'I in Eq. ([7), namely one can
choose v = d~*|I))({I|. In the last identity dg and dh are
invariant measures normalized to unit.

It is easy to verify that the figure of merit for the
covariant tester is the same as for the non covariant
one, whence, w.l.o.g. we optimize the covariant tester.



The condition that the covariant tester is information-
ally complete w.r.t. the subspace of transformations to
be tomographed will be verified after the optimization.

We note that a generic covariant tester is obtained by
Eq. [22)), with operators II; becoming “seeds” of the co-
variant POVM, and now being required to satisfy only
the normalization condition

> Tl =d (25)

(analogous of covariant POVM normalization in [4, [10]).
The problem of optimization of the dual frame has been
solved in [11]. With the optimal dual, the figure of merit
simplifies as

n=Te[X 7], (26)

where
d|1r;
X = Z/d dh |q—«]‘“‘| /dgdh WonXWI,
1 g,h
(27)

with Wy, = U, ® U @ Vi @ V7 and X =
>, d|TL;) (IL;] / Tr[IL;]. Usmg Schur’s lemma we have [12]
X = P+ APy, + BPs + CPy, (28)
Py = (3 @ oy, Py = (I3 — 13) ® Qay,

Py =03 ® (Toa — Qoa), Pu= (s —Qi3) ® (J2a — Qoa),

having posed Q = |[I)){(I|/d and

_ 1 Tr[(Tro[I1;])?]
A_d2—1{zi: Tr[IL;] _1}
1 Tr[(Try [T1;])2
B=3_1 {Z [(Tr[l[L-] - 1} (29)

1

One has

d Tr[I1?

Wj]—(dQ—l)(/H—B)—l}.

Tr[f(l]_1+(d2—1)<i+;+ d C_l)>. (30)

We note that if the ensemble of transformations is con-
tained in a subspace V C B(Hour @ Hipn) the figure of
merit becomes 1 = Tr[X*Qy], where X¥ is the Moore-
Penrose pseudoinverse. We now carry on the minimiza-
tion for three relevant subspaces:

Q = B(Hout ® Hzn)v C= {R S Q7 Trout[R] = 1n}
U= {R €9, Tl"out[R] = ImaTrzn[R] = out} (31)

corresponding respectively to quantum operations, gen-
eral channels and unital channels. The subspaces C and
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Figure 1: Physical implementation of optimal quantum trans-
formation tomography. The two measurements are Bell’s
measurements preceded by a random unitary. The state |U))
depends on the prior ensemble.

U are invariant under the action of the group {Wy 5} and
thus the respective projectors decompose as
Qc =P+ P, + Py, Qu=PFP+F, (32)

Without loss of generality we can assume the operators
{IL;} to be rank one. In fact, suppose that II; has rank
higher than 1. Then it is possible to decompose it as
II = Zj II; ; with II; ; rank 1. The statistics of II; can
be completely achieved by II; ; through a suitable post-
processing. For the purpose of optimization it is then
not restrictive to consider rank one II;, namely II; =
a;| V) (W], with Y . o; = d. Notice that all multiple
seeds of this form lead to testers satisfying Eq. (25]).

In the three cases under examination, the figure of
merit is then

nQ:Tr[Xfl] =1+(d*-1) <z+u)

AT 124
nNe = Tr[XiQC] =1+ (d2 B 1) (% + %)
Ty = TI‘[X'TQU] =1+ (d2 o 1) <%) (33)

where 0 < A = (d? — 1)_1(Ei Oéz'Tf[(‘I’i‘I’Dz] -1 <

771 < 3- The minimum can simply be determined by
derivation with respect to A, obtaining A = 1/(d? + 1)
for quantum operations, A = 1/(v/2(d? — 1) + 2) for gen-
eral channels and A = 0 for unital channels. The corre-
sponding minimum for the figure of merit is

ng > d® +d* — d*
ne > d° 4+ (2v2 = 3)d* + (5 — 4V2)d* +2(V2 — 1)
w > (d®—1)° +1. (34)
The same result for quantum operations and for unital

channels has been obtained in B] in a different frame-
work.



These bounds are simply achieved by a single seed
Mo = d|W) (¥, with

o 2d V2(d?2 —1)+3
T = H @)+ %)

respectively for quantum operations, general channels
and unital channels, namely with

U= [d~'(1 - B)I + Blw) (]2 (36)

where 8 = /(d+1)/(d? 4+ 1) for quantum operations,
B =1[(d—1)(2++/2(d*—1))]~'/? for general channels and
B = 0 for unital channels, and [¢) is any pure state. The
informationally completeness is thus verified a posteriori
(see [10]).

The same procedure can be carried on when the op-
erator G has the more general form G = g1 P, + g2 P> +
93P + g4 Py, where P; are the projectors defined in (28]).
In this case Eq. (B0) becomes

(@~ Dga
O )
(37)
which can be minimized along the same lines previously
followed. G has this form when optimizing measuring
procedures of this kind: ) preparing an input state ran-
domly drawn from the set {UypU]}; ii) measuring an

observable chosen from the set {UhAU,]:}.

We now show how the optimal measurement can be
experimentally implemented. Referring to Fig. [ the
bipartite system carrying the Choi operator of the trans-
formation is indicated with the labels S; and Sa. We
prepare a pair of ancillary systems A; and A, in the
joint state |U)(¥|, then we apply two random unitary
transformations U; and Us to S and S, finally we per-
form a Bell measurement on the pair A;57 and another
Bell measurement on the pair A,S>. This experimental
scheme realizes the continuous measurement by random-
izing among a continuous set of discrete POVM; this is a
particular application of a general result proved in M]
The scheme proposed is feasible using e. g. the Bell mea-
surements experimentally realized in M] We note that
choosing |¥)) maximally entangled (as proposed for ex-
ample in [16]) is generally not optimal, except for the
unital case.

With the same derivation starting from Eq. (2I), but
keeping dim(H;,) # dim(Hout), one obtains the optimal
tomography for general quantum operations. The special
case of dim(#H;,) =1 (one has P; = Py =0 in Eq. (28))
corresponds to optimal tomography of states, whereas
case dim(Hout) = 1 (P = P, = 0) gives the optimal

e (P (25
TG =g (1) (%4 5 4

tomography of POVMs. The corresponding experimen-
tal schemes are obtained by removing the upper/lower
branch for POVMs/states, respectively. In the remaining
branch the bipartite detector becomes a mono-partite,
performing a von Neumann measurement for the qudit,
preceded by a random unitary in SU(d). Moreover, for
the case of POVM, the state |¥)) is missing, whereas, for
state-tomography, both bipartite states are missing. The
optimal 7 in Eq. (I0) is given by n = d* +d? —d, in both
cases (for state-tomography compare with Ref. [L7]).

In conclusion, we presented a general method for op-
timizing quantum tomography, based on the new notion
of tester. The method is very versatile, allowing to con-
sider arbitrary prior ensemble and representation. We
provided the optimal experimental schemes for tomogra-
phy of states and various kinds of process tomography,
giving the corresponding performance, all schemes being
feasible with the current technology.
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