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Abstract

Gravitational lens models with negative convergence (surface mass density projected onto the lens

plane) inspired by modified gravity theories, exotic matter and energy have been recently discussed

in such a way that a static and spherically-symmetric modified spacetime metric depends on the

inverse distance to the power of positive n (n=1 for Schwarzschild metric, n=2 for Ellis wormhole)

in the weak-field approximation [Kitamura, Nakajima and Asada, PRD 87, 027501 (2013)], and it

has been shown that demagnification of images could occur for n > 1 lens models associated with

exotic matter (and energy), though they cause the gravitational pull on light rays. The present

paper considers gravitational lensing shear by the demagnifying lens models and other models such

as negative-mass compact objects causing the gravitational repulsion on light rays like a concave

lens. It is shown that images by the lens models for the gravitational pull are tangentially elongated,

whereas those by the repulsive ones are radially distorted. This feature of lensed image shapes may

be used for searching (or constraining) localized exotic matter or energy with gravitational lensing

surveys. It is suggested also that an underdense region such as a cosmic void might produce radially

elongated images of background galaxies rather than tangential ones.

PACS numbers: 04.40.-b, 95.30.Sf, 98.62.Sb
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I. INTRODUCTION

The bending of light was used for the first experimental confirmation of the theory of

general relativity. In modern astronomy and cosmology, the gravitational lensing is widely

used, as one of the important tools, for investigating extrasolar planets, dark matter and

dark energy.

The light bending is also of theoretical importance, in particular for studying a null

structure of a spacetime. A rigorous form of the bending angle plays an important role in

understanding properly a strong gravitational field [1–3, 5, 6]. For example, strong gravita-

tional lensing in a Schwarzschild black hole was considered by Frittelli, Kling and Newman

[1] and by Virbhadra and Ellis [2]; Virbhadra and Ellis [3] and Virbhadra and Keeton [4]

later described the strong gravitational lensing by naked singularities; Eiroa, Romero and

Torres [5] treated Reissner-Nordström black hole lensing; Perlick [6] discussed the lensing

by a Barriola-Vilenkin monopole and also that by an Ellis wormhole.

One of peculiar features of general relativity is that the theory admits a nontrivial topol-

ogy of a spacetime, for instance a wormhole. An Ellis wormhole is a particular example of

the Morris-Thorne traversable wormhole class [7–9]. Furthermore, wormholes are inevitably

related with violations of some energy conditions in physics [10]. For instance, dark energy

is introduced to explain the observed accelerated expansion of the universe by means of an

additional energy-momentum component in the right-hand side of the Einstein equation.

Furthermore, the left-hand side of the Einstein equation, equivalently the Einstein-Hilbert

action, could be modified in various ways (nonlinear curvature terms, higher dimensions, and

so on) inspired by string theory, loop quantum gravity and so on. Because of the nonlinear

nature of gravity, modifications to one (or both) side of the Einstein equation might admit

spacetimes significantly different from the standard Schwarzschild spacetime metric, even if

the spacetime is assumed to be asymptotically flat, static and spherically symmetric. One

example is an Ellis wormhole (being an example of traversable wormholes).

Many yeas ago, scattering problems in wormhole spacetimes were discussed (for instance,

[11, 12]). Interestingly, the Ellis wormhole has a zero mass at the spatial infinity but it

causes the light deflection [11, 12]. Moreover, the gravitational lensing by wormholes has

been recently investigated as an observational probe of such an exotic spacetime [6, 13–20].

Several forms of the deflection angle by the Ellis wormhole have been recently derived and
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often used [6, 15–18, 21, 22]. A reason for such differences has been clarified [23, 24].

Small changes in gravitational lensing in modified gravity theories such as f(R) and

fourth-order gravity have been studied (e.g. [25–28]). Inspired by a number of works on

modifications in gravitational lensing, Kitamura et al. [29] assume, in a phenomenological

sense, that an asymptotically flat, static and spherically symmetric modified spacetime could

depend on the inverse distance to the power of positive n in the weak field approximation.

The Schwarzschild spacetime and the Ellis wormhole correspond to n = 1 and n = 2,

respectively, so that these spacetimes can be expressed as a one-parameter family. Note

that Birkhoff’s theorem could say that cases n 6= 1 might be non-vacuum, if the models

were interpreted in the framework of the standard Einstein equation.

Kitamura et al. [29] have shown that demagnification could occur for n > 1 including the

Ellis wormhole case (n = 2). They have also shown that time-symmetric demagnification

parts might appear in light curves due to gravitational microlensing effects by such exotic

models. For microlensing observations in our galaxy, light curves are available. For cosmo-

logical situations, however, the Einstein ring size becomes so large and hence the typical

time scale is so long that light curves cannot be observable in cosmology. On the other

hand, the image separation angle becomes sufficiently large, so that it can be practically

measured. By using the latest result in the Sloan Digital Sky Survey Quasar Lens Search,

Takahashi and Asada have recently set the first upper bound on the cosmic abundances of

Ellis wormholes and also negative-mass compact objects [30]. In theoretical physics, neg-

ative mass is a hypothetical concept of matter whose mass is of opposite sign to the mass

of normal matter. Although possible negative mass ideas have been often discussed since

the 19th century, there has been no evidence for them [31–34]. The negative masses might

attract each other to form a negative massive clump, so that such clumps could reside in

cosmological voids (e.g. [35]). However, the information on the image separation angle is

not sufficient for distinguishing exotic lens models. Therefore, the main purpose of this brief

paper is to study shapes of lensed images due to significantly modified spacetimes.

We take the units of G = c = 1 throughout this paper.
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II. MODIFIED SPACETIME MODEL AND MODIFIED LENS EQUATION

A. Modified bending angle of light

Following Kitamura et al. [29], the present paper assumes that an asymptotically flat,

static and spherically symmetric modified spacetime could depend on the inverse distance

to the power of positive n in the weak field approximation. We consider the light propa-

gation through a four-dimensional spacetime, though the whole spacetime may be higher

dimensional. The four-dimensional spacetime metric is expressed as

ds2 = −
(

1−
ε1
rn

)

dt2 +
(

1 +
ε2
rn

)

dr2 + r2(dΘ2 + sin2Θdφ2) +O(ε21, ε
2
2, ε1ε2), (1)

where r is the circumference radius and ε1 and ε2 are small book-keeping parameters in

the following iterative calculations. Here, ε1 and ε2 may be either positive or negative,

respectively. Negative ε1 and ε2 for n = 1 correspond to a negative mass (in the linearized

Schwarzschild metric).

Without loss of generality, we focus on the equatorial plane Θ = π/2, since the spacetime

is spherically symmetric. The deflection angle of light is obtained at the linear order as [29]

α =
ε

bn

∫ π

2

0

cosn ψdψ +O(ε2), (2)

where the integral is positive definite, b denotes the impact parameter of the light ray, and

we define ε ≡ nε1 + ε2. By absorbing the positive integral into the parameter ε, we rewrite

the linear-order deflection angle simply as α = ε̄/bn, where the sign of ε̄ is the same as that

of ε. This deflection angle recovers the Schwarzschild (n = 1) and Ellis wormhole (n = 2)

cases. For ε > 0, the deflection angle of light is always positive, which means that the

corresponding spacetime model causes the gravitational pull on light rays. For ε < 0, on

the other hand, it is inevitably negative, which implies the gravitational repulsion on light

rays like a concave lens. Tsukamoto and Harada [19] employ as an ansatz the same modified

bending angle as what is derived from the spacetime metric by Kitamura et al. [29].

We mention an effective mass. A simple application of the standard lens theory [36] sug-

gests that the deflection angle of light in the form of α = ε̄/bn corresponds to a convergence

(scaled surface mass density) as

κ(b) =
ε̄(1− n)

2

1

bn+1
. (3)
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For the weak-field Schwarzschild case (n = 1), it follows that the convergence vanishes.

For ε > 0 and n > 1, the effective surface mass density of the lens object is interpreted as

negative in the framework of the standard lens theory [29]. This means that the matter (and

energy) need to be exotic if ε > 0 and n > 1. Also when ε < 0 and n < 1, the convergence is

negative and hence the matter (and energy) need to be exotic. Interestingly, when ε < 0 and

n > 1, the convergence is positive everywhere except for the central singularity and hence

exotic matter (and energy) are not required in the framework of the standard lens theory, in

spite of the gravitational repulsion on light rays. Attraction (ε > 0) and repulsion (ε < 0)

in the above models do not have a one-to-one correspondence to positive convergence κ > 0

and negative one κ < 0. This point is summarized in Table I.

B. Modified lens equation

Under the thin lens approximation, it is useful to consider the lens equation as [36]

β =
b

DL

−
DLS

DS

α(b), (4)

where β denotes the angular position of the source and DL, DS, DLS are the distances from

the observer to the lens, from the observer to the source, and from the lens to the source,

respectively.

For ε > 0, there is always a positive root corresponding to the Einstein ring for β = 0.

The Einstein ring radius is defined as [36]

θE ≡

(

ε̄DLS

DSDn
L

)
1

n+1

. (5)

If ε < 0, on the other hand, Eq. (4) has no positive root for β = 0. This is because this

case describes the repulsive force. For later convenience in normalizing the lens equation,

we define the (tentative) Einstein ring radius for ε < 0 as

θE ≡

(

|ε̄|DLS

DSDn
L

)
1

n+1

, (6)

though the Einstein ring does not appear for this case. This radius gives a typical angular

size for ε < 0 lenses.
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III. GRAVITATIONAL LENSING SHEAR

A. ε > 0 case

Let us begin with a ε > 0 case. As already stated, the matter (and energy) need to be

exotic if n > 1. In the units of the Einstein ring radius, Eq. (4) is rewritten in the vectorial

form as

β̂ = θ̂ −
θ̂

θ̂n+1
(θ̂ > 0), (7)

β̂ = θ̂ −
θ̂

(−θ̂)n+1
(θ̂ < 0), (8)

where we normalize β̂ ≡ β/θE and θ̂ ≡ θ/θE for the angular position of the image θ ≡ b/DL,

and β̂ and θ̂ denote the corresponding vectors. There is always one image for θ̂ > 0, while

the other image appears for θ̂ < 0 [29].

Let us study the lensing shear that is generally defined via the magnification matrix

Aij ≡ ∂βi/∂θj [36]. After straightforward computations, the magnification matrix for θ̂ > 0

becomes explicitly

(Aij) =













1−
1

θ̂n+1
+ (n+ 1)

θ̂xθ̂x

θ̂n+3
(n + 1)

θ̂xθ̂y

θ̂n+3

(n + 1)
θ̂xθ̂y

θ̂n+3
1−

1

θ̂n+1
+ (n + 1)

θ̂yθ̂y

θ̂n+3













. (9)

It is diagonalized by using its eigen values λ± as

(Aij) =





1− κ− γ 0

0 1− κ+ γ





≡





λ− 0

0 λ+



 , (10)

where the x and y coordinates are chosen along the radial and tangential directions, respec-

tively, such that (θ̂i) = (θ̂, 0) and (β̂i) = (β̂, 0). Hence, the radial elongation factor is 1/λ−,

while the tangential one is 1/λ+.

First, let us investigate the primary image (θ̂ > 0). By using Eq. (7), we obtain

λ+ =
β̂

θ̂
= 1−

1

θ̂n+1
, (11)
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λ− =
dβ̂

dθ̂
= 1 +

n

θ̂n+1
. (12)

To reach Eqs. (11) and (12), we need several steps, where first the Jacobian matrix is

computed and next the matrix is diagonalized. Note that, for our axially symmetric cases,

there is a shortcut of deriving Eqs. (11) and (12) without doing such lengthy calculations.

In the shortcut, one may start with the x and y coordinates that are locally chosen along

the radial and tangential directions, respectively, such that (θ̂i) = (θ̂, 0) and (β̂i) = (β̂, 0).

Then, infinitesimal changes in β̂ and θ̂ can be written as (dθ̂i) = (dθ̂, θ̂dφ) and (dβ̂i) =

(dβ̂, β̂dφ), where φ denotes the azimuthal angle. The axial symmetry allows that θ̂ and β̂

are independent of φ, which means that the off-diagonal terms vanish in the local coordinates.

Hence, one can immediately obtain Eqs. (11) and (12) [37].

If and only if n > −1, one can show λ− > λ+. Therefore, the primary image is always

tangentially elongated. See also Figure 1 for κ and λ± that are numerically calculated for

n = 0.5, 1, 2 and 3. For these four cases, λ− is always larger than λ+. The convergence κ is

positive for n = 0.5, while it is negative for n = 2 and 3. It follows that n = 1 corresponding

to the Schwarzschild lens leads to κ = 0.

Eqs. (11) and (12) give the convergence and the shear as

κ = 1−
λ+ + λ−

2

=
1− n

2

1

θ̂n+1
, (13)

γ =
λ+ − λ−

2

= −
1 + n

2

1

θ̂n+1
, (14)

respectively. It follows that this result of κ agrees with Eq. (3).

Next, we study the secondary image (θ̂ < 0). By using Eq. (8), one can show λ− > λ+,

if and only if n > −1. Hence, the secondary image also is tangentially elongated. See also

Figure 2 for ε > 0 and n = 2, where one can see a pair of tangential images.

Finally, we mention the dependence on the exponent n. A significantly elongated case

such as a giant arc appears near the Einstein ring (θ̂ ∼ 1), around which Eqs. (11) and (12)
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are expanded as

λ+ = (n+ 1)(θ̂ − 1)−
(n + 1)(n+ 2)

2
(θ̂ − 1)2 +O

(

(θ̂ − 1)3
)

, (15)

λ− = n+ 1− n(n + 1)(θ̂ − 1) +O
(

(θ̂ − 1)2
)

. (16)

where we used the identity θ̂ = 1 + (θ̂ − 1). The ratio of the tangential elongation to the

radial one (corresponding to the arc shape) is

λ−
λ+

=
1

θ̂ − 1
+
(

1−
n

2

)

+O(θ̂ − 1). (17)

This suggests that, for the fixed observed lens position θ̂, elongation of images becomes

weaker, when n becomes larger. This dependence on n is true of also the secondary image.

B. ε < 0 case

Let us study ε < 0 case. In the units of the Einstein ring radius, Eq. (4) is rewritten in

the vectorial form as

β̂ = θ̂ +
θ̂

θ̂n+1
(θ̂ > 0), (18)

β̂ = θ̂ +
θ̂

(−θ̂)n+1
(θ̂ < 0). (19)

Without loss of generality, we assume β̂ > 0. Then, Eq. (19) has no root satisfying θ̂ < 0,

while Eq. (18) has at most two positive roots. Figure 3 shows that there are three cases

of the image number. For a large impact parameter case, two images appear on the same

side with respect to the lens position, while no image appears for a small impact parameter.

The only one image appears only when the impact parameter takes a particular value. Let

us focus on the two image cases, from which the single image case can be discussed in the

limit as the impact parameter approaches the particular value.

By using Eq. (18), we obtain

λ+ =
β̂

θ̂
= 1 +

1

θ̂n+1
, (20)

λ− =
dβ̂

dθ̂
= 1−

n

θ̂n+1
. (21)
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One can show that λ− < λ+, if and only if n > −1. Hence, both images are everywhere

radially elongated. See also Figure 4 for κ and λ± that are numerically calculated for n = 0.5,

1, 2 and 3. For these four cases, λ+ is always larger than λ−. The convergence κ is negative

for n = 0.5, while it is positive for n = 2 and 3. It follows that n = 1 corresponding to the

(negative-mass) Schwarzschild lens leads to κ = 0.

Eqs. (20) and (21) give the shear as

γ =
λ+ − λ−

2

=
1 + n

2

1

θ̂n+1
. (22)

A repulsive case might correspond to the lensing by a void-like mass distribution. The

above calculations assume the flat (Minkowskian) background spacetime. If one wish to

consider cosmological situations, the gravitational potential and the mass density might

correspond to the scalar perturbation and the density contrast in the cosmological per-

turbation approach based on the Friedmann-Lemaitre background spacetime [36]. In this

cosmological counterpart, the present model with κ < 0 might correspond to an underdense

region called a cosmic void, in which the local mass density is below the cosmic mean density

and the density contrast is thus negative. The gravitational force on the light rays by the

surrounding region could be interpreted as repulsive (ε < 0), because the bending angle of

light with respect to the center of the spherical void might be negative. Therefore, cosmic

voids might correspond to a κ < 0 and ε < 0 case. Note that the positive convergence due

to the cosmic mean density is taken into account in the definition of the cosmological dis-

tances. There are very few galaxies in voids compared with in a cluster of galaxies. Hence,

it is difficult to investigate gravity inside a void by using galaxies as a tracer. Gravitational

lensing shear measurements would be another tool for studying voids.

Before closing this section, we mention whether we can distinguish radial elongation and

tangential one in observations without knowing the lens position. Usually, lens objects

cannot be directly seen except for visible lens objects such as galaxies. In particular, exotic

lens models that are discussed in this paper might be invisible. In the above calculations,

the origin of the two-dimensional coordinates is chosen as the center of the lens object, so

that the radial and tangential directions can be well defined. For a pair of radially elongated

images (ε < 0), they are in alignment with each other. For a pair of tangentially elongated

images (ε > 0), they are parallel with each other. Therefore, one can distinguish radial
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elongation from tangential one by measuring such an image alignment in observations. See

also Figure 2 for ε < 0 and n = 2, where one can see a pair of radial images.

IV. DISCUSSION AND CONCLUSION

We examined gravitational lens models inspired by modified gravity theories, exotic mat-

ter and energy. By using an asymptotically flat, static and spherically symmetric spacetime

model of which metric depends on the inverse distance to the power of positive n, it was

shown in the weak field and thin lens approximations that images due to lens models for

the gravitational pull on light rays are tangentially elongated, whereas those by the other

models for the gravitational repulsion on light rays are always radially distorted.

As a cosmological implication, it is suggested that cosmic voids might correspond to

a κ < 0 and ε < 0 case and hence they could produce radially elongated images rather

than tangential ones. It would be interesting to investigate numerically light propagation

through realistic voids in cosmological simulations, because the present model obeys a simple

power-law. It is left for future work.
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FIG. 1: κ, λ+ and λ− for ε > 0. They are denoted by solid (blue in colors), dotted (purple

in colors) and dashed (red in colors) curves, respectively. The horizontal axis denotes the image

position θ in the units of the Einstein radius. Top left: n = 0.5 Top right: n = 1. Bottom left:

n = 2. Bottom right: n = 3.

TABLE I: The sign of the convergence κ. It is the same as that of ε(1− n) according to Eq. (3).

κ > 0 ε > 0 & n < 1

ε < 0 & n > 1

κ = 0 n = 1

κ < 0 ε > 0 & n > 1

ε < 0 & n < 1
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FIG. 2: Numerical figures of lensed images for attractive (ε > 0) and repulsive (ε < 0) cases.

They are denoted by dashed curves. We take n = 2. The source for each case is denoted by solid

circles, which are located on the horizontal axis and vertical one for ε < 0 and ε > 0, respectively.
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FIG. 3: Repulsive lens model (ε < 0). Solid curves denote 1/θ̂n and straight lines mean θ̂ − β̂.

Their intersections correspond to image positions that are roots for the lens equation. There are

three cases: No image for a small β̂ (dot-dashed line), a single image for a particular β̂ (dotted

line), and two images for a large β̂ (dashed line). The two images are on the same side of the lens

object.
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FIG. 4: κ, λ+ and λ− for ε < 0. They are denoted by solid (blue in colors), dotted (purple

in colors) and dashed (red in colors) curves, respectively. The horizontal axis denotes the image

position θ in the units of the Einstein radius. Top left: n = 0.5 Top right: n = 1. Bottom left:

n = 2. Bottom right: n = 3.
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