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We present the �rst 
omplete optimization of quantum tomography, for states, POVMs, and

various 
lasses of transformations, for arbitrary prior ensemble and arbitrary representation, giving


orresponding feasible experimental s
hemes.

A 
ru
ial issue in quantum information theory is the

pre
ise determination of states and pro
esses. The pro-


edure by whi
h this task 
an be a

omplished is known

as quantum tomography [1, 2, 3℄.

The most general quantum measurement is des
ribed

by a POVM, namely a 
olle
tion of positive operators

Pi ∈ B(H) satisfying the normalization

∑

i Pi = I [4℄.

The probability distribution of the out
ome i of the mea-

surement is provided by the Born statisti
al formula

pi = Tr[ρPi]. (1)

Tomographing an unknown state ρ of a quantum system

means performing a suitable POVM {Pi} su
h that every

expe
tation value 
an be evaluated from the probability

distribution pi = Tr[ρPi]. In parti
ular the expe
tation

value of an operator A 
an be obtained when it is possible

to expand A over the POVM as follows

A =
∑

i

fi[A]Pi, (2)

fi[A] denoting suitable expansion 
oe�
ients. The ex-

pe
tation of A is then obtained as 〈A〉 =
∑

i fi[A]〈Pi〉.
When expansion (2) holds for all operators B(H)�i. e.

B(H) = span{Pi}�the POVM is 
alled informationally


omplete [5, 6℄.

It is 
onvenient to asso
iate every operator A ∈ B(H)
to a bipartite ve
tor in H⊗H in the following way

A =

d
∑

m,n=1

Amn|m〉〈n| ↔ |A〉〉 =
d

∑

m,n=1

Amn|m〉|n〉. (3)

Information-
ompleteness of the POVM along with 
on-

vergen
e of the series (2) rewrite as follows

a‖A‖22 ≤
N
∑

i=1

|〈〈Pi|A〉〉|2 ≤ b‖A‖22, A ∈ B(H), (4)

with 0 < a ≤ b < ∞. Sets of ve
tors |Pi〉〉 satisfying


ondition (4) are known as frames [7℄. This 
ondition

is equivalent to invertibility of the frame operator F =
∑

i |Pi〉〉〈〈Pi|. The expansion in Eq. (2) 
an be written

as follows

|A〉〉 =
∑

i

〈〈Di|A〉〉|Pi〉〉, (5)

in terms of a dual frame {Di}, namely a set of operators

satisfying the identity

∑

i |Pi〉〉〈〈Di| = I. For linearly

dependent frame {Pi} the dual {Di} is not unique.

The request for the POVM {Pi} to be informationally


omplete 
an be relaxed if we have some prior informa-

tion about the state ρ. If we know that the state belongs

to a given subspa
e V ⊆ B(H) the expe
tation value is

〈A〉 = 〈〈ρ|A〉〉 = 〈〈ρ|QV |A〉〉 (6)

QV orthogonal proje
tor on V , when
e the set {Pi} is

required to span only V .
For the estimation of the expe
tation 〈A〉 of an observ-

able A, optimality means minimization of the 
ost fun
-

tion given by the varian
e δ(A) of the random variable

〈〈Di|A〉〉 with probability distribution Tr[ρPi], namely

δ(A) :=
∑

i

|〈〈Di|A〉〉|2 Tr[ρPi]− |Tr[ρA]|2. (7)

In a Bayesian s
heme the state ρ is randomly drawn from

an ensemble S = {ρk, pk} of states ρk with prior proba-

bility pk, with the varian
e averaged over S, leading to

δS(A) :=
∑

i

|〈〈Di|A〉〉|2 Tr[ρSPi]−
∑

k

pk|Tr[ρkA]|2 (8)

where ρS =
∑

k pkρk. Moreover, a priori we 
an be inter-

ested in some observables more than other ones, and this


an be spe
i�ed in terms of a weighted set of observables

G = {An, qn}, with weight qn > 0 for the observable An.

Averaging over G we have

δS,G :=
∑

i

〈〈Di|G|Di〉〉Tr[ρSPi]−
∑

k,n

pkqn|Tr[ρkAn]|2

(9)

where G =
∑

n qn|An〉〉〈〈An|. The weighted set G yields a

representation of the state, given in terms of the expe
-

tation values. The representation is faithful when {An}
is an operator frame, e. g. when it is made of the dyads

|i〉〈j| 
orresponding to the matrix elements 〈j|ρ|i〉.
Noti
e that only the �rst term of δS,G depends on {Pi}

and {Di}. If ρi ∈ V for all states ρi ∈ S, reminding Eq.

(6) the �rst term of Eq. (9) be
omes

η =
∑

i

〈〈Di|QVGQV |Di〉〉Tr[ρSPi]. (10)

We now generalize this approa
h to tomography of

quantum operations, keeping generally di�erent input
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and output Hilbert spa
es Hin and Hout, respe
tively.

This has the advantage that the usual tomography of

states 
omes as the spe
ial 
ase of one-dimensional Hin,

whereas tomography of POVMs 
orresponds to one-

dimensional Hout.

A quantum operation is a tra
e non in
reasing CP-map

T : B(Hin) −→ B(Hout). In order to gather information

about a quantum operation T , the most general pro
e-

dure 
onsists in: i) preparing a state ρ ∈ B(Hin ⊗ HA)
where HA is an an
illary system with the same dimen-

sion of Hin; ii) measuring the state (T ⊗ IA)(ρ) with

a POVM {Pi}. The probability of obtaining a generi


out
ome i is given by

pi = Tr[(T ⊗ IA)(ρ)Pi], (11)

whi
h, using the Choi-Jamioªkowski isomorphism [8℄,

T (ρ) = Trin[(Iout⊗ρT )RT ], RT = T ⊗Iin(|I〉〉〈〈I|) (12)

be
omes

Tr[Trin[(IA ⊗RT )(ρ
θin ⊗ Iout)]Pi] = Tr[RT Π

(ρ)
i ], (13)

where θ is the transposition w.r.t. the orthonormal basis

in Eq. (3), and

Π
(ρ)
i = {TrA[(ρ⊗ Iout)(Iin ⊗ P θout

i )]}T . (14)

It is 
onvenient to use here the notion of tester along with

the theoreti
al framework introdu
ed in [9℄. A tester is

the natural generalization of the 
on
ept of POVM from

states to transformations, and is represented by a set of

positive operators {Πi} with

∑

i

Πi = I ⊗ σ, Tr[σ] = 1 (15)

The probability distribution in Eq. (13) is pre
isely

represented by a Born-rule with the tester {Πi} in pla
e

of {Pi}, and the operator RT in pla
e of ρ. Su
h gener-

alized Born rule 
an be rewritten in terms of the usual

one as follows [9℄

pi = Tr[RT Πi] = Tr[T ⊗ I(ν)Pi], (16)

with

ν = |
√
σ〉〉〈〈

√
σ|, Pi = (I⊗σ−1/2)Πi(I⊗σ−1/2). (17)

This method allows a straightforward generalization of

the tomographi
 method from states to transformation.

Now tomographing a quantum operation means using a

suitable tester Πi su
h that the expe
tation value of any

other possible measurement 
an be inferred by the proba-

bility distribution pi = Tr[RT Πi]. In order to a
hieve this
task we have to require that {Πi} is an operator frame

for B(Hout ⊗Hin). This means that we 
an expand any

operator on Hout ⊗Hin as follows

A =
∑

i

〈〈∆i|A〉〉Πi A ∈ B(Hout ⊗Hin). (18)

where {∆i} is a possible dual of the frame {Πi}, that is
the 
ondition

∑

i |Πi〉〉〈〈∆i| = Iout ⊗ Iin holds.

Optimizing the tomography of quantum operations

means minimizing the statisti
al error in the determi-

nation of the expe
tation of a generi
 operator A as in

Eq. (18). This is provided by the varian
e

δ(A) =
∑

i

|〈〈∆i|A〉〉|2 Tr[RT Πi]− |Tr[RT A]|2 (19)

We assume an ensemble E = {Rk, pk} of possible trans-
formations and a weighted set G = {An, qn} of possible

observables. Averaging the statisti
al error over these

ensembles we obtain

δE,A :=
∑

i

〈〈∆i|G|∆i〉〉Tr[REΠi]−
∑

k,n

pkqn|Tr[RkAn]|2.

(20)

Optimizing this �gure of merit means: i) optimizing the


hoi
e of the dual frame {∆i}; ii) optimizing the 
hoi
e of

the frame {Πi}. The optimization of the set {Πi} re�e
ts
in both 
hoosing the best input state for the quantum

operation and the best �nal measurement.

In the following, for the sake of 
larity we will 
onsider

dim(Hin) = dim(Hout) =: d, and fo
us on the �symmet-

ri
� 
ase G = I; this happens for example when the set

{An} is an orthonormal basis, whose elements are equally

weighted. Moreover, we assume that the averaged 
han-

nel of the ensemble E is the maximally depolarizing 
han-

nel, whose Choi operator is RE = d−1I ⊗ I.
With these assumptions the relevant term of �gure of

merit be
omes

η =
∑

i

〈〈∆i|∆i〉〉d−1 Tr[Πi]. (21)

Sin
e RE is invariant under the a
tion of SU(d)×SU(d)
we now show that it is possible to impose the same 
o-

varian
e also on the tester without in
reasing the value

of η. Let us de�ne

Πi,g,h := (Ug ⊗ Vh)Πi(U
†
g ⊗ V †

h ), (22)

∆i,g,h := (Ug ⊗ Vh)∆i(U
†
g ⊗ V †

h ). (23)

It is easy to 
he
k that ∆i,g,h is a dual of Πi,g,h by eval-

uating the group average after the sum on i. Then we

observe that the normalization of Πi,g,h gives

∑

i

∫

dgdh Πi,g,h = d−1I ⊗ I (24)


orresponding to σ = d−1I in Eq. (17), namely one 
an


hoose ν = d−1|I〉〉〈〈I|. In the last identity dg and dh are

invariant measures normalized to unit.

It is easy to verify that the �gure of merit for the


ovariant tester is the same as for the non 
ovariant

one, when
e, w.l.o.g. we optimize the 
ovariant tester.
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The 
ondition that the 
ovariant tester is information-

ally 
omplete w.r.t. the subspa
e of transformations to

be tomographed will be veri�ed after the optimization.

We note that a generi
 
ovariant tester is obtained by

Eq. (22), with operators Πi be
oming �seeds� of the 
o-

variant POVM, and now being required to satisfy only

the normalization 
ondition

∑

i

Tr[Πi] = d (25)

(analogous of 
ovariant POVM normalization in [4, 10℄).

The problem of optimization of the dual frame has been

solved in [11℄. With the optimal dual, the �gure of merit

simpli�es as

η = Tr[X̃−1], (26)

where

X̃ =
∑

i

∫

dgdh
d|Πi,g,h〉〉〈〈Πi,g,h|

Tr[Πi,g,h]
=

∫

dgdh Wg,hXW
†
g,h

(27)

with Wg,h = Ug ⊗ U∗
g ⊗ Vh ⊗ V ∗

h and X =
∑

i d|Πi〉〉〈〈Πi|/Tr[Πi]. Using S
hur's lemma we have [12℄

X̃ = P1 +AP2 +BP3 + CP4, (28)

P1 = Ω13 ⊗ Ω24, P2 = (I13 − Ω13)⊗ Ω24,
P3 = Ω13 ⊗ (I24 − Ω24) , P4 = (I13 − Ω13)⊗ (I24 − Ω24),

having posed Ω = |I〉〉〈〈I|/d and

A =
1

d2 − 1

{

∑

i

Tr[(Tr2[Πi])
2]

Tr[Πi]
− 1

}

B =
1

d2 − 1

{

∑

i

Tr[(Tr1[Πi])
2]

Tr[Πi]
− 1

}

(29)

C =
1

(d2 − 1)2

{

∑

i

dTr[Π2
i ]

Tr[Πi]
− (d2 − 1)(A+B)− 1

}

.

One has

Tr[X̃−1] = 1 + (d2 − 1)

(

1

A
+

1

B
+

(d2 − 1)

C

)

. (30)

We note that if the ensemble of transformations is 
on-

tained in a subspa
e V ⊆ B(Hout ⊗ Hin) the �gure of

merit be
omes η = Tr[X̃‡QV ], where X̃
‡
is the Moore-

Penrose pseudoinverse. We now 
arry on the minimiza-

tion for three relevant subspa
es:

Q = B(Hout ⊗Hin), C = {R ∈ Q, Trout[R] = Iin}
U = {R ∈ Q, Trout[R] = Iin,Trin[R] = Iout} (31)


orresponding respe
tively to quantum operations, gen-

eral 
hannels and unital 
hannels. The subspa
es C and

A2

S2

A1

S1

|Ψ〉〉
U1

U2

T
1√
d
|I〉〉

Figure 1: Physi
al implementation of optimal quantum trans-

formation tomography. The two measurements are Bell's

measurements pre
eded by a random unitary. The state |Ψ〉〉
depends on the prior ensemble.

U are invariant under the a
tion of the group {Wg,h} and
thus the respe
tive proje
tors de
ompose as

QC = P1 + P2 + P4, QU = P1 + P4 (32)

Without loss of generality we 
an assume the operators

{Πi} to be rank one. In fa
t, suppose that Πi has rank

higher than 1. Then it is possible to de
ompose it as

Π =
∑

j Πi,j with Πi,j rank 1. The statisti
s of Πi 
an

be 
ompletely a
hieved by Πi,j through a suitable post-

pro
essing. For the purpose of optimization it is then

not restri
tive to 
onsider rank one Πi, namely Πi =
αi|Ψi〉〉〈〈Ψi|, with

∑

i αi = d. Noti
e that all multiple

seeds of this form lead to testers satisfying Eq. (25).

In the three 
ases under examination, the �gure of

merit is then

ηQ = Tr[X̃−1] = 1 + (d2 − 1)

(

2

A
+

(d2 − 1)2

1− 2A

)

ηC = Tr[X̃‡QC ] = 1 + (d2 − 1)

(

1

A
+

(d2 − 1)2

1− 2A

)

ηU = Tr[X̃‡QU ] = 1 + (d2 − 1)

(

(d2 − 1)2

1− 2A

)

(33)

where 0 ≤ A = (d2 − 1)−1(
∑

i αiTr[(ΨiΨ
†
i )

2] − 1) ≤
1

d+1 < 1
2 . The minimum 
an simply be determined by

derivation with respe
t to A, obtaining A = 1/(d2 + 1)
for quantum operations, A = 1/(

√
2(d2 − 1)+ 2) for gen-

eral 
hannels and A = 0 for unital 
hannels. The 
orre-

sponding minimum for the �gure of merit is

ηQ ≥ d6 + d4 − d2

ηC ≥ d6 + (2
√
2− 3)d4 + (5− 4

√
2)d2 + 2(

√
2− 1)

ηU ≥ (d2 − 1)3 + 1. (34)

The same result for quantum operations and for unital


hannels has been obtained in [13℄ in a di�erent frame-

work.



4

These bounds are simply a
hieved by a single seed

Π0 = d|Ψ〉〉〈〈Ψ|, with

Tr[(ΨΨ†)2] =
2d

d2 + 1
,

√
2(d2 − 1) + 3

d(
√
2(d2 − 1) + 2)

, 1 (35)

respe
tively for quantum operations, general 
hannels

and unital 
hannels, namely with

Ψ = [d−1(1− β)I + β|ψ〉〈ψ|] 12 (36)

where β =
√

(d+ 1)/(d2 + 1) for quantum operations,

β = [(d−1)(2+
√
2(d2−1))]−1/2

for general 
hannels and

β = 0 for unital 
hannels, and |ψ〉 is any pure state. The

informationally 
ompleteness is thus veri�ed a posteriori

(see [10℄).

The same pro
edure 
an be 
arried on when the op-

erator G has the more general form G = g1P1 + g2P2 +
g3P3 + g4P4, where Pi are the proje
tors de�ned in (28).

In this 
ase Eq. (30) be
omes

Tr[X̃−1G] = g1 + (d2 − 1)

(

g2
A

+
g3
B

+
(d2 − 1)g4

C

)

,

(37)

whi
h 
an be minimized along the same lines previously

followed. G has this form when optimizing measuring

pro
edures of this kind: i) preparing an input state ran-

domly drawn from the set {UgρU
†
g}; ii) measuring an

observable 
hosen from the set {UhAU
†
h}.

We now show how the optimal measurement 
an be

experimentally implemented. Referring to Fig. 1, the

bipartite system 
arrying the Choi operator of the trans-

formation is indi
ated with the labels S1 and S2. We

prepare a pair of an
illary systems A1 and A2 in the

joint state |Ψ〉〉〈〈Ψ|, then we apply two random unitary

transformations U1 and U2 to S1 and S2, �nally we per-

form a Bell measurement on the pair A1S1 and another

Bell measurement on the pair A2S2. This experimental

s
heme realizes the 
ontinuous measurement by random-

izing among a 
ontinuous set of dis
rete POVM; this is a

parti
ular appli
ation of a general result proved in [14℄.

The s
heme proposed is feasible using e. g. the Bell mea-

surements experimentally realized in [15℄. We note that


hoosing |Ψ〉〉 maximally entangled (as proposed for ex-

ample in [16℄) is generally not optimal, ex
ept for the

unital 
ase.

With the same derivation starting from Eq. (21), but

keeping dim(Hin) 6= dim(Hout), one obtains the optimal

tomography for general quantum operations. The spe
ial


ase of dim(Hin) = 1 (one has P3 = P4 = 0 in Eq. (28))


orresponds to optimal tomography of states, whereas


ase dim(Hout) = 1 (P2 = P4 = 0) gives the optimal

tomography of POVMs. The 
orresponding experimen-

tal s
hemes are obtained by removing the upper/lower

bran
h for POVMs/states, respe
tively. In the remaining

bran
h the bipartite dete
tor be
omes a mono-partite,

performing a von Neumann measurement for the qudit,

pre
eded by a random unitary in SU(d). Moreover, for

the 
ase of POVM, the state |Ψ〉〉 is missing, whereas, for

state-tomography, both bipartite states are missing. The

optimal η in Eq. (10) is given by η = d3+d2−d, in both


ases (for state-tomography 
ompare with Ref. [17℄).

In 
on
lusion, we presented a general method for op-

timizing quantum tomography, based on the new notion

of tester. The method is very versatile, allowing to 
on-

sider arbitrary prior ensemble and representation. We

provided the optimal experimental s
hemes for tomogra-

phy of states and various kinds of pro
ess tomography,

giving the 
orresponding performan
e, all s
hemes being

feasible with the 
urrent te
hnology.
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