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The stability of systems containing six quarks or antiquarks is studied within a simple string
model inspired by the strong-coupling regime of quantum chromodynamics and used previously
for tetraquarks and pentaquarks. We discuss both six-quark (q6) and three-quark–three-antiquark
(q3q̄3) states. The quarks are assumed to be distinguishable and thus not submitted to antisym-
metrization. It is found that the ground state of (q6) is stable against dissociation into two isolated
baryons. For the case of (q3q̄3), our results indicate the existence of a bound state very close to
the threshold. The investigations are extended to (q3Q3) and (Q3q̄3) systems with two different
constituent masses, and their stability is discussed as a function of the mass ratio.

PACS numbers: 12.39.Jh,12.40.Yx,31.15.Ar

I. INTRODUCTION

The situation remains unclear and even confusing in
the multiquark sector. Several experimental candidates
have been announced and not confirmed. Also some
states with ordinary quantum numbers might be of mul-
tiquark nature or contain a large multiquark component,
but their interpretation is still controversial. For a re-
view of the experimental results, see, e.g., [1]. It should
be stressed, however, that the recent experimental efforts
have been devoted mainly to states with hidden heavy fla-
vor, while other sectors have never been much explored.

On the theory side, there are some uncertainties on
whether the models describing ordinary mesons and
baryons can be reliably extrapolated toward higher con-
figurations, and whether these tentative models do or do
not lead to stable multiquarks. In particular, the dy-
namics of systems made either of six quarks, (q6), or
three quarks and three antiquarks, (q3q̄3), has been dis-
cussed by several authors, for instance [2–18], using nu-
clear forces, chromomagnetism, chiral quark models, etc.

To focus on the role of confinement, we adopt here a
simple string model inspired by [19, 20]. For mesons, it
reduces to a single linear potential, which can be scaled
to Vm = r12. For tetraquarks, the so-called “flip-flop”
interaction Vt = min(r13 + r24, r14 + r23) gives binding
to equal-mass configurations (qqq̄q̄) and to states with
two heavy quarks and two light antiquarks (QQq̄q̄) [21].
Stable pentaquarks are also found in an extension of this
model [22]. The present article aims at studying hex-
aquark states, both six-quark configurations or systems
made of three quarks and three antiquarks.
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Our string model is extremely crude, as it neglects al-
together relativistic effects, short range corrections, spin-
dependent effects, etc. Any antisymmetrization is also
disregarded, i.e., quarks are assumed of different flavors,
even if bearing equal masses. There is no proliferation of
multiquarks in the experimental hadron spectrum, and
antisymmetrization is certainly rather effective in setting
selection rules. However, before starting any detailed
calculation with a refined potential and a full account
of Fermi statistics, we wish to identify whether an im-
proved picture of confinement favors the occurrence of
stable multiquarks.

In early multiquark calculations, indeed, the in-
terquark potential was taken from the naive ansatz of
additive terms with color factors. Later, the flip-flop
model was adopted and inserted in actual few-body cal-
culations. The good surprise in the tetraquark and pen-
taquark cases [21, 22] is that the flip-flop model gives
more attraction than the color-additive model, and thus
suggests new scenarios for multiquark binding. More-
over, this model is supported by lattice QCD [23, 24].
This is an encouragement to extend the study of stabil-
ity in the six-quark sector.

This paper is organized as follows: in Sec. II, we
present the linear string model which is adopted. The
methods to solve the six-body problem are described in
Sec. III. The results are presented in Sec. IV, before some
concluding remarks in Sec. V.

II. A SIMPLE STRING MODEL

For mesons, the potential is taken to be the quark–
antiquark separation,

Vm(1, 2) = r12 , (1)

the string tension being set to unity, to fix the energy
scale.
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For a baryon (q3) = {1, 2, 3}, the potential is the now
familiar Y -shape potential (see, e.g., [21] for references to
early papers on this approach to the baryon dynamics)

VY (1, 2, 3) = min
`

(r`1 + r`2 + r`3) . (2)

This potential can be estimated analytically by geometric
considerations. If a, b and c denote the sides of the trian-
gle, namely c = r12, etc., and 6 a, etc., the opposite an-
gles, the potential reads VY (1, 2, 3) = b+ c if 6 a > 2π/3,
and permutations, and in the case where no angle exceeds
2π/3, (see, e.g., [23])

VY (1, 2, 3) =

[
a2 + b2 + c2 + Λ1/2

2

]1/2

, (3)

Λ = 3(a+ b+ c)(a+ b− c)(a− b+ c)(−a+ b+ c) .

For tetraquarks, the potential is taken to be minimum
of the flip-flop interaction and the connected double-Y
diagram, both shown in Fig. 1. It reads,

V4(1, 2, 3, 4) = min

[
r13 + r24, r14 + r23,

min
{k,`}

(r1k + r2k + rk` + r`3 + r`4)

]
. (4)

FIG. 1. Flip-flop interaction (left and center) and connected
Steiner-tree diagram (right) for the tetraquark. The potential
is in principle the minimum of the configurations, but it is
largely dominated by the former ones.

For completeness, let us mention the pentaquark [22],
though it will not enter any threshold nor sub-system in
our study. The interaction is the minimum of flip-flop
terms, a meson and a baryon with all permutations, and
of connected Steiner trees, as shown in Fig. 2.

FIG. 2. Contributions to the pentaquark potential. Left:
flip-flop. Right: connected Steiner tree.

For the (q6) configurations, there are again two types
of digrams: flip-flop and connected Steiner tree, as shown
in Fig. 3. The potential is minimized with respect to all
permutations.

FIG. 3. Contributions to the (q6) potential.

Finally, for the (q3q̄3) states, there are several possi-
bilities: flip-flop with either a baryon and an antibaryon,
or three mesons, or a meson and a tetraquark, and also
some connected diagrams with four or more junctions.
Examples are given in Fig. 4.

FIG. 4. Contributions to the (q3q̄3) potential.

Now, the previous studies [21] made on baryons,
tetraquarks and pentaquarks have shown that the dy-
namics is dominated by the flip-flop terms, while the
connected diagrams with Y -shape junctions play a mi-
nor role for binding. Moreover, the dynamics of baryon
is qualitatively similar with a pair-wise potential

∑
rij/2

and the Y -shape model.1

Hence for the ease of the computations, we adopt from
now on the following simplified interaction:

• mesons: Eq. (1),

• baryons: the ∆ interaction,

V∆(1, 2, 3) =
1

2
(r12 + r23 + r31) , (5)

• tetraquarks: the flip-flop terms,

Vt = min(r13 + r24, r14 + r23) , (6)

• (q6): flip-flop with a ∆ interaction for each baryon,
with suitable permutations, see Fig. 5,

1 The main difference is that a baryon bound by the Y -potential
is slightly heavier than with

∑
rij/2. In a refined calculation of

(Q3q̄3) with two different masses, this would change the mass
ratio at which there is a degeneracy of baryon–antibaryon vs.
mesonic thresholds, and perhaps influence the stability of multi-
quarks in this region.
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FIG. 5. Contributions to the dibaryon potential in the sim-
plified model.

• (q3q̄3): only the flip-flop terms, with ∆ for the
baryon and the antibaryon, and no double-Y terms
for tetraquark subsystems. See Fig. 6. The poten-
tial reads

Vh(1, 2, 3, 4, 5, 6) = min

[
V∆(1, 2, 3) + V∆(4, 5, 6),

min
{i,j,k}

(ri4 + rj5 + rk6)

]
. (7)

FIG. 6. Contributions to the (q3q̄3) potential in the simplified
model.

III. METHODS

A. Hyperspherical expansion

The method of hyperspherical expansion is applicable
for any set of constituent masses, but we restrict its ap-
plication to the case of equal masses (but yet indistin-
guishable quarks). One can describe the relative motion
with any standard set of Jacobi coordinates {x1, . . . ,x5},
considered as a vector in a 15-dimensional space, with
spherical coordinates (r,Ω). The potential V (r,Ω) is not
exactly isotropic, and the Schrödinger equation consists
of an infinite set of coupled equations for the radial re-
duced2 partial waves uL(r) with generalized angular mo-
mentum L. A good (variational) approximation consists

2 a factor r7 is included

of retaining only the L = 0 (hyperscalar) component,
which obeys (m = h̄ = 1)

− u′′0(r) +
42

r2
u0(r) + V00ru0(r) = E0u0(r) , (8)

where the projection

V00r =

∫
V (r,Ω)dΩ

/∫
dΩ , (9)

is computed numerically, unlike the case of a linear pair-
wise interaction, for which an analytic expression is avail-
able. This gives

E0(q6) = 7.230 E0(q3q̄3) = 7.073 . (10)

For (q6), the potential is fully symmetric. As in the sim-
pler three-body problem for baryons [25], this implies
that the next partial wave occurs only at L = 4 and gives
a very small correction. For (q3q̄3), there is a L = 2 con-
tribution. One can solve the two coupled equations that
generalize (8), and get

E2(q3q̄3) = 6.999 . (11)

B. Correlated Gaussians

The method of expansion over Gaussians has been used
for cross-check in the equal-mass case and extended to
unequal constituent masses. This method is widely used
in quantum chemistry and in few-body problems of nu-
clear physics [26, 27], with some subtle variants dealing
with the most efficient manner of tuning the parameters.
In our case, it reduces to a trial wave function sought as

Ψ =

N∑
n=1

Cn exp

− 5∑
i≥j=1

anij xi · xj

 . (12)

Each individual term does not fulfill the constraints of
permutation, parity, etc., but, in principle, the proper
symmetry requirements are restored in the summation.

As for the Jacobi variables xi, a simple and universal
choice, (a), consists of

x1 = r2 − r1

x2 = r3 −
m1

m12
r1 −

m2

m12
r2

x3 = r4 −
m1

m123
r1 −

m2

m123
r2 −

m3

m123
r3

. . . . . .

(13)

where m1,2,..,n = m1 + m2 + ... + mn, as depicted in
Fig. 7(a). As an alternative set, (b), we can choose
x1 and x2 to describe the internal motion in the subset
{1, 2, 3}, x4 and x5 for {4, 5, 6} and x3 for the relative
motion of the two clusters, see Fig. 7(b). This general-
izes the variables used in [28] for the four-body problem.
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FIG. 7. Jacobi coordinates considered in this work.

We also used a set (c), where the first coordinates de-
scribe the two-body systems, and the last coordinates
the relative motion of these clusters, see Fig. 7(c). In
principle, the final result does not depend on the choice
of Jacobi coordinates. In practice, the number of terms,
N in Eq. (12) is limited by the time spent in comput-
ing the matrix elements. With a finite N , and incom-
plete restoration of symmetries, the results depend on
the choice of relative coordinates.

For given anij , the linear parameters Cn and the en-
ergy come from solving a generalized eigenvalue problem.
Then, the non-linear parameters anij are fitted to mini-
mize the ground-state energy. The matrix elements of the
kinetic energy and normalization are known analytically.
The multidimensional numerical integrals necessary to
evaluate the potential matrix elements have been solved
using the CUBA package [29]. To guarantee the numer-
ical accuracy of our results, several tests have been per-
formed. As for the convergence with respect to the num-
ber N of generalized Gaussians in (12), we have pushed
the calculation until the energy difference obtained us-
ing N and N − 1 Gaussians became smaller than the
statistical uncertainty associated with the Monte-Carlo
integrations, of the order of 0.1%. We have also used
trial wave functions in the different set of coordinates of
Fig. 7, looking for the best and fast convergence. Besides
changing the Jacobi coordinates, we checked the scaling
properties with respect to an overall factor applied to all
masses, the virial theorem, etc. Our results are consistent
within 0.05%.

For a given choice of Jacobi variables, using diagonal
matrices, i.e., anij = 0 for i 6= j, reduces the number
of parameters. This means that the internal orbital mo-
menta are neglected. This approximation was made in
[20], where the authors used a string potential similar to
ours, and led them to conclude that no six-quark bound
states exist (even for the sole confinement potential, see
Table I of Ref. [20]). The effect of such approximation
over multiquark spectroscopy has been discussed in detail
elsewhere [21, 30, 31].

TABLE I. (Q3q3) and (Q3q̄3) thresholds, as a function of the
mass ratio M/m, with the light quark mass set to m = 1.

M (q3) + (Q3) (Qq̄)3 (Qq̄) + (Q2q̄2)

1 7.728 7.011 6.981

2 6.929 6.372 6.335

3 6.543 6.126 6.079

4 6.298 5.997 5.940

5 6.123 5.916 5.852

TABLE II. (Q3q3) and (Q3q̄3) variational energies E, com-
pared to their threshold energy T , as a function of the mass ra-
tio M/m, with the light quark mass set to m = 1. ∆ = E−T
is the energy diffference.

M E(Q3q3) T (Q3q3) ∆(Q3q3)

1 7.237 7.728 -0.491

2 6.524 6.929 -0.405

3 6.209 6.543 -0.334

4 6.014 6.298 -0.294

5 5.890 6.123 -0.233

M E(Q3q̄3) T (Q3q̄3) ∆(Q3q̄3)

1 6.981 6.981 +0.000

2 6.314 6.335 -0.021

3 6.030 6.079 -0.049

4 5.868 5.940 -0.072

5 5.762 5.852 -0.090

IV. RESULTS

A. Thresholds

In Table I, we compare the threshold energies for all
possible decay channels. For (Q3q3), (Qqq) + (QQq) is
not shown, as it is always above (Q3) + (q3) [25].

For moderate values of the quark-mass ratio M/m, the
lowest threshold of (Q3q̄3) consists of a meson plus a
tetraquark state, whose energy has been calculated in
Ref. [21]. At higher values of M/m (not shown), the
lowest threshold becomes (Q3) + (q̄3).

B. Hexaquark energies

The results are shown in Table II. They correspond to
three terms in the Gaussian expansion (12) using either
the sets (a) or (b) of coordinates.

The “dibaryon”, (Q3q3), has been studied in the range
of quark-mass ratio 1 ≤ M/m ≤ 5. For M = m = 1,
the result agrees quite well with the hypercentral ap-
proximation (10). The system is found stable against



5

dissociation into two baryons. However, the stability de-
teriorates when the mass ratio increases. The behavior
is reasonably linear and therefore the limit where the
system becomes unbound can be estimated to be of the
order of M/m ≈ 8 − 10. Such a mass ratio corresponds
to an intermediate value between the charm-to-light and
the bottom-to-light mass ratios. Hence a triple-charm
dibaryon is predicted but not a triple-beauty one. But
departing from a pure linear potential would modify the
value of the critical mass ratio.

In the case of (Q3q̄3), this is more delicate. For
M = m = 1, the results in Table II improve the hy-
perspherical estimate (11) truncated at L = 2. It sug-
gests that for a fully converged variational calculation,
there is a shallow bound state below the lowest thresh-
old. This means that the effective interaction between
the (qq̄) mesons is attractive. Not surprisingly for these
bosonic systems, if the dimer is bound, the trimer is also
bound, and a system (qkq̄k) even better for k > 3, though
the neglect of any antimmetrization becomes less and less
realistic for k > 3. Also, for k = 3, increasing the mass
M in the quark sector does not modify much the effec-
tive interaction among (qq̄) mesons, and heavier mesons
experience deeper binding. To check the existence of this
bound state in our model, we repeated the calculation of
the equal-mass case (M = 1) with the set of coordinates
(c). The convergence turns out much faster. We got an
energy E ' 6.860 which demonstrates a deeper binding.

Now, as M/m further increases, the (Q3)+(q̄3) thresh-
old will become degenerate with the lowest mesonic
threshold. This will favor binding, as the six-body wave
function will contain two different decompositions into
clusters with relative motion that will interfere to im-
prove binding. However, for even larger values of the
mass ratio M/m, no multiquark configuration can ac-
quire enough binding to compete with the compact (Q3),
and the system becomes unstable against rearrangement
into (Q3) + (q̄3). Perhaps, some metastability could be
observed with respect to some higher threshold. Sim-
ilarly, models can be elaborated for hidden-charm or
hidden-beauty resonances, involving four-quark configu-
rations that are in principle unstable against (QQ)+(qq̄)
but are mostly coupled to (Qq̄) + c.c..

Note that the six-quark energies shown in Table II cor-
respond to rather different wave functions. For weak
binding, the wave function is mostly a hadron–hadron
or a three-hadron molecule. Here, the improvements of
the model could be seek as long-range nuclear forces. In
the case of deep binding, we are dealing with a compact
quark compound, and short-range quark forces, chromo-
magnetic terms, and quark antisymmetrization are re-
quired to make the estimate more realistic. To disen-
tangle the molecular from the compact structure of these
objects, one could proceed as in Ref. [28] for (Q2q̄2). Un-
fortunately, the necessary extension of the formalism is
far beyond the scope of the present study.

We now discuss briefly the sensitivity to details of the
model, restricting ourselves to the equal-mass case. We

replace the perimetric ∆-interaction of baryons or an-
tibaryons is by the minima Y -path. For (q6), the thresh-
old is now at T = 8.200 if each baryon is estimated in
the hyperscalar approximation. The same L = 0 trunca-
tion for the six-body problem gives an energy E = 7.650.
This means that the relative amount of binding is very
similar for both ∆ and Y cases. For (q3q̄3), this is more
intricate. The threshold is not changed, as it is made of a
meson and a tetraquark. However, the six-body potential
is slightly increased when changing the ∆ interaction by
the Y -one, and not surprisingly, the ground-state energy
also moves up, but stability is preserved.

V. CONCLUSIONS

Let us summarize and suggest some possible further
studies.
1. The string model of confinement which combines

flip-flop and connected flux tubes of minimal length gives
more attraction than the additive pairwise model with
color factors that was used in early multiquark calcula-
tions. The stability properties observed for some tetr-
raquark and pentaquark configurations is confirmed in
both the six-quark and the three-quark–three-antiquark
sectors.
2. This potential is flavor independent. By chang-

ing the constituent masses in the kinetic-energy part
of the Hamiltonian, one can modify the binding. For
tetraquarks, the message was clear: (QQq̄q̄) is more sta-
ble when the mass ratio M/m increases, while (QQqq̄)
becomes unstable. Here, the binding energy decreases
for (Q3q3), while for (Q3q̄3), it first increases and then
decreases. In the limit of large N , no six-body configu-
ration can compete with the deep binding of (Q3) that
enters the lowest threshold.
3. This potential can be seen as a simplistic Born–

Oppenheimer limit. When the quarks or antiquarks
move, the gluon fluxes readjust immediately into a con-
nected or disconnected configuration with minimal cu-
mulated length. Thus the color part of the quark wave
function is modified freely, without any antisymmetriza-
tion constraint. The model requires changes to deal with
identical quarks.
4. In the 70s, bumps were seen in the antiproton cross-

sections and in the inclusive spectrum of antiproton an-
nihilation, such as p̄+p→ γX [32], not confirmed by ex-
periments using improved low-energy antiproton beams.
Recently, some enhancements have been observed in the
baryon–antibaryon mass distribution of B-meson or char-
monium decay [33]. Models have been worked out with
a baryon and an antibaryon interacting by mesonic ex-
changes or with (q2 − q̄2) quark structure [8]. The main
uncertainty in the light quark sector lies in the role of
annihilation. Our model, which does not include any an-
nihilation, predicts some binding in the equal mass case.
For flavor-asymmetric configurations (Q3q̄3), which are
free of annihilation, the binding is improved for moder-
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ate values of the quark-mass ratio. When Q becomes
very large, the system breaks into a baryon and an an-
tibaryon.

5. Dibaryon states have been often claimed but never
firmly confirmed. The experimental situation remains
somewhat open, as some of the most recent studies have
given positive signals [34, 35]. See however, [36, 37].
Our model suggests the possibility of stable dibaryon
states with exotic flavor configurations. Years ago, Jaffe
pointed out the possibility of coherences in the chromo-
magnetic interaction, and estimated that the H(ssuudd)
could be bound by about 150 MeV below the ΛΛ thresh-
old. However, he used the limit of flavor SU(3) symmetry
and took for (ssuudd) the short-range correlation coeffi-
cients as for ordinary baryons. Further studies indicated
that SU(3) breaking is not favorable [3–5], and that, not
surprisingly, in the dilute (ssuudd), the strength of chro-
momagnetic effect is reduced as compared to ordinary
[6, 38]. However, early quark model calculations used
the ansatz of pairwise interactions with color factors,
V ∝

∑
λ̃i.λ̃j v(rij). The string potential gives more at-

traction. It is interesting that two recent lattice-QCD

calculations [39, 40] of the H conclude to the possibility
of a loosely bound or a resonance close to the threshold.

6. The model would deserve further variational calcu-
lations, with a larger variety of constituent masses, giv-
ing the possibility of playing with the relative location of
baryonic vs. mesonic thresholds.

7. Our aim is to reformulate the interaction as an
operator in color space, of which the present model will
be the Born–Oppenheimer limit. This, and to study the
role of antisymmetrization in this new framework.
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