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Post-Newtonian corrections to the motion of spinning bodies in NRGR
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In this paper we include spin and multipole moment effects in the formalism used to describe the
motion of extended objects recently introduced in [1]. A suitable description for spinning bodies is
developed and spin-orbit, spin-spin and quadrupole-spin Hamiltonians are found at leading order.
The existence of tidal, as well as self induced finite size effects is shown, and the contribution to the
Hamiltonian is calculated in the latter. It is shown that tidal deformations start formally at O(v6)
and O(v10) for maximally rotating general and compact objects respectively, whereas self induced
effects can show up at leading order. Agreement is found for the cases where the results are known.

I. INTRODUCTION

In a recent paper an Effective Field Theory (EFT)
of gravity for non spinning, spherically symmetric
extended objects was introduced [1]. Within the Post
Newtonian (PN) [2] framework this approach was coined
NRGR (Non Relativistic General Relativity) due to
its similarities with EFT approaches to non relativistic
bound states in QED and QCD [3]. However, the EFT
formalism can be applied to a variety of scenarios, for
instance the large small mass ratio case [4]. NRGR
is relevant for understanding the gravitational power
spectra emitted by binary systems, an important class
of candidate signals for gravitational wave observatories
such as LIGO or VIRGO [5, 6]. The formalism allows for
a clean separation of the long wavelength gravitational
dynamics from the details of the internal structure.
This separation enables us to calculate corrections to all
orders in the point particle approximation. Furthermore,
it was shown that the ambiguities [7, 8] that plague
the conventional PN calculations can be attributed to
the presence of higher-dimensional worldline terms in
the action whose coefficients encode the short distance
structure of the particles.

Building upon this idea, here we propose an extension
of NRGR which allows for the inclusion of spin and mul-
tipole moments. Spin in General Relativity (GR) has
been considered previously in the literature from many
different points of view (see for instance [9, 10, 11, 12]
and references therein), and is argued to play an impor-
tant role in binary inspiral, particularly for black holes
[13, 14]. Within the PN approximation spin effects for
binary systems have been calculated using different tech-
niques [13, 14, 15, 16, 17]. Dealing with spinning objects
in the point particle approximation inevitably entails
running into divergent integrals as one does in the non
spinning case. Regularization procedures, like Hadamard
finite part [18] or considering contributions from differ-
ent zones [19], were invoked when dealing with point-like
sources [17]. However, it has been argued for instance for
the proposal of [19], that the formalism is “considerably

complicated but it is inevitable that we have to adopt it to

deal with divergences when we go to higher PN orders”

[16]. As it has been repeatedly emphasized in [1] that is

not the case within an EFT approach. Here we will ex-
plicitly see how a systematic, and consistent to all orders
approach is translated into our case as well.

The outline of the paper is as follows. In the first sec-
tion we review NRGR for non-spinning spherically sym-
metric objects highlighting the main results. Then, we
will generalize the formalism to include internal angular
as well as multipole moment degrees of freedom extend-
ing the work of A. Hanson and T. Regge in the realm of
special relativity [20]. Afterwards we derive the power
counting and Feynman rules of NRGR and calculate the
leading spin-spin and spin-orbit potentials and show to
reproduce known results [10, 13, 14]. A quadrupole-spin
correction to the gravitational energy is obtained for the
first time (to my knowledge) to leading order. The equiv-
alence between different choices for the spin supplemen-
tary condition is also shown. Finally we discuss the in-
sertion of non-minimal terms in the worldline action and
its relevance to renormalization. The existence of two
types of finite size effects encapsulated in a new set of
coefficients which can in principle be fixed by matching
to the full theory, is predicted: those which have a renor-
malization group (RG) flow and naturally represent tidal
spin effects induced by the companion, and those that
do not have a RG flow and represent self induced ef-
fects, such as the spin induced quadrupole moment due
to the proper rotation of the objects [21, 22]. By power
counting it is shown that companion induced tidal effects
start formally at 3PN, and 5PN for maximally rotating
general and compact objects respectively. Self induced
effects can show up at leading order. Details are rel-
egated to appendixes. We will study higher order PN
corrections, the radiative energy loss, matching and new
possible kinematic scenarios in future publications.

II. NRGR

In this section we will emphasize the main features of
NRGR within the PN formalism, detailed calculation and
further references can be found in the original proposal
[1].

http://arXiv.org/abs/gr-qc/0511061v3
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A. Basic philosophy

The traditional approach to the problem of motion
was introduced by Fock [23] who split it into two
sub-problems. The internal problem, which consists of
understanding the motion of each body around its center
of mass, and the external problem which determines the
motion of the centers of mass of each body. Decomposing
the problem this way allows us to naturally separate
scales and henceforth calculate in a more systematic
fashion. The price one pays is the necessity of a matching

procedure which relies either in comparing with the full
theory, if known, or extracting unknown parameters
from experiment. This method is now called “effective
theory”, or EFT in the realm of Quantum Field Theory
(QFT), and has been used to great success in many
different branches of physics [3]. While at first glance
quantum field theoretical tools appear to introduce
unnecessary machinery for classical calculations1, the
power of the method will be shown to reside in two
facts: It allows for the introduction of manifest power
counting and naturally encapsulates divergences into
text book renormalization procedures2. This means
in addition that in the EFT it is straightforward to
calculate the order at which a given term in the perturba-
tive series first contributes to a given physical observable.

Here we are going to tackle the problem of motion
by treating gravity coupled to point particle sources
as the classical limit of an EFT, i.e. the “tree level
approximation”, within the PN formalism. Feynman
diagrams will naturally show up as perturbative tech-
niques to iteratively solve for the full Green functions of
the theory. As it is known, GR coupled to distributional
sources is not generically well defined due to its non
linear character3 [26]. This can be seen as a formal
obstacle to the PN expansion for point particle sources
in GR. Within an EFT paradigm this problem does
not even arise since one is not claiming to construct
a full description to be applicable to all regimes, but
an effective theory which will mimic GR coupled to
extended objects within its realm of applicability. In
addition one can also argue that this EFT could be seen
as the low energy regime of a quantum theory of gravity
necessary to smear out point-like sources.

The idea of describing low energy quantum gravity
as an EFT is not new, for a review see [27]. What
makes NRGR appealing is the uses of EFT to attack so
called classical problems. QFT has proven to be useful

1 QFT techniques have been recently used to calculate self-force
effects in a curved spacetime background [24].

2 Also bear in mind that the classical solution is just the saddle
point approximation to the path integral or what is known as
the “tree level” approximation.

3 I would like to thank Jorge Pullin for discussions on this point.

with classical calculations, as in electromagnetic radia-
tion where we can think of photons (QED) to calculate
a power spectrum. Here we will use the same idea in-
troducing “gravitons” as the quantum of the metric field
which will allow us to calculate the gravitational poten-
tial, from which the equations of motion (EOM) are de-
rived, as well as gravitational radiation in a systematic
fashion.

B. Effective theory of extended objects

The method of [1] is based in the explicit separation of
the relevant scales of the problem: the size of the objects
rs (internal problem), the the size of the orbit r (exter-
nal problem) and the natural radiation wavelength r/v,
where v ≪ c is the relative velocity in the PN frame.
Finite size effects are treated by the inclusion of a tower
of new terms in the worldline action which are needed
to regularize the theory 4. For a non spinning spheri-
cally symmetric particle the most general action consis-
tent with the symmetries of GR is

S =

∫

(−m+ cRR+ cV v
µvνRµν + ...)dτ, (1)

where Rµν and R are the Ricci tensor and scalar
respectively. The series, involving higher order Riemann
type insertions, must be truncated within the desired
accuracy to have any predictive power. The coefficients
of each of these new terms can be determined by com-
parison with the full theory. In this case the underlying
theory is GR plus the internal equation of state of the
objects. The beauty of this method is that, since these
are 1-body properties, we can match using any relevant
observable, for instance scattering processes, rather than
solving the complete problem of motion explicitly.

As it was shown in [1] the terms proportional to cR, cV
are generated by logarithmic divergences of the point par-
ticle approximation. However it is possible to show that
they are unphysical in the sense that they can be removed
from the effective action by field redefinition (f.r.) and no
trace is left in observable quantities [1, 8]. Nevertheless
from here one concludes that not all divergences can be
absorbed into the mass and new counterterms are nec-
essary. Furthermore, at higher orders5 it can be shown
that (full Riemann dependent) finite size tidal effects are
induced which can not be removed from the theory. We
will see here that allowing the objects to spin also intro-
duces new terms in the worldline action. For the sake of

4 A similar approach can be found in [28] within the realm of
tensor-scalar theories. However, renormalization issues as well
as spin effects were left undiscussed.

5 v10 for non spinning particles.
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completeness, and given that the same idea will be used
here later on, we will sketch the reasoning. One starts by
calculating the effective action [29],

Γ[gµν ] =
1

mp

∫

d4k

(2π)4
hµν(−k)T µν

(1p)(k) + · · · , (2)

where gµν = ηµν +
hµν

mp
, and hµν the graviton field. Let us

concentrate on the contributions to the one point func-
tion T µν

(1p)(k). As it was shown in [1] within dimensional

regularization techniques (dim. reg.), the logarithmic di-
vergences in T µν

(1p)(k) can not be absorbed into the mass

and a new counter-term of the form,

T µν
ct (k) = (2π)δ(k·v)

[

cR(ηµνk2 − kµkν) +
1

2
cV k

2vµvν

]

,

(3)
is therefore needed. It is straightforward to conclude
from here the necessity of including two new terms in
the effective action as shown in (1). Within dim. reg.
an arbitrary mass scale µ associated to the substraction
point at which the theory is renormalized is introduced.
Given that the metric field does not pick any anomalous
dimension at tree level we must have µdΓ[gµν ]/dµ = 0.
Thus the explicit dependence on the subtraction scale
µ must be cancelled by allowing the coefficients cR,V to
vary with scale. The theory therefore exhibits non-trivial
classical RG scaling. As we are going to show here spin
dependent finite size effects are predicted by similar ar-
guments.

C. The Post-Newtonian expansion

Once the internal scale is taken into account by the in-
troduction of a series of new terms in the 1-body world-
line action, the next scale we have to integrate out is
the orbit scale. In order to do that we decompose the
graviton field hµν into two pieces,

hµν(x) = h̄µν(x) +Hµν(x), (4)

where Hµν represents the off-shell potential gravitons,
with

∂iHµν ∼ 1

r
Hµν ∂0Hµν ∼ v

r
Hµν , (5)

and h̄µν describes an on-shell radiation field

∂αh̄µν ∼ v

r
h̄µν . (6)

We can now further decompose Hµν by removing from
it the large momentum fluctuations,

Hµν(x) =

∫

d3k

(2π)3
eik·xHkµν(x0). (7)

k Hk

µν h̄µν m/mp

1/r r2v1/2 v/r
√

Lv

TABLE I: NRGR power counting rules.

The advantage of this redefinition is that now deriva-
tives acting on any field in the EFT scale in the same
way, ∂µ ∼ v/r, so it is easy to count powers of v coming
from derivative interactions.

The effective radiation NRGR Lagrangian, with the
potential gravitons integrated out, can then be derived
by computing the functional integral,

exp[iSNRGR[xa, h̄]] =

∫

DHµν exp[iS[h̄+H,xa]+iSGF ],

(8)
where SGF is a suitable gauge fixing term. Eq. (8) indi-
cates that as far as the potential modes Hµν are con-
cerned h̄µν is just a slowly varying background field.
To preserve gauge invariance of the effective action, we
choose SGF to be invariant under general coordinate
transformations of the background metric ḡµν(x) = ηµν +
h̄µν(x). This whole procedure is what is usually known
as the “Background Field Method”, originally introduced
by DeWitt [30] in canonical quantum gravity and used
by t’Hooft and Veltman for the renormalization of gauge
theories [31]. By expanding the Einstein-Hilbert action
using (4) we can immediately read off Feynman rules [1].
For potential gravitons, which we are going to represent
by a dashed line, the propagator is given by,

〈Hkµν(x0)Hqαβ(0)〉 = −(2π)3δ3(k + q)
i

k2
δ(x0)Pµν;αβ ,

(9)
where Pµν;αβ = 1

2 [ηµαηνβ + ηµβηνα − ηµνηαβ ]. The ra-
diation gravitons, which will be represented by a curly
line, have the usual spin 2 massless propagator. A wavy
line will be used for the full propagator. We also need to
consider mass insertions which will just provide a vertex
interaction [1],

∑

a

ma

mp

[

1

2
h00 + h0ivai +

1

4
h00v

2
a +

1

2
hijvaivai

]

+ · · · ,

(10)
where h00, h0i, hij are evaluated on the point parti-
cle worldline (the leading order graviton-mass vertex is
shown in fig. 1). Following standard power counting pro-
cedures we arrive to the scaling laws for the NRGR fields
shown in table I [1, 3]. In the last column we have intro-
duced m2

p = 1
32πGN

the Planck mass and L = mvr the
angular momentum.

The effective action in (8) will be a function of the
worldline particles (treated as external sources) and the
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FIG. 1: Leading order mass vertex. the dashed line represents
a potential graviton, whereas the wavy line stands for the full
graviton propagator.

radiation field which allows us to calculate the energy loss
due to gravitational radiation as well as the gravitational
binding potential from which the EOM are obtained. To
get Seff (xa) we simply integrate out the radiation field
h̄. Seff (xa) has a real part which represents the effective
potential for the 2-body system6. It also has an imag-
inary part that measures the total number of gravitons
emitted by a given configuration {xa

µ} over an arbitrarily
large time T → ∞,

1

T
ImSeff (xa) =

1

2

∫

dEdΩ
d2Γ

dEdΩ
, (11)

where dΓ is the differential rate for graviton emission
from the binary system from which the power spectrum
is computed.

III. INTERNAL DEGREES OF FREEDOM I:
SPINNING PARTICLE

Here we will follow closely the ideas developed in [20].
We will start formulating a Lagrangian formalism to deal
with internal angular as well as multipole moment de-
grees of freedom which will enable us to describe a richer
tensor structure. We will introduce the basic elements
first, then we will construct the action and show how to
reproduce Papapetrou equations for spinning particles in
GR [25]. The issue of constraints, the correct number
of degrees of freedom and the angular-velocity/spin rela-
tionship will be discussed at the end of the section.

A. Basics

Given a spacetime structure (g,M) we can always find
at each point x ∈M a coordinate system where the met-
ric looks locally flat at the point. Such a transformation
can be expressed as:

ηIJ = eµ
I e

ν
Jgµν , (12)

ηIJeµ
I e

ν
J = gµν , (13)

6 Remember we are treating the worldline of the particles as exter-
nal sources, namely xa ≡ J , therefore Seff is just the partition

function e
iSeff ≡< 0|0 >J∼ eiΓ(J,J̇...)T , with Γ(J) the effective

action for the sources as T → ∞ [32].

with ηIJ ≡ (1,−1,−1,−1) the Minkowski metric and eµ
I

a set of I = 0..3 orthonormal basis vectors such that the
tensor metric is diagonalized at the point. From now on
capital Latin letters will denote internal indexes (notice
that they transform in SO(3, 1) due the residual Lorentz
invariance), the other conventions are as usual. Given a
tetrad we can define its transport through the particle’s
worldline using Fermi-Walker ideas as [33],

ėI
µ ≡ Deµ

I

dλ
= uα∇αe

µ
I = −ΩµνeIν , (14)

where ∇α is the covariant derivative compatible with g,
namely ∇αgµν ≡ gµν;α = 0, and Ωµν is an antisymmetric
tensor which therefore preserves (12). One can invert the
previous relation using (12),

Ωβα = ηIJeβI
DeαJ

dτ

=

(

deαJ

dτ
− Γσ

αγeσJu
γ

)

ηIJeβI . (15)

Notice that (15) implies the antisymmetry directly
from gνµ;µ = 0.

The introduction of eµ
I is equivalent to adding an ele-

ment of SO(3, 1) to the worldline of the particle to de-
scribe rotations [20]. Following these ideas we will there-
fore construct an action in terms of the generalized coor-
dinates and velocities (xµ, uν , eI

µ, ė
I
µ). The number of de-

grees of freedom in eµ
I is 3 more than we need to describe

3-rotations. We will see however that we can impose a
set of kinematic constraints which will ensure the correct
number.

B. Action principle and EOM

So far we have characterized the extra degrees of free-
dom we need in order to construct a Lagrangian for the
spinning particle. In the process to construct the ac-
tion we will demand in addition to general covariance,
internal Lorentz invariance as well as reparametrization
invariance (RPI). This will naturally restrict ourselves
to Lagrangians of the form L(xµ, uν ,Ωµν). It is how-
ever natural, instead of using Ωµν as coordinates to treat
them as velocities of angular degrees of freedom which
will lead us to a natural interpretation of spin. It is easy
to see there are four different scalar quantities (neglecting
parity violating terms) we can consider (schematically),

a1 = u2 (16)

a2 = Ω2 (17)

a3 = uΩΩu (18)

a4 = ΩΩΩΩ (19)



5

where contractions are made with the space-time
metric gµν . Using these quantities our Lagrangian
will be in principle a general expression of the form
L(a1, a2, a3, a4). We will neglect multipole moments
throughout this section the inclusion of which will be
studied later on. The objects will be therefore considered
symmetric with respect to their rotational axis.

In order to introduce the idea of spin we will define the
antisymmetric tensor Sµν and momentum pµ by,

δL = −pµδuµ − 1

2
SµνδΩµν , (20)

where the minus sign corresponds to the correct non rel-

ativistic limit [20]. From these definitions we will have,

pα = −2uα ∂L

∂a1
− 2ΩανΩνρu

ρ ∂L

∂a3
(21)

Sµν = −4Ωµν ∂L

∂a2
− 2(uµΩνλuλ − uνΩµλuλ)

∂L

∂a3

− 8ΩνβΩβαΩαµ ∂L

∂a4
. (22)

The variation of the action consists of two pieces. Let
us concentrate first in the tetrad part. Using the defini-
tion of spin we will have to deal with,

δS = −
∫

dτSαβδΩαβ = −
∫

dτ

(

−DS
αβ

Dτ
eKα − DeKα

Dτ
Sαβ + Sρν DeJν

Dτ
eρKe

Jβ

)

δeK
β . (23)

The equation of motion can be directly read from the
above expression, multiplying by eKµ we get (using (15)),

DSµν

Dτ
= SµλΩλ

ν − Ωµ
λS

λν = pµuν − uµpν , (24)

where the last equality follows from (21,22) [20]. Notice
that we have not specified a Lagrangian up to this stage.
It is easy to see from (24) that,

DSIJ

Dτ
≡
D(SαβeI

αe
J
β)

Dτ
= 0, (25)

which shows that spin projected with respect to the eI
α

frame remains constant. In addition one can also show
that the scalar S2 ≡ 1

2S
µνSµν is conserved. As a further

property it is also instructive to notice that SµνS∗

µν

is also a constant of the motion, where S∗

µν = 1
2ǫµναβS

αβ.

In order the get the δx piece of δS, a shortcut can be
taken by going to a locally flat coordinate system where
the connection terms are zero at the point. Promoting
the derivatives to covariant ones in this frame we will end
up with,

Dpγ

Dτ
=

1

2
Sαβ (Γαβσ,γ − Γαβγ,σ)uσ =

= −1

2
RγσαβS

αβuσ, (26)

where we have used the form of the Riemann tensor in
a locally flat coordinate system. Written this way we
can promote now the equation to all reference systems

since it is covariant. We therefore recognize in (24,26)
the well known Papapetrou equations [25]. Remarkably,
although in terms of the tetrad these equations depend
on the choice of Lagrangian, as a function of spin and mo-
mentum the evolution equations are action-independent
as far as curvature terms are not inserted. Including cur-
vature terms in the effective action will be relevant to
introduce finite size effects and will modify these equa-
tions for extended objects.

C. Constraints and angular-velocity/spin
relationship

In order to describe the correct number of degrees
of freedom we need to add a set of constraints to the
EOM (24,26). A well defined angular-velocity/spin rela-
tionship is also necessary to extend our power counting
rules to the spinning case. We will show here that both
features are related. Here we will closely follow [20], to
which we refer the reader for details, other approaches
may be found in [34]. This section relies on a basic
knowledge of constrained systems, for further details see
[40, 41].

It is natural to impose the following (covariant) con-
straints in the space of solutions,

V µ = Sµνpν ≈ 0, (27)

where just three of the four components are indepen-
dent, and “≈” stands for weakly vanishing [40]. This
set of constraints are second class, namely they have
non vanishing Poisson bracket among themselves, and
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therefore reduce the number of degrees of freedom
from 6 to 3 SO(3) parameters as expected. It can be
shown in addition there is a Lagrangian from which (27)
kinematically follows [20].

We need to guarantee the constraints in (27) are pre-
served upon evolution. It is however possible to show
from (24,26) that DV µ

dτ ≈ 0 will be satisfied provided

pα = muα − 1

2m
RβνρσS

αβSρσuν , (28)

with m2(S2) ≡ p2 defined by (21,22). This also means
that the difference between pν/m and uν is higher order
in the PN expansion and we can consider Sµνuν = 0 as
well as dSµν

dτ = 0 to leading order.

It is possible to show that (27) implies C1 = SµνS∗

µν ≈
0, which is a first class constraint. There is therefore, in
addition to RPI (C2 = p2−m(S2) ≈ 0), a gauge freedom
which can be attributed to the choice of the temporal
vector of the tetrad e0µ, and a sensible choice of gauge is

then ψµ = eµ
0 − pµ/m ≈ 0 [20]. This gauge, jointly with

(27), also translates into a choice of center of mass of the

object [10, 14], and implies as well Ωµνpν = Dpµ

Dτ , from
which we get

Ωµν ∼ Sµν − 1

2m
RµναβS

αβ +RRSSS + ..., (29)

where we have used (27,28). We can indeed obtain the
angular-velocity/spin relationship by matching the evo-
lution equation for the tetrad in a Minkowski background
obtaining (see appendix A),

Sµν =
I

(u2)1/2
(Ωµν +

I

2m
RµναβΩαβ + ...), (30)

with I the moment of inertia, and a particular La-
grangian is chosen to ensure (27) [20]. The main results
of this section are therefore equations (28,30), from which
we conclude that in a theory where (27) is kinematically
imposed spin and angular-velocity are naturally related
and proportional in flat space. Within an EFT approach,
these relationships are all we need to construct the NRGR
extension for spinning bodies.

IV. NRGR FOR SPINNING BODIES

A. Power counting

The power counting rules in NRGR have been devel-
oped in [1]. Here we are going to extend them to include
spin degrees of freedom. As we shall show the only nec-
essary change is the inclusion of spin insertions at the
vertices.

First of all notice that, from the constraints at leading
order,

Sµνuν = 0 → Sj0 = Sjkuk, (31)

which implies a suppression of the temporal components
with respect to the spatial ones. In other words spin
is represented by a 3-vector, Sk = 1

2ǫ
kijSij , in the rest

frame of the particle as expected. We will concentrate
here in compact objects like neutron stars or black holes
where the natural length scale can be taken to be their
Schwarzschild radius rs ∼ Gm (for general objects see
appendix B), and hence a momentum of inertia scaling
as I ∼ m3/m4

p. For the spin angular momentum we will
have,

S = Iω = I
vrot

rs
∼ mvrotrs < mrs ∼ Lv. (32)

We therefore see that spin gets suppressed with respect
to the orbital angular momentum, even for the maximally
rotating case (vrot = 1). We can also assume a different
kinematical configuration with the particles co-rotating,

namely vrot

rs
= v

r . In the former S ∼ mvr2

s

r = L
r2

s

r2 ∼ Lv4.
We will generally power count spin as

S ∼ Lvs, (33)

with s = 1 and s = 4 in the maximally rotating and
co-rotating scenario respectively.

To obtain the scaling laws we have assumed the usual
proportionality at leading order between spin and an-
gular velocity which was obtained from (30). As usual
subleading scalings will be naturally taken into account
by the insertion of higher order terms in the worldline
action. What we have learnt here is that spin effects are
in any case subleading in the PN expansion, and the scal-
ing laws developed in [1] still hold and spin contributions
can be treated as a perturbation.

B. Feynman rules: spin-graviton vertex

To construct the effective theory for gravitons we need
to expand the metric around a Minkowski background,

namely gαβ = ηαβ +
hαβ

mp
. There is however a subtle point

in doing this given that (13) leads to,

ηIJe
I
µe

J
ν = ηµν +

hµν

mp
, (34)

eI
µ = ΛI

µ + δeI
µ → δeI

µ =
1

2mp
hµνΛνI + ...

where ΛIα is an element of the Lorentz group. We will
also need δeµI which is defined through the inverse metric
[35],
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FIG. 2: Leading order spin-graviton vertex interaction. The
blow represents an spin insertion.

gµν = ηµν + hµν ,

hµν = ηµµ′

ηνν′

(−hµ′ν′ + hα
µ′hαν′ − ...), (35)

where indexes are raised with ηµν . We will therefore
have,

δeIµ = − 1

2mp
ηµνhναΛαI + ..., (36)

One can immediately see how to proceed by compari-
son with what it has been done in [20] within flat space
where the angular velocity was defined as,

Ωµν
M ≡ Λµα dΛ

ν
α

dτ
, (37)

with Λµν describing the rotation of the particle, and
M stands for Minkowski. Expanding the action using
(34,36) we will thus obtain the spin-graviton interaction
to all orders in a flat space background as a function of
the graviton field and (37) (see appendix C for details).
To leading order in the weak field expansion(see fig. 2),

L0 =
1

2mp
hαγ,βS

αβ
M uγ , (38)

where Sµν
M = − ∂L

∂Ωµν
at gµν = ηµν (we will drop the

M from now on). The expression in (38) is remarkably
action independent if written in terms of spin and the
graviton field. The Lagrangian dependence enters in the
so far unknown function S(Ω). This conclusion however
just applies to the leading term and a choice of action is
necessary to obtain the Feynman rules to all orders. At
next to leading order in the weak gravity limit we will
have,

L1 =
1

4m2
p

Sβγuµhλ
γ(

1

2
hβλ,µ + hµλ,β − hµβ,λ), (39)

where a particular action has been chosen to ensure (27).
A different choice of Lagrangian will imply different Feyn-
man rules. However, bear in mind that different actions

will differ in the spin/angular-velocity relationships and
might not lead kinematically to (27). The physics will be
invariant once these differences are taken into account.

To calculate in the EFT we need to match (38,39) into
NRGR using the power counting rules developed in [1]
plus the spin insertions. Up to 2PN, for maximally ro-
tating compact objects we will get for the spinning part
of the NRGR Lagrangian,

LNRGR
1PN =

1

2mp
Hi0,kS

ik, (40)

LNRGR
1.5PN =

1

2mp

(

Hij,kS
ikuj +H00,kS

0k
)

, (41)

LNRGR
2PN =

1

2mp

(

H0j,kS
0kuj +Hi0,0S

i0
)

+
1

4m2
p

Sij
(

Hλ
j H0λ,i −Hk

j H0i,k

)

. (42)

The procedure follows systematically as shown in ap-
pendix C.

It is an useful exercise to check the gauge invariance of
(38), or in other words to obtain the leading stress energy
tensor. It is straightforward to calculate T µν

(1) = − ∂L
∂gµν

at

gµν = ηµν getting,

T µν
(1) = −1

2
∂β

(

Sβµuν + Sβνuµ
)

, (43)

which agrees at zero order with the original proposal of
Dixon [36] and also Bailey and Israel (BI) [37] (see ap-
pendix D).

The Ward identity,

∂µT
µν
(1) ∼ ∂β

dSβν

dτ
= 0, (44)

is therefore obeyed since spin is constant to leading order
in the PN expansion.

C. Leading order graviton exchange

Our goal from now on is to calculate the leading or-
der piece (one graviton exchange) of the potential energy
due to spin-orbit (fig. 3) and spin-spin (fig. 4) couplings
coming from (40,41)7. The leading order spin-orbit con-
tribution is the sum of two pieces,
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7 Self energy terms are not considered since they yield scaleless
integrals.

fig. 3 =
−im2

4m2
p

∫

dtdt′
d3p

(2π)3
∂β

(

e−i~p(~x(t)−~y(t′))

~p2
δ(t− t′)P0ǫ;αγ

)

Sβα
1 uγ

1(t)uǫ
2(2 − δǫ

0). (45)

We need to distinguish two different cases: the tempo-
ral and spatial derivative. The temporal derivative will
just hit δ(t − t′) and can be integrated by part bringing
down a velocity factor. To leading order we would need
to consider ǫ = γ = 0. However, P00;α0 = 0 unless α = 0,
which leads to a term proportional to S00 = 0. There
is then no contribution from the temporal derivative and
we just need to concentrate in the spatial part and the
terms,

−im2GN∂j

∫

dt
1

|~x(t) − ~y(t)|P0ǫ;αγS
jα
1 uγ

1(t)uǫ
2(t)(2−δǫ

0).

(46)
Notice that we have three possible contributions, one

coming from ǫ = 0, α = l, γ = k, another where ǫ =
l, α = k, γ = 0 and finally ǫ = α = γ = 0. The latter
looks at first as a v0 piece, however this is misleading
since our spin choice implies Sj0 = Sjlul. Adding all the
terms one gets,

fig. 3 = i

∫

dt
−2GNm2

|~x(t) − ~y(t)|2
(

(~n× ~u1) · ~S1 − (~n× ~u2) · ~S1

)

,

(47)
where ~n is the unit vector in the (~x − ~y) direction and
we have used Skj = ǫkjiSi. Joining the mirror image we
will end up with,

VSO =
2GN

r2
µ(~n×~v)·

((

1 +
m1

m2

)

~S2 +

(

1 +
m2

m1

)

~S1

)

,

(48)
for the spin-orbit potential, where µ is the reduced mass,
r = |~x(t) − ~y(t)| and ~v ≡ ~u1 − ~u2.

Let us now consider the spin-spin interaction. The
leading order contribution is (see fig. 4),

i

4m2
p

∂yk
∂xk′

∫

dt
d3p

(2π)3
ei~p(~x(t)−~y(t)) 1

~p2
Pj′0;j0S

jk
1 Sj′k′

2 .

(49)
Using Pj′0;j0 = − 1

2δjj′ it is straightforward to show

VSS = −GN

r3

(

~S1 · ~S2 − 3~S1 · ~n~S2 · ~n
)

, (50)

for the spin-spin binding potential. It is easy to see by
power counting that VSOdt ∼ Lv3 and VSSdt ∼ Lv4, ef-
fectively 1.5PN and 2PN for maximally rotating compact
objects.

a)

v
1

v
3

b)

v
2

v
0

FIG. 3: Leading order spin-orbit interaction. Diagram a)
takes into account a v1 mass insertion. Diagram b) corre-
spond to the v3 spin-graviton vertex.

v
2

v
2

FIG. 4: Leading order spin-spin interaction.

By comparison with the results in [10], it is immediate
to notice there is a mismatch in the spin-orbit contribu-
tion (48), which can be traced back to the choice of spin
supplementary condition in (27). As it was noticed in
[10, 12, 13, 15] this discrepancy is associated to the choice
of center of mass of each body. It can be shown there is a
coordinate transformation that relates the center of mass
choice which follows from (27) and the so called baryonic
coordinates (implicitly used in [10]), where the center of
mass is defined through the baryonic density, and one
has Si0 = 1

2S
ijuj. Had we calculated the spin-orbit term

within the baryonic condition we would obtain,

V̄SO =
2GN

r2
µ(~n×~v)·

((

1 +
3m1

4m2

)

~S2 +

(

1 +
3m2

4m1

)

~S1

)

,

(51)
in complete agreement with the result in [10]. The lead-
ing order spin-spin interaction does not get affected by
this new choice.
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D. EOM

Even though (51) is in total agreement with the spin-
orbit potential in baryonic coordinates, the calculation
in the covariant approach does not reproduce the well
known fact that the generalized Lagrangian from which
the EOM are derived turns out to be acceleration de-
pendent [9, 10, 12, 13, 15]. Indeed, (48) reproduces the
gravitational potential in [13] up to this acceleration de-
pendent piece which does not follow from a graviton ex-
change. As we shall show in Appendix E, the solution
to this puzzle lies on the fact that a non canonical alge-

bra develops which naturally reconciles both approaches.
Instead of following that path here it is instructive to re-
mark there is a coordinate transformation which leads to
a canonical structure. Not surprisingly this map trans-
forms the covariant choice into the baryonic one, where
it has been explicitly shown there is no need for an accel-
eration dependent piece in the action. We can therefore
proceed from the potentials in (50,51) and the standard
Euler-Lagrange formalism to obtain the EOM within the
baryonic supplementary condition. It can be easily shown
that they are given by (in relative coordinates),

~a ≡ ~a1 − ~a2 = −GNM

r2
~n+ ~aSO + ~aSS (52)

~aSO =
GN

r3
(3~n(~n× ~v) · ~χ+ 2~v × ~χ+ 3~n · ~v(~n× ~χ)) (53)

~aSS = −3GN

µr4

(

~n(~S1 · ~S2 − 5~S2 · ~n~S2 · ~n) + ~S2(~n · ~S1) + ~S1(~n · ~S2)
)

(54)

d~S1

dt
=

GN

r3

(

~L× ~S1

(

2 +
3m2

2m1

)

+ ~S1 × ~S2 + 3(~n · ~S2)~n× ~S1

)

;
d~S2

dt
= 1 ↔ 2, (55)

where we have introduced M = m1 + m2, ~χ =
(

2 + 3m2

2m1

)

~S1 +
(

2 + 3m1

2m2

)

~S2 and ~L = µr~n× ~v.

From the symmetries of the action we can directly con-
struct the conserved quantities, in particular the energy.
First of all notice that the spin-orbit force does not do
any work, namely ~aSO · ~v = 0, from which we conclude
that the conserved energy is nothing but

E =
1

2
µ~v2 − GNMµ

r
+ VSS . (56)

In order to compare with the results in [13] within the
covariant supplementary condition, we restrict ourselves
now to the case of nearly circular orbits to express (56) in
terms of the orbital angular frequency ω and spin. Taking
an angular average for all quantities we obtain from (52),

r(ω, S) =
M1/3

ω2/3

(

1 − 1

3

ω

M
~l · ~χ− 1

2

ω4/3

µM5/3

(

~S1 · ~S2 − 3~l · ~S1
~l · ~S2

)

)

(57)

E(ω, S) = −1

2
(Mω)2/3

(

1 +
4

3

ω

M
~l · ~χ+

ω4/3

µM5/3

(

~S1 · ~S2 − 3~l · ~S1
~l · ~S2

)

)

, (58)

with ~l the unit vector in the ~L-direction. We therefore
conclude that energy as a function of spin and angular
frequency in (58) matches that of [13, 15] independently
of the spin supplementary condition. As a final comment
let us remark that our results also agree with those of
Buonanno et al. [38] that appeared after we had com-
pleted our work, where a similar procedure is advocated
within baryonic coordinates. However, the covariant spin
supplementary condition and finite size effects are left

undiscussed in [38].

V. INTERNAL DEGREES OF FREEDOM II:
PERMANENT MULTIPOLE MOMENTS

By now it should be easy to visualize how are we going
to include multipole moments in terms of the eI

µ fields.
Let us assume for instance the particle has an intrinsic,
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FIG. 5: Leading order quadrupole-spin one graviton ex-
change. The black square represents a quadrupole insertion.

permanent quadrupole moment QIJ . In order to couple
it to the gravitational field the following term can be
introduced,

∫

dτRµαβγe
µ
I e

β
JQ

IJuαuγ . (59)

Notice in fact this is just a generalization of what it
has been done in [1]. In fact, it can be shown (see ap-

pendix C) this quadrupole term is naturally obtained if
we include the non-spherical contribution of the tensor
of inertia in the spin part of the Lagrangian.

From the gauge fixing condition eµ
0 ≈ pµ/m we imme-

diately see that the Q0I components do not contribute at
all given that replacing eµ

0 in (59) give rise to vanishing
terms. We can therefore, as expected, concentrate just
in the spatial components.

It is easy to see that (59) will naturally reproduce the

quadrupole gravitational energy piece,
Qijxixj

r5 , in the po-
tential. In order to obtain a non trivial contribution
we calculate a correction to the binding energy due to
a quadrupole-spin interaction to leading order. After
matching (59) into NRGR and using the expression for
the Riemann tensor in the weak gravity approximation,
the one potential graviton exchange in fig. 5 gives,

VQS =
3GN

r4

[

(Q1
i
i − 5Qik

1 nink)~n · (~u2 × ~S2) +Qjk
1 nk

(

(2~u2 + ~u1) × ~S2

)

j
+Qij

1

(

u1j − 5(~u1 · ~n)nj

)

(~n× ~S2)i

]

, (60)

for the quadrupole-spin potential within the covariant
spin condition, where we have used Qij = Qji and the
Euclidian metric (δij) to raise and lower indexes. A
similar expression is obtained from the mirror image
1 ↔ 2. It is easy to show it corresponds to a 3.5PN con-
tribution for maximally rotating neutron stars or black
holes. Notice that for a spherically symmetric object
(Qij ∼ δij) EQS → 0 as one would have guessed8. There-
fore, the coupling is effectively to the traceless piece of the
quadrupole. Higher order multipole moments are easily
handled by similar procedures.

A. Quadrupole radiation

It is instructive to notice that (59) will directly lead
to the well known quadrupole radiation formula. The
leading order piece will be of the form (for on-shell gravi-
tons),

1

2mp
Ri0j0Q

ij
TF , (61)

where TF stands for the traceless piece. By calculating
the imaginary part of fig. 6 we can immediately obtain
(we skip details which can be found for an identical cal-
culation in [1]),

8 This is reminiscent of the vanishing of the cV contributions in
[1].

Im fig. 6 = − 1

80m2
Pl

∫

d3k

(2π)32|k|k
4|Qij

TF (|k|)|2, (62)

from which the power radiated follows,

P =
GN

5πT

∫

∞

0

dωω6|Qij
TF (ω)|2

=
GN

5
〈···Qij

TF

···

Qij
TF 〉, (63)

whit dots as time derivatives and the bracket represent-
ing time averaging. This is the celebrated quadrupole
radiation formula.

VI. DIVERGENCES, NON MINIMAL
INSERTIONS AND FINITE SIZE EFFECTS FOR

SPINNING BODIES

We are going to discuss here the appearance of diver-
gences and their consequent renormalization. This will
lead us to the study of higher order terms in the worldline
action and their Wilson coefficients, which will encode
the information about the internal structure of the body.
In addition to terms coming from logarithmic UV diver-
gences, we will encounter power law divergences whose
associated Wilson coefficients do not have scale depen-
dence. This distinction will turn out to be connected
with tidal deformations vs. self induced effects as well
shall see.
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FIG. 6: Leading order diagram whose imaginary part give
rise to the quadrupole radiation power spectrum. The black
boxes are quadrupole insertions and the curly propagator a
radiation graviton.

FIG. 7: Two graviton contribution to the one point function
in effective action with a single spin insertion.

A. A cursory first look

Let us study the one point function in the effective ac-
tion with spin insertions. Let us start with the diagram
shown in fig. 7. The spin-graviton Feynman rules derived
from (38) differs from mass insertions in two main points:
its tensor structure and its dependence on the graviton
momentum. Fig. 7 then contributes for potential gravi-
tons terms proportional to,

∫

d3q

(2π)3

(

q · k,q2,k2

q2(q + k)2

)

, (64)

where k is the external graviton momentum. None of
these integrals are logarithmically divergent and there-
fore can be absorbed as pure counterterms in the original
Lagrangian.

Let us concentrate now on the divergent piece coming
from diagrams like in fig. 8. It can be shown that this
diagram contain terms such as (in d-dimensions),

I(k) =

∫

dd−1p

(2π)d−1

dd−1q

(2π)d−1

(q · k)(p · k)

q2p2(q + p + k)2
, (65)

as well as integrals with q · p in the numerator. These
integrals contain power as well as logarithmic UV diver-
gences. It is clear that these divergences can not be ab-
sorbed into the original Lagrangian since they involve in
principle higher order derivatives of the metric. By gen-
eral covariance and parity conservation, there is a limited
set of non zero terms one can build up with the right
structure to cancel the previous divergences. In what
follows we will study a possible set of new insertions in
the worldline action which are generated by renormaliza-
tion.

FIG. 8: Three graviton contribution to the one point function
in the effective action with two spin insertions.

B. Non minimal insertions I: Self Induced effects

We will consider here terms which are not total deriva-
tives and can not be removed by f.r. Let us proceed sys-
tematically. Let us start with terms linear in Riemann
and no further derivatives acting on external fields. The
first non zero terms we can construct are,

O1
RS2 ≡ C1

RS2

mp
RαβµνS

αβSµν

O2
RS2 ≡ C2

RS2

mp
RαβµνS

αµSβν

O3
RS2 ≡ C3

RS2

mp
RαβµνS

αγSµ
γ u

βuν . (66)

It is possible to show that they are physically equiva-
lent, namely, they are proportional up to f.r. removable
terms. By simple inspection it is easy to see they are also
similar to the quadrupole moment insertion in (59).It is
therefore natural to associate these operators with self
induced quadrupole effects rather than tidal deforma-
tions. It is straightforward to show, after matching into
NRGR for potential gravitons, that Oi

RS2 ∼
√
Lv2s+2

with Ci
RS2 ∼ 1/m. This immediately tell us Oi

RS2 can
not be generated from a logarithmic UV divergence. It
is possible to show nonetheless that these terms can be
generated from power law divergences (see appendix G).
At 2(5)PN these terms generate a gravitational poten-
tial for a maximally rotating (co-rotating) neutron star
or black hole A coupled to a non spinning one B of the
form,

VS2O = Ctot
RS2(A)

GNmB

2r3

(

3( ~SA · ~n)2 − ~SA · ~SA

)

, (67)

with Ctot
RS2(A) = (−C1

RS2 − 1
2C

2
RS2 + 1

4C
3
RS2)A. A spin-

ning particle will tend to deform and therefore generate
multipole (mass) moments which will thus produce
a binding energy term equivalent, as in this case, to
a quadrupole interaction9[21]. It is well known that

9 It will in principle vary in time and henceforth radiate. This
effect will be naturally taken into account similarly as we did for
the quadrupole.
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rotating black holes, or neutron stars, have a quadrupole
moment given by Qbh = −aS2/m (G = c = 1), with
m,S the mass and spin respectively. For a black hole
a = 1 [39], for neutron stars a ranges between 4 and
8 depending on the equation of state of the neutron
star matter [22]. This will give us an straightforward
matching for Ctot

RS2(A) in (67) which is consistent by

dimensional analysis with what we expect from nat-
uralness arguments. Furthermore, these coefficients
contribute to the one point function, and thus will
show up in the metric solution for a rotating neutron
star or black hole. For the case of a black hole, the
Kerr-Newman spacetime does not have any logarithmic
dependence and therefore, every coefficient associated
to a non f.r. removable term10, which contributes to
the one point function must be scale independent.
Similarly for neutron stars. This provides a natural
characterization for self induced effects. Tidal effects in
the other hand will be then associated to coefficients
which do not contribute to the one point function, and
moreover are scale dependent. Tidally induced effects
will be therefore naturally generated by logarithmic UV
divergences.

Once self induced spin-multipole moments are included
it is no longer necessary to introduce a non dynamical
permanent multipole. Adding more spin insertions with-
out derivatives will have the same type of behavior we
encountered above, namely the Wilson coefficients will
scale with negative powers of the mass and therefore they
can not be generated from logarithmic UV divergences.
It is indeed possible to show that we can in principle
hook together n spin tensors leading to terms scaling as√
Lv4+n(s−1) after matching into NRGR. Given that n

could be any number of spin insertions, it appears as if
we will have no predictive power for the case s = 1. How-
ever, it can be shown that terms with a large number of
spin insertions can be rewritten in terms of interactions
with no more than four spin insertions [20]. The case of
three and four spin insertions does not modify the leading
order expression in (67).

C. Non minimal insertions II: Tidal deformations

Other type of worldline insertions we could in principle
generate are those having derivatives of the Riemann ten-
sor and more spin insertions. We will need to introduce
terms like,

DǫRαβµνS
ǫµSνβuα; D2RµναβS

µσSα
σu

νuβ ; (68)

10 As it was noticed in [1], f.r. removable terms can in principle
show up in the one point function. However, they can be washed
away by a coordinate transformation. Here we will concentrate
in terms which are not f.r. removable.

DρDσRµναβS
σµSραuνuβ; DσD

2RβρµǫS
ρσSǫ

γS
βγuµ...

We will concentrate here in tidal effects and therefore
in those terms generated by logarithmic UV divergences.
To lowest order it can be shown we will have D2Oi

RS2

(with i = 1, 2, 3) coming from diagrams like fig. 8. We
will generically denote their Wilson coefficients by CD2 .
Given that these expressions posses different tensorial
structure the RG flow will naturally decouple. By di-
mensional analysis it is easy to conclude that

µ
dCD2

dµ
∼ m

m4
p

. (69)

As it was pointed out before, these new insertions will
not contribute to the one point function11. However,
they will in principle be observable for more complicated
ambient metric, such as the field produced by a binary
companion.

Let us power count this effect. After matching into
NRGR for potential gravitons we will get, to leading or-
der,

CD2(∂4Hkd
3k)S2dτ ∼ m

m4
p

1

r4
v2

√
L
L2v2s r

v

∼
√
Lv6+2s, (70)

which would make it a 4PN contribution for maximally
rotating compact objects. A careful inspection shows
however that the leading piece from these terms goes as
derivatives of δ(x1 − x2), which is a contact interaction
(the k2 piece cancels the propagator). As a consequence,
the first long range interaction coming from CD2 , and
therefore the lowest companion induced tidal effect, will
scale as Lv8+2s, a 5PN contribution for maximally ro-
tating compact objects (formally at 3PN as shown in
appendix B). At this order new terms will also start to
contribute (for instance the third and fourth expressions
in (68). See appendix G for details). The reasoning in
previous sections can be easily extended to the n-point
function and higher Riemann insertions.

VII. CONCLUSIONS

In this paper we have extended the formalism initially
proposed in [1] to include internal degrees of freedom
like spin as well as multipole moments. As a first step
we have developed in a suitable fashion the description
of spinning bodies in GR to include a richer tensor
structure extending the previous work done in the realm
of special relativity by A. Hanson and T. Regge [20]. We

11 For instance D2Oi
RS2

= 0 on shell.
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have shown that a self consistent action principle can be
implemented and Papapetrou equations [25] recovered.
Permanent multipole moments are naturally introduced
by adding new degrees of freedom in the worldline action.
Using this formalism we have extended NRGR, its power
counting and Feynman rules with which we have repro-
duced the well known spin-spin and spin-orbit effects at
leading order [13]. A quadrupole-spin correction to the
binding energy was obtained for the first time (to my
knowledge) as well as the quadrupole radiation formula
recovered. The equivalence between different choices
for the spin supplementary condition was explicitly
shown. We have shown afterwards the appearance of
divergences at higher orders in the PN expansion and
its consequent regularization. The type of divergences
are twofold: logarithmic and power law UV divergences.
This distinction was shown to be associated to tidal
vs. self induced effects. Renormalization through the
insertion of non minimal terms in the effective action
was implemented and the RG flow obtained. A finite size
cutoff was invoked in the case of power law divergences
and its respective Wilson coefficients set by naturalness.
In the EFT spirit it is likely that all terms which are
consistent with the symmetries will contribute to the
effective action. In fact, self induced spin effects are
naturally expected and the lack of scale dependence just
responds to the fact that it is a 1-body effect on itself due
to its proper rotation which does not get renormalized12.
A partial matching into the full theory was accomplished
by comparison with known results [21, 22]. Self induced
effects could in principle appear at leading orders in the
PN expansion in the case of maximally rotating compact
bodies, for which tidal deformations were shown to first
appear at 5PN, although formally at 3PN for general
objects. Within the power of the EFT, most of the
conclusions are based on dimensional grounds without
detailed calculations.

Several aspects remain still to be worked out. In ad-
dition to the matching calculation and the issue of fi-
nite size effects, higher order corrections are yet to be
obtained even though the formalism is already set and
just computational work is needed. Including dynamical
properties for multipole moments as well as back reaction
effects is also to be worked out. Moreover, new kinemat-
ical scenarios, like a 3-body system and the large small
mass ratio case, are currently under study. All these is-
sues, including the radiative energy loss due to spin will
be covered in forthcoming publications.

12 Formally speaking, self induced effects do not get renormalized as
a consequence of the fact that they are derived from the coupling
to the conserved stress energy and the metric field does not get
renormalized classically.
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APPENDIX A: ANGULAR-VELOCITY/SPIN
RELATIONSHIP

By RPI we know the theory has vanishing Hamiltonian
and dynamics is generated by the constraints C1, C2. It
can be also shown that the Lagrange multiplier associ-
ated to C1 has been set to zero by the condition ψ ≈ 0
[20]. Using the Hamiltonian equations for the tetrad and
position we have in the realm of special relativity,

dxµ

dλ
= [xµ, ξC2]pb = 2ξpµ → ξ =

(u2)1/2

2m

deI
µ

dλ
= [eI

µ, ξC2]pb = 2ξf ′(S2)SνµeI
ν →

→ Ωµν =
(u2)1/2

m
f ′(S2)Sµν , (A1)

where ξ is a Lagrange multiplier, [, ]pb stands for the Pois-
son bracket and f(S2) ≡ m2(S2). By comparison with
(29) we conclude, by matching to the zero curvature case,

Ωµν = (u2)1/2 f
′(S2)

m
(Sµν − 1

2m
RµναβS

αβ + ...). (A2)

The Lagrangian dependence of this expression is en-
coded in the function f(S2) defined by (21,22). It is
possible now to construct a Lagrangian (L̄) using all the
freedom we showed previously, that will ensure (27) kine-
matically [20]. Such a procedure is therefore preferred
given that the unphysical degrees of freedom are cut off
kinematically rather than cut by hand. As it has been
shown in [20] L̄ is however not unique. There is still
a remnant freedom of the form f ′(S2) ∼ A, with A a
constant13. We can henceforth set A in order to recover
the well known relationship between angular-velocity and
spin in flat space, namely S ∼ IΩ, with I the moment of
inertia. One then solves for Sµν in (A2) order by order
to get (30).

One could still argue that the angular-velocity/spin

relation should be obtained directly from SM =
(

∂L̄
∂Ω

)

M

13 Regge trajectories are of constant slope.
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rather than using the EOM as we did. One should how-
ever bear in mind that dynamics naturally help us to
power count within an EFT approach. Higher order cor-
rections are taken into account by insertions in the world-
line action [1].

APPENDIX B: FORMAL POWER COUNTING

Here we will comment on the power counting from a
formal point of view without assuming any specific prop-
erties of the objects. This will introduce new parameters
which should be adjusted depending on the constituents.
For an object of characteristic length R the spin magni-
tude for a rotating velocity vrot is S ∼ LR

r
vrot

v , formally
a non perturbative effects. For maximally rotating, and

co-rotating, bodies one gets S ∼ L R
rv and S ∼ LR2

r2 re-
spectively. Nevertheless, it is naturally expected that
ǫ ≡ R/r ≪ 1 and a new perturbative parameter is intro-
duced (ǫ ∼ v2 for neutron stars or black holes). It is easy
to show that the leading spin-orbit effect for maximally
rotating objects scales as vǫL, a subleading contribution
formally at 0.5PN. The first long range contribution from
CD2 to the effective action will now scale as Lv6ǫ2 for
vrot = 1. A 3PN effect, effectively at 4PN for ǫ ∼ v.
This brings hope to potentially observe these effects in
the future.

APPENDIX C: GOING TO ALL ORDERS

As we pointed out the unphysical states can be washed
away kinematically by (27) if a suitable Lagrangian (L̄)
is chosen [20]. Moreover, the leading order spin-graviton
vertex was shown to be Lagrangian independent to
leading order. This however can no be translated to
higher orders. Here we will show how to proceed to
obtain the Feynman rules to all orders.

By local Lorentz invariance and general covariance
we know L̄ is a function of the metric and angular-
velocity. We can rewrite L̄ ≡ L̄(ΩIJ , ηIJ) which shrinks
to ΩIJ ≡ eµ

I e
ν
JΩµν all the metric dependence. Within an

EFT framework the explicit form of the Lagrangian given
in [20] is not necessary, since we can always obtain its
NRGR counterpart by expanding L̄ around a Minkowski
background,

L̄ = L̄(ΩIJ
M ) +

(

∂L̄

∂ΩIJ

)

M

δΩIJ + ...
1

n!

(

∂nL̄

∂Ωn

)

M

δnΩ...,

(C1)

where δΩIJ(δe, h) ≡ ΩIJ −ΩIJ
M , and ΩIJ

M defined by (37).
Using that SM = IΩM on shell, the NRGR Lagrangian
turns out to be (schematically),

L̄ = L̄(ΩM ) − 1

2
SMδΩ − I

2
δΩδΩ. (C2)

By expanding δΩ(δe, h) in (C2) we will therefore
generate the spin-graviton vertices to all orders in the
weak field limit14. The next step to construct the EFT
is to match into NRGR using the power counting rules
thus far developed [1]. That is an straightforward task.
The terms in the NRGR Lagrangian for maximally
rotating compact objects are shown in (40,41,42) up to
2PN.

Notice also that the second piece in (C2) generates
contributions which are not explicitly spin dependent,
although the coupling is proportional to the moment of
inertia. For spherically symmetric objects we will have
for instance a term of the form,

I

2
Γµ

ανΓµβ
νuαuβ , (C3)

which can be easily shown to be proportional to Rµνu
µuν

and henceforth f.r. removable. For non-spherical bodies
we will get,

Rµναβe
β
Ke

ν
JI

KJuµuα, (C4)

with IKJ the inertia tensor defined by IKJ =
∑

p mp

(

~x2
p δ

KJ − xJ
px

K
p

)

with p labelling the internal
structure of the body. Given that the symmetric piece
leads to a Ricci tensor, the only physically observable
contribution will come from the quadrupole piece QKJ =
∑

p mpx
J
px

K
p as expected. Therefore, by adding the non-

spherical structure into its rotational part we will au-
tomatically account for its internal quadrupole moment
structure. Higher order multipoles do not follow this pro-
cedure and they should be added depending on the phys-
ical situation.

APPENDIX D: STRESS ENERGY TENSOR FOR
SPINNING OBJECTS

As it was shown by Dixon a spinning particle can be
described by the following stress energy tensor [36, 44],
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14 We will show in appendix F that the spin part of the action can
be indeed rewritten in terms of the Ricci rotation coefficients in

a more compelling fashion.

Tαβ
D =

∑

A

∫

dτpαuβ δ
4(xµ − xµ

A(τ))√−g − 1

2
∇µ

[

(

Sµαuβ + Sµβuα
) δ4(xµ − xµ

A(τ))√−g

]

. (D1)

The Papapetrou equations can be recovered as a con-
sequence of Einstein equations, namely Tαβ;β = 0 [44]15

It can be shown also that (D1) is obtained from our for-
malism. By definition the stress energy tensor is defined
such that,

δS = −1

2

∫

d4x
√
−gTαβδgαβ. (D2)

The variation of the action is in principle tricky due to
the presence of the constraint eI

µeIν = gµν . Using,

δeI
µ =

1

2
eI

νg
νβδgβµ (D3)

δgµν = −gανgβµδgαβ, (D4)

we will therefore get,

−1

2

∫

dτSIJδΩIJ =
−1

2

∫

d4x
√−gTαβ

D(spin)δgαβ (D5)

as expected. It is important to remark that, even though
at first sight (D1) looks action independent, it utterly
depends on the relationship between spin and angular-
velocity which by itself depends on the particular La-
grangian.

APPENDIX E: THE EOM IN THE COVARIANT
GAUGE: NON COMMUTATIVE ALGEBRA

As it is known relativistic N-body EOM cannot be de-
rived from an ordinary Lagrangian beyond the 1PN level,
provided Lorentz invariance is preserved [42]. However,
the latter does not follow if the position coordinates are
not canonical variables, and this is exactly what hap-
pens once the second class constraints in (27), and the
gauge fixing condition ψµ = 0, are imposed strongly in
the phase space [40]. As it is shown in [20] the Poisson
brackets are modified by the Dirac algebra [40, 41]. The

15 However, they do not decouple using (D1). They can be sepa-
rately recovered by using the stress energy tensor proposed by
Bailey and Israel [37], plus imposing the symmetry condition
T µν = T νµ by hand [16].

interesting commutation relations are those of xi
a and

spin, to leading order we have [20],

[xi
a, x

j
a]db =

Sji
a

m2
a

[xk
a, S

ij
a ]db =

1

ma
(Ski

a v
j
a − Skj

a vi
a), (E1)

with a = 1, 2, and db stands for Dirac brackets.
It can be easily noticed that our expressions in (48,50)

for the potentials within the covariant condition coin-
cides with that of [9, 12, 13] up to the acceleration piece.
Therefore, all we have to do in order to prove the equiv-
alence is to explicitly show that the new term derived
from the acceleration part agrees with the extra factor
generated by the non canonical brackets. Let us start
with the position dynamics. It is easy to show from (E1)
that the following new term,

d

dt

([

~x1,−
GNm2

r

]

db

)

= GN
m2

m1

d

dt

(

~n× ~S1

r2

)

, (E2)

will appear into the acceleration of body 1. Adding the
piece coming from the second body it is straightforward
to show that the extra factor is equivalently obtained by
adding a term (in relative coordinates),

µ

2M
~v ·
(

~a×
(

m1

m2

~S2 +
m2

m1

~S1

))

(E3)

into the Lagrangian, where it is understood that wherever
the acceleration appears in higher-order terms one sub-
stitutes the leading order EOM. This agrees with [12, 13]
and the equivalence is thus proven. In addition, it is easy
to show there is a coordinate transformation that leads
to a canonical algebra, to leading order [20],

~xa → ~xa − 1

2ma

~Sa × ~va. (E4)

Still missing is the precession of spin. Using (E1) one
can show that the EOM for spin ends up being,

d~S1

dt
= 2(1 +

m2

m1
)
µGN

r2
(~n× ~v) × ~S1 +

m2GN

r2
(~n · ~v1)~S1.

(E5)
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It easy to show now that the following PN shift,

~Sa → (1 − 1

2
~v2

a)~Sa +
1

2
~va(~va · ~Sa), (E6)

which jointly with (E4) leads to a canonical algebra, re-
produces the well known spin precession (see (52)). The
map in (E4,E6) connects the covariant choice with the
baryonic one. The baryonic condition does not preserve
Lorentz invariance, and an acceleration independent La-
grangian exists16. As a consequence, (51) will not be in-
variant under the usual linear realization of the Poincare
group [12, 42]. Given that (E4,E6) are PN shifts it is
also immediate to conclude that the power counting rules
developed in this paper do not get affected by the new
choice.

APPENDIX F: SPIN-GRAVITON COUPLING
REVISED

By RPI we know that the Lagrangian must be of the
form,

L = −pµuµ − 1

2
SµνΩµν . (F1)

Here we shall show that the spin part of the action can
be rewritten as,

Sspin ∼ 1

2

∫

dτωIJ
µ SIJu

µ, (F2)

with ωIJ
µ the Ricci rotation coefficients. Notice this cou-

pling is generally covariant and RPI by construction. We
could have chosen to add spin this way into the NRGR
Lagrangian given that SIJ can be treated as a constant
external source (see equation (25)). In fact, the momen-
tum dynamics (equation (26)) is also recovered following
similar steps as we did before. It is therefore natural
to expect that both formalisms agree which indeed fol-
lows almost straightforwardly by definition. In terms of a
tetrad and the Levi-Civita connection, the Ricci rotation
coefficients can be written as [35],

ωIJ
µ = ΓJ

µ
I

+ eJ
α∂µe

αI . (F3)

Given that (F2) is defined on the worldline we can use
the tetrad field transported by the particle. We will thus
get for the spin part of the action (using (15)),

uµωµIJS
IJ = SIJ(−ΓJIµu

µ+
deαI

dτ
eα

J ) = SIJΩIJ , (F4)

16 As shown by Schafer [43], substituting the leading order EOM in
the acceleration dependent Lagrangian of [12, 13] is also equiva-
lent to the map to baryonic coordinates.

FIG. 9: A typical contribution to the one point function in
the effective action coming from leading order mass and spin
insertions.

as advertised. Written this way it is clear how spin and
gravity couple to each other, with spin playing the role
of a ‘gravitational charge’ coupled to a connection of a
spin 2 field.

APPENDIX G: NAIVE POWER COUNTING

Here we will schematically show the type of new in-
sertions which are generated by divergences in the one
point function. Let us start by calculating the effective
action with ns spin and nm mass leading order inser-
tions as shown in fig. 9. This diagram will scale as (after
matching into NRGR for potential gravitons),

1

mns+nm−1
p

(

m

mp

)nm

Lns
vsns

mns
p

v2mp√
L

r

rdv
, (G1)

where rd is introduced for dimensional reasons. By using
NRGR power counting [1] each diagram should scale as√
L and therefore,

d = 2ns + nm − 1 → fig. 9 ∼
√
Lv2d. (G2)

To consider the type of terms that can be generated
by renormalization in the one point function, and will
contribute to physical observables we need as a necessary
condition d̃ ≡ d − 2 ≥ 0. This however is not sufficient
given that using Bianchi identities it can be shown
that contraction of covariant derivatives with the full
Riemann tensor are equivalent to derivatives of the Ricci
tensor and henceforth f.r. removable terms. We can
nonetheless enumerate some cases. Let us concentrate
in logarithmic divergences first. For d̃ = 0 we have
ns = nm = 1, and it is easy to see there are not any
new terms generated by fig. 7. The case d̃ = 1 has
either ns = 2, nm = 0 or ns = 1, nm = 2. None of these
diagrams have logarithmic divergences (for potential
gravitons) which could generate an observable term.
In fact, the only observable term which can be written
down with d̃ = 1, and either ns = 1, 2 is the first term in
(68), which can be shown to be a subleading self induced
effect.
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For d̃ = 2 we have either ns = 2, nm = 1 and fig. 8 which
leads to the finite size effects we discussed in the paper,
or ns = 1, nm = 3 which can be shown does not generate
observable terms. For d̃ = 3 we can have ns = 1, 2, 3
plus mass insertions. Some of these diagrams will
contribute observable terms. After matching into NRGR
such terms start out at O(v10) for maximally rotating
compact objects. The procedure follows systematically
with higher order terms.
In addition to logarithmic divergences, it is easy to
see that diagrams like fig. 9 will also have power
law divergences. For instance, the term O3

RS2 can be
generated by diagram fig. 8 and its coefficient scale as
mΛ2

m4
p

. Assuming a cutoff of order Λ ∼ 1/rs, we will have

C3
RS2 ∼ m

r2
sm4

p
∼ 1/m as expected.

It is therefore straightforward to conclude from all we

have seen thus far that companion induced finite size
effect due to spin start out at 5PN (formally at 3PN)
for maximally rotating compact objects. For the sake of
completeness here are the terms which will contribute to
the potential energy,

D2Oi
RS2 , DρDσRµναβS

σµSραuνuβ,

DσDǫDγRβρµνS
βσSǫρSµγuν , D2DσRβρµνS

βσSǫρSµ
ǫ u

ν ,

D2DσRβρµνS
ρσSǫµSν

ǫ u
β, D2DγRµναβS

γσSσνSµβuα,

D2DγRµναβS
γσSσβSµνuα. (G3)

Other possible terms, like D2DγRσµναS
γσSναuµ, can

be shown to be subleading. The reasoning shown here
can be easily extended to the case of higher order Rie-
mann insertions with similar conclusions.
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