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It is shown how to explicitly coarse-grain the microscopic dynamics of the rule-based Vicsek
model for self-propelled agents. The hydrodynamic equations are derived by means of an Enskog-

type kinetic theory. Expressions for all transport coefficients are given.

The transition from a

disordered to a flocking state, which at large particle speeds appears to be a fluctuation-induced
first-order phase transition, is studied numerically and analytically.

Pattern formation and collective motion in systems of
self-propelled objects are fascinating phenomena which
have attracted much attention. Systems of interest in-
clude animal flocks [1], chemically powered nanorods [2],
and actin networks driven by molecular motors [3]. Theo-
retical studies of these systems are usually based on phe-
nomenological transport equations. In most cases, the
equations are postulated by means of symmetry argu-
ments, which define only the general form of the terms
but leave their coefficients undetermined.

One goal of this paper is to provide a systematic deriva-
tion of all relevant coefficients for the two-dimensional
Vicsek model (VM) of self-propelled particles [4]. In the
VM, pointlike particles are driven with constant speed.
At each time step, a given particle assumes the average
direction of motion of its neighboring particles, with some
added noise. As the noise amplitude decreases, the sys-
tem undergoes a phase transition from a disordered state,
in which the particles have no prefered global direction,
to an ordered state, in which the particles move collec-
tively in the same direction. This long-range order moti-
vated renormalization group studies by Toner and Tu [5].
They found that the stabilization of the ordered phase is
due to the nonzero speed of the particles, allowing two
originally distant particles to interact with each other at
a later time. The phase transition was originally thought
to be continuous [4] but recent numerical work [6] in-
dicates that the transition is discontinuous with strong
finite size effects. There are few analytical studies on
this transition [7, 8]. They do not treat the original VM
but simple models related to it. For example, Bertin et
al. [7], study a model with simplified interactions and
a continuous time dynamics by means of a Boltzmann
equation.

Numerical simulations of the VM [4, 6] show localized
high-density structures, for which a Boltzmann descrip-
tion, which is restricted to low densities, is not sufficient.
Enskog’s proposal to generalize the Boltzmann equation
to dense gases was a major milestone in kinetic theory. In
this paper, it is shown how an Enskog-type equation with
genuine multi-body collisions can be obtained for the VM
and how this can be used to rigorously derive hydrody-
namic equations. In addition to the terms postulated by
Toner and Tu [5], the derived equations contain several

new relevant terms which describe an intricate coupling
between density and order parameter gradients. The co-
efficients of all terms, compatible with the symmetries
of the system, are calculated explicitly in third order of
a gradient expansion. The new kinetic equation is used
to determine the mean-field phase diagram of the VM,
which agrees well with direct numerical simulations but
disagrees with the results of a related continuous time
model [7]. This shows the importance of explicitly taking
the discrete time, rule-based nature of the VM into ac-
count. The derived hydrodynamic equations are applied
to study the stability of a homogeneous flocking state
against spatio-temporal perturbations. I discuss how an
instability at the onset of collective motion can change
the appearance of the phase transition from second to
first order. Predictions for the system size where this
change is expected to happen, are given.

In the VM, a system of N pointlike particles with
continuous spatial coordinates r;(¢) and velocities v;(t)
evolves via two steps: streaming and collision. During
a time step 7, particles stream ballistically: x;(¢t + 7) =
x;(t) +7v;(t). The magnitude of the particle velocities is
fixed to vg. Only the directions 6; of the velocity vectors
are updated in the collision step: a circle of radius R is
drawn around a given particle and the average direction
6; of motion of the particles within the circle is deter-
mined according to 6; = arctan[}"7 sin(6;)/ Y7 cos(6;)].
The new directions follow as 0;(t 4+ 7) = 0;(t) + &;, where
& is a random number chosen with uniform probabil-
ity from the interval [—7n/2,7n/2]. Since explicitly coarse-
graining the dynamics of the VM is difficult, in previ-
ous work [9], T have first validated the formalism on a
simpler equilibrium model [10] which shares essential fea-
tures with the VM. The kinetic formalism starts with the
Liouville equation for the N-particle probability density
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continued delta function.  The velocities V(N) =
(v1,va,...,VN), are given in terms of angle variables,
v; = wo(cosb;,siné;). The collision integral contains
integrations over the pre-collisional angles 9~j. Assum-
ing that the particles are uncorrelated prior to the col-
lisions, the probability distribution can be expressed as
a product of identical one-particle probability distribu-
tions: P((N), X(N)) = vazl Py(0;,%;). This approxi-
mation of molecular chaos is valid at moderate and large
noise strength n and when the mean free path (mfp) is
large compared to the radius of interaction R. Here, the
mfp is defined as the distance a particle travels between
collisions, 7 vy, and is density-independent due to the dis-
crete nature of the dynamics. Multiplying Eq. (1) by
> 0(v — v;)d(x — x;) and integrating over all particle
positions z; and angles 6;, yields in the large N-limit [9],
a kinetic equation for the one-particle distribution func-
tion, f(0,x,t) = NPi(6,x,t),
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where Mg(x,t) = [,p(y,t)dy is the average number
of particles in a circle of radius R centered around x.
The local particle density p is given as a moment of the
distribution function, p(x,t) = Ozﬂf(H,x, t)do; (..), =
f R dxo dx3...dx, denotes the integration over all posi-
tions, n — 1 particles can assume within the interaction
circle; (...); = 0277 ...d01dfsy...df, is the average over all
pre-collisional angles of n particles in the interaction cir-
cle. Since particles in the VM have zero volume, there
is a non-zero probability that a large number of parti-
cles can be found in the collision circle of a given parti-
cle. This leads to the unusual structure of the collision
integral in which every term in the sum accounts for a
n-particle collision. For example, the n = 4 term involves
the product of four distribution functions and describes a
four body collision. Interactions between particles which
are not at the same position but a distance < R apart
are explicitely taken into account by Eq. (2). This leads
to collisional momentum transfer which is a key feature
of the Enskog equation and not included in Boltzmann-
type equations. Hence, Eq. (2), can be interpreted as an
Enskog-like equation for pointlike particles with discrete
time evolution; it remains valid even at infinite density.
Let us first consider a spatially homogeneous system
and study stationary solutions of Eq. (2). This amounts
to solving the fixed-point equation fy(0) = C(fy) for the
stationary distribution function fy, where C' denotes the
r.hs. of Eq. (2). It can be easily checked that the con-
stant distribution fy = po/27 is a fixed-point at any noise
and average density, pg = N/A, where A is the area of
the system. This solution corresponds to the disordered
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FIG. 1. a) The critical noise n¢ as a function of the average
number of collision partners, M = powR?, and the prediction
of Eq. (35) for large vo from Ref. [7], (dashed line), in com-
parison with results from Refs. [4, 8, 11]. b) Real part of the
growth rate, wr, of a small longitudinal perturbation of the
ordered state versus dimensionless wave number k|| at M = 5,
very close to the threshold, (nc —n)/nc = 0.00057. The insert
shows a lower and an upper bound for the crossover length
L* (in units of the mfp) beyond which the phase transition is
expected to become discontinuous.

phase, where all velocity directions occur at equal prob-
ability. Below a critical noise n¢(pg) there exists another
fixed-point solution which breaks rotational symmetry.
It has a maximum at some arbitrary angle 6 and de-
scribes ordered motion into this direction. The critical
noise follows from the condition \ = 1, with
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Here, Mp is equal to mR?pg and @ is the average angle de-
fined above Eq. (1). The fixed-point equation was solved
numerically for n < n¢. The solution approaches a cosine
with vanishing amplitude when n approaches the critical
noise. By means of a Fourier cosine series in 6 — 0 the
behavior at the critical point was extracted analytically.
The order parameter, defined as the amplitude g; of the
first non-trivial Fourier coefficient, is found to behave as
g1 X v/nc —n. Thus, the order-disorder transition ap-
pears to be continuous with the mean-field critical expo-
nent of 1/2. Fig. 1a) shows the calculated phase diagram
(solid line). Evaluating Eq. (3) in the low density limit
gives ¢ oc R/p. This scaling with the square root of the
density agrees with previous numerical [4] and theoreti-
cal results [6, 7]. However, there is no dependence of the
critical noise on the particle speed in the large mfp limit,
which is consistent with numerical simulations of the VM
[4, 11] but disagrees with the scaling nc o /pRuvg for
p — 0 of the continuous model of Ref. [7]. The dashed
line in Fig 1a) shows that the phase diagram of this model
(obtained from Eq. (35) in [7] with vgT/R = 5) does not
describe the VM. Evaluating Eq. (3) in the infinite den-
sity limit yields n¢ — 27. In order to see whether the
homogeneous ordered state is stable under time evolu-
tion, I derive the hydrodynamic equations by means of a
Chapman-Enskog expansion [9, 12]. The basic idea be-



hind this expansion is to take the local stationary state
as a reference state and expand around it in powers of
the hydrodynamic gradients. To systematically account
for these gradients a dimensionless ordering parameter e
is introduced, which is set to unity at the end of the cal-
culation. The procedure starts with a Taylor expansion
of the Lh.s of Eq. (2) around (6, x,t). The spatial gradi-
ents that occur are scaled as d,, — €d,, and multiple time
scales t; are introduced in the temporal gradients. These
time scales describe different physical processes, for ex-
ample, in regular fluids, the time scale proportional to €
describes convection. For the VM, this is expressed as
O = 8150 +€8t1 + 628,52 e

Expanding the distribution function and the collision
integral in powers of €, f = fo + efi + €2fo + ..., and
C = Cp + €Cy + €2Cy + ..., inserting into Eq. (2), and
collecting terms of the same order in e leads to a hi-
erarchy of evolution equations for the f;. Due to the
absence of momentum conservation and Galilean invari-
ance this set of equations is dramatically different from
the usual one. It is not a priori evident whether the
scaling ansatz for the time derivatives is correct. How-
ever, it turns out that this choice avoids any incon-
sistencies if additionally the expansion of the distribu-
tion function f is identified as an angular Fourier series
with fo(x,t) = p(x,t)/27 and, for n > 0, f,(x,0,t) =
[an(x,t) cos (nd) + by (x, 1) sin (nh)] /o).

Many moments of the collision integral such as
(V30 C2) = f02 " v, Uy Co df are required in the Chapman-
Enskog expansion. For simplicity, these moments are
evaluated in the limit of large mfp, Tvy > R. This in-
volves solving the following four integrals,
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U, = cosf cosf cosbhy cosfs. The average angle 6 is
a function of the angles 61,6s,...6,.

We seek a hydrodynamic description of the first two
moments of f, namely the particle density p = 027r fdo
and the macroscopic momentum density vector W =
(We, wy), W= 027T Uf df. Inserting the Fourier represen-
tation of f into these moments shows that the first order
coefficients are given by the momentum density, a1 = w,
and b; = w,. Multiplying the hierarchy of evolution
equations by powers of the microscopic velocity vector
U = (vg, vy) and integrating over # gives a set of equa-
tions for the time development of the density and the
moments a; and b;. This analysis is performed in the
vicinity of the critical point, |A — 1] < 1, in order to sig-
nificantly simplify the consistent closure of the hierarchy
of moment equations, see [11].

For simplicity, all equations are rescaled by expressing
time in units of 7 and distances in units of the mfp, 7y,
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TABLE I. The transport coefficients h;, ¢; and k;, defined in
Eq. (6), are expressed as functions of I', S, p, ¢, see Eq. (8).

which also makes p and « dimensionless. After straight-
forward, but tedious, calculations one obtains the con-
tinuity equation Oip + d,ws = 0, and a rotationally-
invariant equation for the momentum density,

B +V-H =—bVp+ (A= 1)G+Q1 -7 +Q2-Vp (5)

with b = (3 — A\)/4. The momentum flux tensor H and
the tensors Q1, Q2,
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are given in terms of five symmetric traceless tensors €2;,
Q1,08 = Oawg + 0gWa — Jag0yWy
Q2,03 = 20,08p — 5a583p
03,08 = 2Wawg — Sapw?
Q408 = Wa08p + W0ap — 0agW~yOyp
05,06 = 2(0ap)(9pp) — 8ap(0-)* . (7)
The tensor €27 is the viscous stress tensor of a two-
dimensional fluid. The transport coefficients in Eq. (6)

are given in Table I. They depend on the following vari-
ables,
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where 7 is the ratio of the interaction radius to the mfp,
v = R/7vg. Eq. (5) is consistent with the one postulated
in Ref. [5] but contains additional gradient terms. It has
a homogeneous flocking solution: @ = wp i and p = pg.



The amplitude of the flow is given by wg = /(1 — X)/gs.
In order to study the spontaneous onset of collective
motion, a perturbation around this state is considered,
p(x,t) = po + dpek*tet wp(x,t) = woh + §i ek xHet
and Eq. (5) is linearized in dp and dw. The characteristic
equation for the growth rate w(k) describes three possible
modes. I found that in a small window, ng < n < n¢, di-
rectly below the onset of flocking, one of the longitudinal
modes is always unstable against long wavelength per-
turbations: the real part of w is positive for 0 < k < kg
as shown in Fig. 1b). A similar instability was reported
in Refs. [7, 13]. Chaté et al. [6] found numerically that
the order/disorder transition is discontinuous for system
sizes L larger than the crossover length L*. Assuming
that the long wave instability is the reason for this fi-
nite size effect, I calculated the largest value of ko within
the narrow instability window at constant density, £*, in
order to obtain a lower bound for L*. Plotting 27/k*
gives the lower curve in the insert of Fig. 1b). An up-
per bound was obtained by determining the wave number
kmaz where the growth rate has the largest value inside
the instability window. The upper curve in the insert
shows 27 /kq. as a function of density. The minimum
around M = 2 and the divergences at small and large
densities are consistent with numerical results [6].

To see what happens to a growing perturbation be-
yond the linear instability, the continuity equation and
Eq. (5) were integrated on a L x L lattice with peri-
odic boundaries by means of a predictor-corrector scheme
[14]. These simulations confirmed that the ordered
phase is stable for small system sizes L < 2m/ky. For
slightly larger system sizes one observes a stable, inho-
mogeneous steady state with a global order parameter,
(W) = [ dx/L?, larger than the amplitude of the homo-
geneous state, wg. Finally, for much larger system sizes,
it turns out that the system is both linearly and nonlin-
early unstable for ng < 1 < nc. Longitudinal pertur-
bations grow without bound; they do not lead to stable
solitons as suggested in Ref. [7]. However, direct simula-
tions of the VM at large mfp do show solitary structures
such as traveling high-density bands in a window just be-
low the transition [6, 11]. At lower noise these structures
disappear. Identifying this “solitary” window with the
instability window, its size can be predicted by the cur-
rent theory which takes all the details of the VM such
as multi-body interactions into account. However, inside
this window, the hydrodynamic equations are driven out
of the range of their validity and are not suited to describe
solitons. Nagy et al [4] did not see high-density bands at
small velocity vg. To treat this limit of small mfp theoret-
ically, one has to abandon the molecular chaos approx-
imation i.e. go beyond the mean-field approximation,
which is outside the scope of this paper.

In summary, a first-principle derivation of the hydro-
dynamic equations of the VM by means of a novel ki-
netic theory is presented and a stability analysis of the
resulting equations, Eq. (5), is performed. The mean-
field phase diagram for arbitrary density is calculated. It
agrees within a few percent with simulation results and is
shown to be independent of the particle speed in the large
mfp limit. It is also shown that the continuous theory of
[7] fails to reproduce the phase diagram of the VM and
that one has to explicitely incorporate the discrete time
dynamics and genuine multi-body interactions in order
to achieve agreement. The theory presented here is con-
sistent with numerical studies [4, 6], and suggests the fol-
lowing picture of the nature of the flocking transition in
the large mfp limit considered here: At n = nc a homo-
geneous ordered state bifurcates continuously from the
disordered state. At the threshold, this state is unstable
to longitudinal, long wavelength fluctuations. Perturba-
tions from a large range of wave numbers k < kg become
unstable, already in close vicinity to the threshold. The
transition appears to be continuous in small systems but
becomes a discontinuos transition in large systems due to
the emergence of density waves which abruptly increase
the global order parameter. An estimate of the system
size L*, above which the fluctuation-driven discontinuous
nature of the transition is expected to emerge, is given.
This length is found to diverge at small and large densi-
ties, consistent with numerical results.
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