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Can dark energy evolve to the Phantom?Alexander VikmanLudwig-Maximilians-Universität Münhen, Department of Physis,Theresienstraÿe 37, D-80333 Munih, GermanyDark energy with the equation of state w(z) rapidly evolving from the dustlike (w ≃ 0 at z ∼ 1)to the phantomlike (−1.2 . w . −1 at z ≃ 0) has been reently proposed as the best �t forthe supernovae Ia data. Assuming that a dark energy omponent with an arbitrary salar-�eldLagrangian p(ϕ,∇µϕ) dominates in the �at Friedmann universe, we analyze the possibility of adynamial transition from the states (ϕ, ϕ̇) with w ≥ −1 to those with w < −1 or vie versa. Wehave found that generally suh transitions are physially implausible beause they are either realizedby a disrete set of trajetories in the phase spae or are unstable with respet to the osmologialperturbations. This onlusion is on�rmed by a omparison of the analyti results with numerialsolutions obtained for simple models. Without the assumption of the dark energy domination,this result still holds for a ertain lass of dark energy Lagrangians, in partiular, for Lagrangiansquadrati in ∇µϕ. The result is insensitive to topology of the Friedmann universe as well.I. INTRODUCTIONOne of the greatest hallenges in modern osmologyis understanding the nature of the observed late-timeaeleration of the universe. The present aelerationexpansion seems to be an experimental fat, now thatdata from supernovae type Ia [4, 5℄, orroborated laterby those from the osmi mirowave bakground [7℄, havebeen reently on�rmed by the observations of the largestrelaxed galaxy lusters [3℄. Although the observations arein good agreement with the simplest explanation given bya osmologial onstant Λ of order (10−3 eV)4, the myste-rious origin of this tiny number, whih is about 120 orderssmaller than the naive expetations, gives rise to the ideaof a dynamial nature of this energy. Possible dynami-al explanations of this phenomenon are given in variousframeworks. One of them is known as quintessene (seee.g. [25℄ and other referenes from the review [24℄). Inthis framework the equation of state p = wε is suh that
w ≥ −1. Another proposal is the phantom salar �elds(see e.g. [13℄) whih possess the super-negative equationof state w ≤ −1, due to the �wrong� sign before thekineti term in the Lagrangian. Alternatively, there isa more general possibility under the name k−essene[9, 10, 43℄ whih is an e�etive salar-�eld theory de-sribed by a Lagrangian with a nonlinear kineti term.For this model, the equation of state w is not onstrainedto be larger or smaller than −1. Allowing the dark energyto be dynamial provides an opportunity to study the so-alled oinidene problem whih asks why dark energydomination begins just at the epoh when sentient beingsare able to observe it. The main advantage of k−esseneis its ability to solve this problem in a generi way (fordetails see [10℄), whereas the �rst two models require a�ne-tuning of parameters.Without imposing the prior onstraint w ≥ −1,the observations seem to favor the dark energy withthe present equation of state parameter w < −1 (seee.g. Ref. [3, 6, 15, 33℄). Moreover, reently it was argued(see Ref. [1, 2℄ and other onstraints on w(z) obtained in

Refs. [8, 32, 37, 38, 41, 42℄) that the dark energy with theequation of state parameter w(z) rapidly evolving fromthe dustlike w ≃ 0 at high redshift z ∼ 1, to phantomlike
−1.2 . w . −1 at present z ≃ 0, provides the best �t forthe supernovae Ia data and their ombinations with otherurrently available data from the measurements of os-mi mirowave bakground radiation (CMBR) and from2dF Galaxy Redshift Survey (2dFGRS).Matter with w < −1 violates the dominant energy on-dition whih is a su�ient ondition of the onservationtheorem [26℄. Therefore for suh models one annot guar-antee the stability of vauum on the lassial level. Theinstability an reveal itself at the quantum level as well.In fat, it was shown that the phantom salar �elds arequantum-mehanially unstable with respet to deay ofthe vauum into gravitons and phantom partiles withnegative energy [11, 12℄. Assuming that the phantomdark energy is an e�etive theory allows one to esape thisproblem through the appropriate �ne-tuning of a uto�parameter. If the dark energy ould dynamially hangeits equation of state from a phantomlike one to that with
w ≥ −1, then this transition would prevent the undesir-able partile prodution without suh a �ne-tuning. Hereit is worth mentioning that quantum e�ets on a loallyde Sitter bakground ould lead to the e�etive parame-ter w < −1 (see Ref. [39, 40℄).Another fundamental physial issue where this tran-sition ould play an important role is the osmologialsingularity problem. If w < −1 in an expanding Fried-mann universe, then the positive energy density of suhphantom matter generally beomes in�nite in �nite time,overoming all other forms of matter and, hene, leads tothe late-time singularity alled the �big rip� [14℄. Thetransition under onsideration ould naturally preventthis late-time singularity. Here it is worthwhile to men-tion that for ertain potentials and initial onditions thephantom salar �elds an esape this singularity by evolv-ing to a late-time asymptoti whih is the de Sitter so-lution with w = −1 [33, 34℄. Moreover, it was arguedthat the quantum e�ets an prevent the developing ofthe �big-rip� singularity as well [35℄.
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2 On the other hand, to avoid the big runh singularity,whih arises in various pre-big bang and yli senarios(see e.g. [28, 29, 30℄), one assumes that the universe anboune instead of ollapsing to the singularity. The ex-istene of a nonsingular bouning solution in a �at (oropen) Friedmann universe (k 6= +1) requires the viola-tion of the null energy ondition (ε + p ≥ 0) during theboune [27℄. If the energy density ε is onstrained to bepositive, then it follows that w < −1 is the neessaryondition for the boune. But the energy density of suhphantom matter would rapidly derease during the ol-lapse and therefore only the transition from w ≥ −1 to
w < −1 just before the boune ould explain the non-singular bouning without a �ne-tuning in initial energydensities of phantom and other forms of matter presentin the universe.It is worth noting as well that for regimes where theequation of state of the k−essene �eld is greater than
−1 it is possible to �nd a quintessene model whih givesthe same osmologial evolution but behaves di�erentlywith respet to osmologial perturbations [16℄. Hene,it is interesting whether this equivalene an be brokendynamially.In this paper we onsider the osmologial dynamis ofa k−essene �eld ϕ, desribed by a general Lagrangian pwhih is a loal funtion of ϕ and ∇µϕ. The Lagrangiandepends only on ϕ and a salar quantity,

X ≡ 1

2
∇µϕ∇µϕ. (I.1)First of all, we determine the properties of a general La-grangian p(ϕ, X), whih are neessary for the smoothtransition of the dark energy from the equation of state

w(ϕ, X) ≥ −1 to w(ϕ, X) < −1 or vie versa. The tran-sition obviously happens if the system passes through theboundaries of the domains in the spae (ϕ, X), de�nedby these inequalities. In most of the paper, we assumethat the dark energy dominates in a spatially �at Fried-mann universe. The main question is whether trajeto-ries onneting these domains on the phase spae (ϕ, ϕ̇)exist and are stable with respet to osmologial pertur-bations. In the ase of the phase urves whih do notviolate the stability onditions, we study their asymp-toti behavior in the neighborhood of the points wherethe transition ould our. To proeed with this analysis,we linearize the equation of motion in the neighborhoodof these points and then use the results of the qualita-tive theory of di�erential equations. For the dark energymodels desribed by Lagrangians linear in X , we performthis investigation beyond the linear approximation. Forthis lass of Lagrangians, we illustrate the outome ofour analysis by numerially obtained phase urves. Fi-nally, we generalize the results to the ases of spatiallynot-�at Friedmann universes �lled with a mixture or thedark energy and other forms of matter.

II. GENERAL FRAMEWORKAssuming the dominane of the dark energy, we negletall other forms of matter and onsider a single salar �eld
ϕ interating with gravity. After all, we will see thatthe results an be easily extended to the models withadditional forms of matter. The ation of the model readsin our units (Mp = ~ = c = 1, where Mp is the reduedPlank mass Mp = (8πG)−1/2 = 1.72 × 1018GeV ) asfollows:

S = Sg + Sϕ =

∫

d4x
√
−g

[

−R

2
+ p(ϕ, X)

]

, (II.1)where R is the Rii salar and p(ϕ, X) is the Lagrangiandensity for the salar �eld. This kind of ation maydesribe a fundamental salar �eld or be a low-energye�etive ation. In priniple, the Lagrangian density
p(ϕ, X) an be non-linear on X . For example, in stringand supergravity theories nonlinear kineti terms appeargenerially in the e�etive ation desribing moduli andmassless degrees of freedom due to higher order gravita-tional orretions to the Einstein-Hilbert ation [17, 18℄.The �matter� energy-momentum tensor reads

Tµν ≡ 2√−g

[

δSϕ

δgµν

] (II.2)
= p,X(ϕ, X)∇µϕ∇νϕ − p(ϕ, X)gµν .Here a omma denotes a partial derivative with respetto X . The last equation shows that, if ∇νϕ is timelike(i.e. X > 0), the energy-momentum tensor is equivalentto that of a perfet �uid,

Tµν = (ε + p)UµUν − pgµν , (II.3)with pressure p(ϕ, X), energy density
ε(ϕ, X) = 2Xp,X(ϕ, X) − p(ϕ, X), (II.4)and four veloity

Uµ =
∇µϕ√

2X
. (II.5)The equation of motion for the salar �eld an be ob-tained either as a onsequene of the energy-momentumtensor onservation ∇µT µ

ν = 0 or diretly from the ex-tremal priniple δSϕ/δϕ = 0:
p,X�gϕ + p,XX (∇µ∇νϕ)∇µϕ∇νϕ + ε,ϕ = 0, (II.6)where �g ≡ gµν∇µ∇ν and ∇µ denotes the ovariantderivative. For this �uid we an de�ne the equation ofstate parameter w as usual:

w ≡ p

ε
. (II.7)There is inreasing evidene that the total energy den-sity of the universe is equal to the ritial value, and



3hene in the most part of the paper we will onsider a�at Friedmann universe. In the end, we shall show thatthe results are also appliable in the ases of losed andopen universes. Thus, the bakground line element reads
ds2 = gµνdxµdxν = dt2 − a2(t) dx2. (II.8)The Einstein equations an be written for our bak-ground in the familiar form:

ä

a
= −1

6
(ε + 3p) , (II.9)

H2 =
ε

3
, (II.10)where H ≡ ȧ/a is the Hubble parameter and a dotdenotes derivative with respet to the physial time t.These equations also imply a ontinuity equation:

ε̇ = −3H(ε + p). (II.11)In general, whenever ȧ 6= 0 any two of these three lastequations imply the third one (by ompatible initial on-ditions). Usually it is easier to work with the seondand the third equations (these are the Friedmann equa-tions). Note that, from Eq. (II.10), ε was onstrained tobe non-negative.Beause of the homogeneity and isotropy of the bak-ground, we get X = 1
2 ϕ̇2 and p,ϕ̇ = ϕ̇p,X so the en-ergy density looks as the energy in usual 1D lassialmehanis

ε(ϕ, ϕ̇) = ϕ̇p,ϕ̇ − p. (II.12)Expressing H from the �rst Friedmann equation (II.10),we an rewrite Eq. (II.6) in the ase of the homogeneousand isotropi �at bakground as follows:
ϕ̈ε,X + ϕ̇p,X

√
3ε + ε,ϕ = 0. (II.13)So far as ȧ(t) 6= 0, all of the information about the dy-namis of gravity and salar �eld is ontained in the equa-tion written above. In aordane with our initial simpli-�ation the dark energy should dominate in the universe;therefore we assume throughout the paper that ε > 0.Following [19℄, we introdue the e�etive sound speedof the perturbations,

c2
s ≡ p,X

ε,X
. (II.14)Then the equation of motion takes the form

ϕ̈ + ϕ̇c2
s

√
3ε +

ε,ϕ

ε,X
= 0. (II.15)In most of this paper, we shall assume that the solutions

ϕ(t) and Lagrangians p(ϕ, X) have enough ontinuousderivatives. So, for example, ϕ(t) will be mostly onsid-ered as being at least of the lass C2 : ϕ(t), ϕ̇(t), ϕ̈(t)are ontinuous.

III. POSSIBLE MECHANISMS OF THETRANSITIONThere are two possibilities for the evolution of darkenergy from w ≥ −1 to a phantom dark energy with
w < −1 (or vise versa). These are a ontinuous transi-tion, in whih the dark energy evolves through pointswhere w = −1, and a disontinuous transition ourringthrough points where ε = 0, provided that the pressure
p is �nite. Sine by assumption the dark energy is thedominating soure of gravitation, we annot have ε = 0and therefore it is su�ient to onsider only ontinuoustransitions.Further, throughout the paper we will usually supposethat for the dynamial models under onsideration thereexist solutions ϕ(t) and orresponding to them momentsof time tc suh that

w [ϕ(tc), X(tc)] = −1. (III.1)Heneforth the index c denotes a physial quantity takenat tc; i.e., ϕc ≡ ϕ(tc), εc ≡ ε(tc), et.The parameter w an be expressed with the help ofEq. (II.4) in the following form, more onvenient for astudy of ontinuous transitions:
w = −1 +

2X

ε
p,X . (III.2)Sine X = 1

2 ϕ̇2 ≥ 0 and ε > 0, we �nd that w < −1orresponds to p,X < 0, whereas w > −1 implies
p,X > 0. In aordane with our notation, the equationof state parameter w takes the value −1 at the points
Ψc ≡ (ϕc, ϕ̇c), where either X = 0 or p,X = 0. Beauseof these equations, the points Ψc generally form urves
γ(λ) and isolated points in the phase spae (ϕ, ϕ̇) of thedynamial system given by Eq. (II.13). The urves γ(λ)may interset.For our purposes, it is onvenient to divide the set ofpoints Ψc into three disjunt subsets:A) The ϕ−axis of the phase plot (ϕ, ϕ̇), i.e., ϕ̇c = 0.B) The points where p,X(Ψc) = 0 but ϕ̇c 6= 0 and

ε,X(Ψc) 6= 0.C) The points where p,X(Ψc) = 0 and ε,X(Ψc) = 0 but
ϕ̇c 6= 0.Further in this setion we will study the dynamis of thesalar �eld ϕ in the neighborhoods of Ψc separately forthese ases. If the system evolves from the states (ϕ, ϕ̇)where w ≥ −1 to the states with w < −1 (or vise versa),the funtion p,X hanges sign.It is worth noting that, if the salar dark energy wereequivalent to an �isentropi� �uid for whih the pressure



4
p is a funtion only of ε, then the possibility of evolvingthrough the points εc where w(εc) = −1 ould be eas-ily ruled out. Indeed, in that ase we ould rewrite theontinuity equation (II.11) only in terms of ε:

ε̇ = −
√

3ε [ε + p(ε)] , (III.3)so that the system of Einstein equations (II.9) and (II.10)ould be redued to Eq. (III.3) and the values of energydensity εc would be �xed points of this equation. A dy-namial transition through a �xed point is learly impos-sible.An example of the dark energy whih seems to beequivalent to the �isentropi� �uid is the simple modeldesribed by the Lagrangian p = p(X) depending onlyon X . Let us further assume that there are some values
Xc, where w(Xc) = −1. If Eq. (II.4) is solvable withrespet to X in the neighborhoods of these points Xc,then one an �nd X(ε) and therefore the pressure is afuntion only of energy density p(ε) ≡ p [X(ε)]. Thusthe system is equivalent to the �isentropi� �uid, Xc are�xed points, and the transition through w = −1 is im-possible. It remains to onsider the onditions on thefuntion ε(X) under whih Eq. (II.4) is solvable with re-spet to X . From the theorem about the inverse funtion,Eq. (II.4) is solvable with respet to X if

ε,X(Xc) = [2Xp,XX(Xc) + p,X(Xc)] 6= 0. (III.4)One an see diretly from the equation of motion (II.13)and ondition (III.4) that Xc are �xed point solutions. Infat, as it was shown in Ref. [23℄, there generally existsthe solution X(t) ≡ Xc and moreover it is an attrator inan expanding Friedmann universe. Thus, the transitionis generally forbidden for systems desribed by purelykineti Lagrangians p(X).In the general ase when p = p(ϕ, X), the pressureannot be expressed only in terms of ε, sine ϕ and Xare independent.A. Transition at points Xc = 0Here we will analyze the possibility of the transitionin the ase (A) ϕ̇c = 0. Namely, we are going to studythe properties of the solutions ϕ(t) in the neighborhoodof the line ϕ̇c = 0. Di�erentiating the equation of stateparameter with respet to the time, we have
ẇ =

2Ẋ

ε
p,X +

2X

ε
˙p,X − 2X

ε2
p,X ε̇. (III.5)At the points under onsideration we have ẇc = 0 be-ause Xc = 0 and, respetively, Ẋc = ϕ̇cϕ̈c = 0. More-over, the time derivatives in the seond and third sum-mands vanish at these points as well due to the ontinuityequation (II.11) and the formula

˙p,X = ϕ̇ (p,ϕX + ϕ̈p,XX) . (III.6)

Let us di�erentiate the ẇ one more with respet to thetime. The only term whih survives from the formula(III.5) at the points Xc = 0 is the �rst term. Hene, wehave
ẅc =

[

2Ẍ

ε
p,X

]

c

=

[

2ϕ̈2

ε
p,X

]

c

. (III.7)Using the equation of motion (II.13), we an express ϕ̈through the p and its derivatives
ϕ̈cε,X(tc) = −ε,ϕ(tc). (III.8)As follows from Eq. (II.4), ε,X(tc) = p,X(tc) at the time

tc when the system rosses Xc = 0. Provided ε,ϕ(tc) 6= 0and p,X(tc) 6= 0, we infer from Eq. (III.7) and (III.8) thatthe equation of state parameter w(t) has either a mini-mum or a maximum at the point tc. Thus, the transitionis impossible in this ase.If ε,ϕ(tc) = 0 and ε,X(tc) 6= 0, then it follows fromrelation (III.8) that ϕ̈(tc) = 0. Therefore the onsideredsolution ϕ(t) for whih w [ϕ(tc)ϕ̇(tc)] = −1 is a �xedpoint solution ϕ(t) ≡ ϕc ≡ const and the transition isimpossible. Sine ε > 0, we see that this �xed point isobviously the de Sitter solution.If not only Xc = 0 but also ε,X(tc) ≡ p,X(tc) = 0,then ε,ϕ(tc) = 0 and it follows from the formula (II.4)that p,ϕ(tc) = 0. Moreover, the equation of motion(II.13) is not solved with respet to the highest deriva-tives (namely, with respet to ϕ̈ ) and therefore does notneessarily have a unique solution. It happens beausethe point (ϕc, 0) on the phase plot (ϕ, ϕ̇) does not deter-mine the ϕ̈ via the equation of motion (II.13). It is learthat, in this ase, the pointlike (on the phase plot) solu-tion ϕ(t) ≡ ϕc ≡ const is a solution, but not neessary aunique one.Below, we will give a more general onsideration of thegeometry of phase urves in the neighborhood of the ϕaxis. The phase �ows are direted from right to left forthe lower part of the phase plot ϕ̇ < 0 and from left toright for the upper part ϕ̇ > 0, see Fig 1. Therefore thesystem an pass the ϕ axis only if the point of intersetionis a turning point (urves 1 and 6 on Fig 1). Otherwisethe rossing is a �xed point (or a singularity). If there isa smooth phase urve on whih the system pass throughthe ϕ axis, then in a su�iently small neighborhood ofthe turning point we have (ϕ − ϕc) ∼ ϕ̇2n ∼ Xn where
n ≥ 1. Restrited to this urve, the funtion Xp,X(ϕ, X)depends only on X and in the absene of a branhingpoint the sign of this funtion above and below the ϕaxis is the same. Then it follows from the formula (III.2)that the system annot hange the sign of (w + 1) whilerossing the ϕ axis.If a smooth phase urve does not ross but touhesthe ϕ axis at a point ϕc (see Fig. 1, trajetories 3 and4), then the following asymptoti holds: ϕ̇ ∼ (ϕ − ϕc)

2n,where n ≥ 1. Let us �nd the time needed for the system
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Figure 1: Possible phase urves in the neighborhood of the
ϕ−axis. Only on the urves 1 and 6, the system rosses the
ϕ axis. Curves 2, 3, 4 and 7 have an attrator as a sharedpoint with the ϕ axis, whereas urves 5 and 8 have a repulsor.These attrators and repulsors an be �xed-point solutions orsingularities.to reah the tangent point (ϕc, 0) in this ase. We have

t ≡
∫ ϕc

ϕin

dϕ

ϕ̇(ϕ)
∼
∫ ϕc

ϕin

dϕ

(ϕ − ϕc)
2n , (III.9)where ϕin is a starting point on the phase urve. Thelast integral is obviously divergent. Therefore the systemannot reah the tangent point in a �nite timeFinally, we ome to the onlusion that in the frame-work under onsideration it is impossible to build a modelwith the desirable transition through the points Xc = 0.B. Transition at points Ψc: p,X(Ψc) = 0,

ε,X(Ψc) 6= 0, Xc 6= 0In the neighborhood of a point Ψc, at whih the on-dition ε,X(Ψc) 6= 0 holds, one an �nd a funtion ϕ̇c(ϕc):
p,X [ϕc, ϕ̇c(ϕc)] = 0. This follows from the theoremabout the impliit funtion. One would antiipate thaton the phase urves interseting the urve ϕ̇c(ϕc) thestate of the dark energy hanges to the phantom one(or vise versa). Let us express p,X from Eq. (III.2) andsubstitute it into formula (II.14) for the sound speed ofperturbations:

c2
s =

(w + 1)ε

2Xε,X
. (III.10)For the stability with respet to the general metri andmatter perturbations the ondition c2

s ≥ 0 is neessary(see [19℄). Indeed the inrement of instability is inverselyproportional to the wavelength of the perturbations, andhene the bakground models for that c2
s < 0 are vio-lently unstable and do not have any physial signi�ane.Beause of the ontinuity of ε,X , there exists a neighbor-hood of the point Ψc where ε,X 6= 0. Therefore, from theabove expression for the sound speed (III.10) it followsthat if (w + 1) hange a sign then c2

s should hange a signas well. If this is the ase, then the trajetories, realiz-ing the transition, violate the stability ondition c2
s ≥ 0.Therefore the model of the transition is not realisti.

C. Transition at points Ψc: p,X(Ψc) = 0,
ε,X(Ψc) = 0, Xc 6= 0As we have already mentioned at the beginning of thissetion, the points Ψc generally form the urves in thephase spae (ϕ, ϕ̇). The sublass of the points Ψc, whihwe are going to onsider in this subsetion, is generally aolletion of the isolated points given by the solutions ofthe system,

p,X(ϕ, ϕ̇) = 0, ε,X(ϕ, ϕ̇) = 0. (III.11)Only for spei� models, the solutions of this system arenot isolated points. An example when these solutionsform a line is onsidered in setion IV. Usually the phaseurves passing through the isolated points build a set ofthe zero measure. Therefore it is physially implausi-ble to observe the proesses realized on these solutions.The only reason to study the behaviour of the systemaround these points is their singular harater. The pointis that the equation of motion (II.13) is not solved withrespet to the highest derivatives at this points. In suhpoints there an be more than one phase urve passingthrough eah point. Moreover, the set of solutions ϕ(t),whih pass through Ψc with di�erent ϕ̈, ould have anon-zero measure. On the other hand, the equation ofmotion does not neessarily have a solution ϕ(t) suhthat (ϕ(tc), ϕ̇(tc)) = Ψc at some moment of time tc, orthere exists the desirable solution ϕ(t) but it does notpossess the seond derivative with respet to time at thepoint Ψc. Below we will analyze the behavior of the phaseurves in the neighborhoods of the points Ψc.The equation of motion (II.13) an be rewritten as asystem of two di�erential equations of the �rst order:
dϕ̇

dt
= −ϕ̇

p,X

ε,X

√
3ε − ε,ϕ

ε,X
, (III.12)

dϕ

dt
= ϕ̇.The phase urves of this dynamial system are given bythe following di�erential equation:

dϕ̇

dϕ
= − ϕ̇p,X

√
3ε + ε,ϕ

ϕ̇ε,X
. (III.13)This equation follows from the system (III.12) and there-fore all phase urves orresponding to the integral urvesof system (III.12) are integral urves of the di�erentialequation (III.13). But the reverse statement is false, soeah integral urve of Eq. (III.13) does not neessarilyorrespond to a solution ϕ(t) of the equation of motion(or of the system (III.12)). In the neighborhoods of thepoints where ε,X 6= 0, it is onvenient to introdue a newauxiliary time variable τ de�ned by

dt ≡ ε,Xdτ. (III.14)



6The system (III.12) is equivalent to the τ system:
dϕ̇

dτ
= −ϕ̇p,X

√
3ε − ε,ϕ, (III.15)

dϕ

dτ
= ϕ̇ε,X .The auxiliary time variable τ hange the diretion if ε,Xhange the sign. Note that the system (III.15) alwayspossesses the same phase urves as the equation of motion(III.12).In the ase under onsideration we have ϕ̇c 6= 0 andfrom the formula

dϕ̇

dϕ
=

ϕ̈

ϕ̇
(III.16)we infer that dϕ̇/dϕ(tc) should be �nite, if ϕ̈(tc) is �nite.As one an see from the equation determining the phaseurves (III.13), in order to obtain a �nite dϕ̇/dϕ(tc) itis neessary that at least ε,ϕ(Ψc) = 0. In the ase if

ε,ϕ(Ψc) 6= 0, the solution ϕ(t) does not possess the se-ond t derivative at the point tc. Usually this an be seenas unphysial situation. But nevertheless this does notneessarily lead to the unphysial inontinuity in the ob-served quantities ε, p, H , and ϕ, ϕ̇. One may probablyfae problems with the stability of suh solutions, butlet us �rst of all investigate the behavior of the phaseurves in the ase ε,ϕ(Ψc) 6= 0. From Eq. (III.13), weobtain dϕ/dϕ̇ = 0 at Ψc. Further we an parameterizethe phase urve as ϕ = ϕ(ϕ̇) and bring the equation forphase urves (III.13) to the form
dϕ

dϕ̇
= ε,X(ϕ, ϕ̇)F (ϕ, ϕ̇), (III.17)where we denote

F (ϕ, ϕ̇) ≡ − ϕ̇

ϕ̇p,X

√
3ε + ε,ϕ

. (III.18)If, as we have assumed, ε,ϕ(Ψc) 6= 0 and ε(Ψc) 6= 0, then
F (ϕ, ϕ̇) is di�erentiable in the neighborhood of the point
Ψc and F (Ψc) = −ϕ̇/ε,ϕ. For the seond ϕ̇ derivative atthe point Ψc, one obtains

d2ϕ

d2ϕ̇
= − ϕ̇2

ε,ϕ
ε,XX . (III.19)That is why the point Ψc is a minimum or a maximum forthe funtion ϕ(ϕ̇). In this ase Ψc is suh an exeptionalpoint on the phase plot, where the solution ϕ(t) annothave ontinuous ϕ̇(t) and the phase urve terminates (seepoints ξ in Figs. 2 and 3). This happens beause the di-retion of the phase �ow is preserved in the neighborhoodof Ψc. If ε,XX(Ψc) = 0, then one an �nd the third ϕ̇derivative of ϕ(ϕ̇) at the point Ψc:

d3ϕ

d3ϕ̇
= − ϕ̇3

ε,ϕ
ε,XXX . (III.20)

In this ase there an exist a ontinuous solution ϕ(t)suh that (ϕ(tc), ϕ̇(tc)) = Ψc at some moment of time tcand the only bad thing happening in this point is that
ϕ̈(tc) does not exist. Let us now investigate what hap-pens with the equation of state at this point of time. Dif-ferentiating both sides of the de�nition (II.7) of w yieldsat tc

ẇc =

[

ϕ̇

ε

(

p,ϕ − c2
sε,ϕ

)

]

c

, (III.21)where we have used the equation of motion (II.13) atthe point tc and the de�nition (II.14) of c2
s. Applyingthe l'H�pital rule for the c2

s(tc) = lim
t→tc

p,X/ε,X , we �ndthat c2
s(tc) = 0. Moreover, using the l'H�pital rulefor the derivative of c2

s at the point Ψc, one an �ndthat dc2
s/dϕ̇ ∼ p,ϕ/ε,ϕ. Thus, if p,ϕ 6= 0 the transitionould our but it hanges a sign of the sound speed c2

s.Therefore, if the stability riteria are appliable to thisase, then the transition leads to instability.The neessary ondition for the existene of ϕ̈ duringthe transition is
ε,ϕ(Ψc) = 2Xcp,Xϕ(Ψc) − p,ϕ(Ψc) = 0. (III.22)This ondition drastially redues the set of the points

Ψc, where the transition is possible. Namely, they arethe ritial points of the funtion ε(ϕ, X) and, on theother hand, they are the �xed points of the auxiliary
τ system (III.15). These �xed points are additionalto the �xed points of the system (III.12) de�ned by
ϕ̇ = 0 , ε,ϕ(ϕ, 0) = 0, and ε,X(ϕ, 0) 6= 0. From nowon, we will onsider only those points Ψ+

c where theondition (III.22) holds. From the relation (III.22), itfollows that if p,ϕ(ϕc, Xc) = 0 then p,Xϕ(ϕc, Xc) = 0.Otherwise Xc = 0, and as we have already seen thetransition annot happen via the points Xc = 0. Notethat if p,ϕ(Ψ+
c ) = 0, then the points Ψ+

c are ommonritial points of the pressure p(ϕ, ϕ̇), energy density
ε(ϕ, ϕ̇), and p,X(ϕ, ϕ̇). From ondition (III.22) followsthat points Ψ+

c are singular points of Eq. (III.13). Insuh points there an be more than one phase urvepassing through this point. Moreover, as we have alreadymentioned, the set of solutions ϕ(t), whih pass through
Ψ+

c with di�erent ϕ̈, ould have a nonzero measure.For example, if Ψ+
c were a nodal point (see Fig. 4),there would be a ontinuous amount of the solutionspassing through this point and therefore there would bea ontinuous amount of solutions on whih the transitionould our.Let us investigate the type of the singular points Ψ+

c .This will tell us about the amount of the solutions ϕ(t) onwhih the transition is possible and their stability. Forthis analysis, one an use the tehnique desribed, forexample, in [21℄, and onsider the integral urves of theequation (III.13). Here we proeed with this analysis in



7a more onvenient way, namely, using the auxiliary τ sys-tem (III.15). It is onvenient beause for this system thesingular points Ψ+
c are usual �xed points. As we havealready mentioned, both systems have the same phaseurves and therefore the analysis to perform is also ap-pliable to the phase urves of the system (III.12). Theonly thing we should not forget is the di�erene in the di-retions of the phase �ows of these systems. If ε(Ψ+

c ) 6= 0,then one an linearize the right-hand side of the τ systemin the neighborhood of a point Ψ+
c : (ϕ+

c + δϕ, ϕ̇+
c + δϕ̇).The linearized τ system (III.15) is

d

dτ
V = AV, (III.23)where we denote

V =

(

δϕ
δϕ̇

)

, A =

(

a b
c g

)

, (III.24)and elements of the matrix A are given by the formulas
a = ε,Xϕϕ̇, (III.25)
b = 2Xε,XX,

c = − (3Hϕ̇p,Xϕ + ε,ϕϕ) ,

g = −ε,Xϕϕ̇,where all quantities are alulated at Ψ+
c . Here we haveused the Friedmann equation (II.10). If Ψ+

c is an iso-lated �xed point of the τ system (III.15) (or equivalentlythe singular point of system (III.12)), then the followingondition holds
detA = ag − bc 6= 0. (III.26)The type of the �xed point depends on the eigenvalues

λ of the matrix A (for details see, for example, [22℄). Inthe ase under onsideration a = −g and therefore wehave
λ2 = bc + a2 = − detA. (III.27)If bc + a2 > 0, then eigenvalues λ are real and of theopposite signs. In aordane with the lassi�ation ofthe singular points, Ψ+

c is a saddle point (see Fig. 2).Therefore the transition is absolutely unstable; there areonly two solutions ϕ(t) on whih the transition is allowedto our.If bc + a2 < 0 then λ are pure imaginary. Here thesituation is a little bit more ompliated: In aordanewith [21℄, this �xed point of a nonlinear system an beeither a fous or a enter. In these ases, as one an seefrom Fig. 3, there no solutions ϕ(t) passing through thepoint Ψ+
c . Therefore, from now on we will onsider onlythe �rst ase - real λ of the opposite signs.It is onvenient to rewrite the expression for λ intoa simpler form. Di�erentiating the ontinuity equation(II.11) yields

ε̈c = −3Hcṗc. (III.28)

ϕ

0 ϕ

Γ

ξξ

ξξ

Figure 2: Phase urves in the neighborhood of the singularpoint Ψ+
c are plotted for the ase of the real λ. At the points

ξ, the solutions ϕ(t) do not exist. These points together with
Ψ+

c form the urve Γ on whih ε,X(Γ) = 0.

0 ϕ

ϕ

Γ
ξ ξ ξ ξ

Figure 3: Phase urves in the neighborhood of the singularpoint Ψ+
c are plotted for the ase of the pure imaginary λ.Here we assume that the singular point is a fous.Remember that the index c denotes quantities taken at tcor in this subsetion at Ψ+

c . Di�erentiating the pressure
p as a omposite funtion, we have ṗ = p,ϕϕ̇ + p,XẊ.Assuming that ϕ̈c is �nite, we obtain that ṗc = pc

,ϕϕ̇c.Thus the formula for ε̈c is
ε̈c = −3Hcp

c
,ϕϕ̇c. (III.29)Using the ondition (III.22) and the last equation, webring the element c of the matrix A to the followingform:

c = −εc
,ϕϕ +

ε̈c

2Xc
. (III.30)This relation allows one to rewrite the formula (III.27)as follows:

λ2 = 2Xc

(

(

εc
,Xϕ

)2 − εc
,ϕϕεc

,XX

)

+ ε̈cε
c
,XX . (III.31)
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ϕ

0 ϕFigure 4: If A had the eigenvalues λ1 = λ2, then the singu-lar point Ψ+
c would be a nodal point and there would be aontinuous set of trajetories passing through it. To illustratethis we plot here the phase urves in the partiular ase of adegenerate nodal point. The form of the equation of motion(II.13) exludes suh types of singular points and thereforeprevents the possibility of suh transitions.Here it is interesting to note that the expression

εc
,ϕϕεc

,XX −
(

εc
,Xϕ

)2 from the previous formula is the de-terminant of the quadrati form arising in the Taylor setof ε in the neighborhood of the ritial point Ψ+
c . If thisdeterminant is positive, then the funtion ε(ϕ, X) haseither a minimum or a maximum at point Ψ+

c . Other-wise there is either one urve of onstant energy density
ε(urve) = ε(Ψ+

c ) with a singular turning point at Ψ+
cin the neighborhood of Ψ+

c ore two interseting at Ψ+
curves of onstant ε (see [20℄) . On the other hand, dif-ferentiating ε as a omposite funtion we �nd

ε̈c = 2Xc

(

εc
,ϕϕ + 2εc

,Xϕϕ̈c + εc
,XXϕ̈2

c

)

. (III.32)Substituting this relation into the previous formula(III.31) for λ yields
λ2 = 2Xc

(

εc
,XXϕ̈c + εc

,Xϕ

)2
. (III.33)This formula provides the relation between ϕ̈c at the mo-ment of transition and λ. Note that λ depends on ϕ̈c onlyin the ase when ε,XX(tc) ≡ 2Xcp,XXX(tc) 6= 0. More-over, omparing formulas (III.29) and (III.32) for ε̈c, onean obtain the equation on ϕ̈c:

εc
,XX ϕ̇cϕ̈

2
c + 2εc

,Xϕϕ̇cϕ̈c + ϕ̇cε
c
,ϕϕ + 3Hcp

c
,ϕ = 0. (III.34)This equation is solvable in real numbers if the disrim-inant is positive. As one an prove, the disriminant isexatly the 4λ2 and therefore positive if we onsider thesaddle point. The same an be seen from relation (III.33)as well.Let us denote the positive and negative eigenvalues andthe orresponding eigenvetors of A as λ+, λ− = −λ+and a+, a−, respetively.

If b 6= 0 ( or equivalently εc
,XX 6= 0), then the eigen-vetors an be hosen as a+ = (1, (λ+ − a)/b) and

a− = (1,−(λ+ + a)/b). Therefore the separatries form-ing the saddle are
δϕ̇+ =

λ+ − a

b
δϕ and δϕ̇− = −λ+ + a

b
δϕ.The general solution for the phase urves in the neigh-borhood of Ψ+

c is
(

δϕ̇ − λ+ − a

b
δϕ

)(

δϕ̇ +
λ+ + a

b
δϕ

)

= const.(III.35)If b = 0 and additionally a > 0, then we have λ+ =
a = ε,Xϕϕ̇, and one an hoose the eigenvetors as
a+ = (1, c/2a) and a− = (0, 1) . For a negative a, onean obtain the eigenvetors and eigenvalues by hanging
λ+ ↔ λ− and a+ ↔ a−. The separatries then read

δϕ = 0 and δϕ̇ =
c

2a
δϕ.Thus, similarly to the previous ase, the phase urves aregiven by

δϕ
(

δϕ̇ − c

2a
δϕ
)

= const. (III.36)As we have already mentioned from the formula
dϕ̇/dϕ= ϕ̈/ϕ̇, follows that, at the points where thephase urves are parallel to the ϕ̇ axis and where ϕ̇ 6= 0,the seond t derivative of the �eld does not exist. Ifwe look at the equations (III.35) and (III.36) providingthe phase urves in the neighborhood of Ψ+

c , then we�nd that in the �rst ase (when εc
,XX 6= 0) the phaseurves lying on the right- and left- hand sides of bothseparatries should have a point ξ where they are par-allel to the ϕ̇ axis (see Fig. 2). Therefore eah of thesephase urves onsists of two solutions of the equationof motion (II.13) and the exeptional point ξ where thesolution ϕ(t) does not exist. The same statement holdsin the ase of the pure imaginary λ (see Fig. 3). Thisbehavior is not forbidden beause, as one an easilyprove, the exeptional points ξ lie exatly on the urve

Γ on whih ε,X(Γ) = 0 and the equation of motion isnot solved with respet to the highest derivatives. Notethat we have already assumed λ 6= 0, and from thisondition it follows that εc
,XX and εc

,Xϕ annot vanishsimultaneously. Therefore in the neighborhood of thepoint Ψ+
c there exists an impliit funtion ϕ̇(ϕ) (or

ϕ(ϕ̇)) and its plot gives the above-mentioned urve Γ onwhih ε,X(Γ) = 0. In the ase εc
,XX = 0, the separatrix

δϕ = 0 loally oinides with Γ, and therefore, thisintegral urve of Eq. (III.13) does not orrespond to anysolution ϕ(t) of the equation of motion. Nevertheless,in virtue of the existene theorem, all phase urvesobtained in the neighborhood of the separatrix δϕ = 0orrespond to the solutions of the equation of motion.Moreover, if εc
,XX = 0 and pc

,Xϕ 6= 0 then the urveson whih p,X = 0 and ε,X = 0 loally oinide with



9eah other and with the urve δϕ = 0. The only phaseurve interseting the urve δϕ = 0 at Ψ+
c is the seondseparatrix δϕ̇ = cδϕ/2a. Thus the only solution ϕ(t)on whih the transition happens in the neighborhood of

Ψ+
c orresponds to the separatrix δϕ̇ = cδϕ/2a. Thisan also be seen from the equation (III.34) whih hasonly one root ϕ̈c in this ase. In the Se. (IV) we willillustrate this with a numerial example (see Fig. 5).It is worthwhile to disuss ases whih fall out fromthe onsideration made above. We have assumed that

λ 6= 0 and therefore Ψ+
c is an isolated singular pointof Eq. (III.13). The most natural possibilities to dropout this ondition are εc

,Xϕ = 0 and either εc
,XX = 0 or

ϕ̇c3Hcp
c
,Xϕ + εc

,ϕϕ = 0. In the �rst ase Ψ+
c is a ritialpoint not only of the funtion ε but of the funtion

ε,X as well. This an be obtained either for a veryspeial kind of funtion p namely, suh that p,X = 0,
p,XX = 0, p,XXX = 0, and [p − 4X2p,XX

]

,ϕ
= 0 at Ψ+

cor imposing the ondition that the point Ψ+
c is a ritialpoint not only of p but also of the funtions p,X and

p,XX : p,X = 0, p,ϕ = 0, p,XX = 0, p,Xϕ = 0, p,XXφ = 0,and �nally p,XXX = 0 at Ψ+
c . In the seond ase Ψ+

cis a ommon ritial point for the funtions ε and ε,ϕ.In terms of p, this ondition is as follows: p,X = 0,
p,ϕ = 0, p,Xϕ = 0, p,XX = 0, p,ϕϕ = 0, p,XXϕ = 0,and �nally p,Xϕϕ = 0 at Ψ+

c . Thus, the point Ψ+
c is aommon ritial point of p, p,X and p,Xϕ. Of ourse, theanalysis performed above does not work in the ase ifthe funtion p(ϕ, X) does not have a su�ient amount ofderivatives. It is lear that all these ases are not general.Let us sum up the results obtained in this setion. Inthe general ase of linearizable funtions ε,X , ε,ϕ, and

p,X , the onsidered transitions either our through thepoints Ψ+
c , where p,X = 0, ε,X = 0, ε,ϕ = 0, and

ϕ̇
[(

ε2
,Xϕ − ε,ϕϕε,XX

)

ϕ̇ − 3Hε,XXp,ϕ

]

> 0or lead to an unaeptable instability with respet tothe osmologial perturbations of the bakground. Thepoints Ψ+
c are ritial points of the energy density andare the singular points of the equation of motion of the�eld ϕ as well. These singular points are saddle pointsand the transition is realized by the repulsive separatrixsolutions, whih form the saddle. Therefore the measureof these solutions is zero in the set of trajetories and thedynamial transitions from the states where w > −1 to

w < −1 or vise versa are physially implausible.IV. LAGRANGIANS LINEAR IN XThe simplest lass of models, for that one ould anti-ipate the existene of dynamial transitions, is the dark

energy desribed by Lagrangians p(ϕ, X) linear in X :
p(ϕ, X) = KX − 1

2
V ≡ 1

2
(K(ϕ)∇µϕ∇µϕ − V (ϕ)) .(IV.1)In the isotropi and homogeneous Friedmann universe,the Lagrangian is then

p(ϕ, ϕ̇) =
1

2

(

K(ϕ)ϕ̇2 − V (ϕ)
)

. (IV.2)For these models, we always have c2
s = 1 and therefore, asfollows from our analysis, the transitions ould our onlythrough the points where ε,X = 0. The energy densityfor this model is

ε(ϕ, ϕ̇) =
1

2

(

K(ϕ)ϕ̇2 + V (ϕ)
)

. (IV.3)If one takes K(ϕ) ≡ 1, then the Lagrangian (IV.2) isthe usual Lagrangian density for salar �eld with a self-interation. If we take K(ϕ) ≡ −1, then we obtain theso-alled �Phantom �eld� from [13℄ and [11℄. The ase
K(ϕ) > 0 orresponds to w ≥ −1, whereas K(ϕ) < 0orresponds to w ≤ −1. The equation of motion (II.13)takes in our ase the following form:

ϕ̈K + ϕ̇K
√

3ε + ε,ϕ = 0. (IV.4)While the equation determining the phase urves (III.13)reads in this partiular ase
dϕ̇

dϕ
+
√

3ε +
1

ϕ̇K
ε,ϕ = 0. (IV.5)If K(ϕ) is a sign-preserving funtion, one an rede�ne�eld ϕ: √|K(ϕ)|dϕ = dφ (see also Ref. [16℄). The equa-tion of motion for the new �eld φ an be obtained fromEq. (IV.4), through the formal substitutions ϕ → φ,

V (ϕ) → Ṽ (φ) ≡ V (ϕ(φ)), and K(ϕ) → ±1, where theupper sign orresponds to a positive K(ϕ) and the lowerone to a negative K(ϕ). After these substitutions, theequation of motion (IV.4) looks more onventionally
φ̈ + φ̇

√

3

2

(

±φ̇2 + Ṽ (φ)
)

± 1

2

(

∂Ṽ (φ)

∂φ

)

= 0. (IV.6)Moreover, this equations is easier to dial with, beauseone an visualize the dynami determined by it, as 1Dlassial mehanis of a point partile in a potential
±Ṽ (φ)/2 with a little bit unusual frition fore. If wewere able to solve the equation of motion (IV.6) for allpossible Ṽ (φ) and initial data, we ould solve the problemof osmologial evolution for all linear in X Lagrangianswith sign-preserving K(ϕ).If the funtion K(ϕ) is not sign-preserving, then at�rst sight it seems that the dark energy, desribed bysuh a Lagrangian, an realize the desirable transition.The funtion K(ϕ) generally an hange the sign in twoways: In the ontinuous one, then the funtion K(ϕ)takes the value zero for some values of �eld ϕ or in adisontinuous polelike way.



10 A. Linearizable K(ϕ)Without loss of generality, one an assume that
K(0) ≡ Kc = 0, K(ϕ) < 0 for the negative values of
ϕ and K(ϕ) > 0 for ϕ > 0. The line ϕ = 0 on thephase plot (ϕ, ϕ̇) we will all the �ritial� line for thegiven lass of Lagrangians. The phantom states (ϕ, ϕ̇)of the salar �eld lie on the left-hand side, while theusual states with w ≥ −1 are on the right-hand side ofthe ritial line. If there exists a solution ϕ(t) whosephase urve passes through the �ritial� line, then thedark energy an hange the sign of (w + 1) during theosmologial evolution. From now on, we will investigatethe behavior of the phase urves of the system in theneighborhood of the ritial line.First of all, it is worth onsidering the funtions K(ϕ)suh that K ′

c > 0 (here we have denoted K ,ϕ(0) ≡ K ′
c),beause in this ase we an diretly apply the outome ofour previous analysis made in the Se. III A. Condition(III.22) is for the linear in X Lagrangians as follows:

ϕ̇2
cK

′

c + V ′

c = 0. (IV.7)As we have already assumed K ′
c > 0, therefore, if V ′

c > 0,then, as follows from ondition (IV.7), there are no twiedi�erentiable solutions ϕ(t) whose phase urves wouldinterset or touh the ritial line. Further (see formula(IV.15) and below) we will show that, for the linear in XLagrangians, ondition (III.22) (or in our ase ondition(IV.7) is neessary not only for the existene of the seond
t derivative ϕ̈ at the point of intersetion with the ritialline but for the existene of a solution ϕ(t) at this pointas well. Thus, we ome to the onlusion that, if V ′

c > 0,then two regions ϕ < 0, and ϕ > 0 on the phase plot arenot onneted by any phase urves and aordingly thedark energy does not hange the sign of (w + 1) duringthe osmologial evolution.In the ase V ′
c < 0, we an solve Eq. (IV.7) with respetto ϕ̇c :

ϕ̇c = u± ≡ ±
√

− V ′
c

K ′
c

. (IV.8)The phase urves, lying in the neighborhoods of the sin-gular points Ψ+
c = (0, u±), are to obtain from the relation(III.36), whih gives:
ϕ

(

ϕ̇ − u± − A±

2
ϕ

)

= const, (IV.9)where
A± = −3Hc +

V ′
c K ′′

c − V ′′
c K ′

c

2u± (K ′
c)

2 . (IV.10)For eah singular point (0, u±), there is a orrespondingsolution ϕ±(t) whose phase urve is the separatrix
ϕ̇± = u± +

A±

2
ϕ, (IV.11)

whih intersets the ritial line. These phase urvesorrespond to the const = 0 in the right-hand sideof Eq. (IV.9). Another urve, whih orresponds to
const = 0 is ϕ = 0. As we have already mentioned at theend of the previous subsetion, this urve does not or-respond to any solutions ϕ(t) of the equation of motion(IV.4).Considering the phase �ow in the neighborhoods of
Ψ+

c = (0, u±) (see Fig. 5), we infer that the separatries
ϕ̇± are repulsors immediately before they interset theritial line and attrators after the rossing. Hene, themeasure of the initial onditions (ϕ, ϕ̇) leading to thetransition to phantom �eld (or vie versa) is zero. In thissense the dark energy annot hange the sign of K(ϕ) (orequivalently the sign of (w + 1)) during the osmologialevolution.The typial behavior of the phase urves in the neigh-borhood of the singular points (0, u±), for the modelsunder onsideration (K ′

c > 0, V ′
c < 0), is shown in Fig. 5.Here, as an example, we have plotted the phase urvesobtained numerially for a toy model with the Lagrangiandensity p = 1

2ϕϕ̇2 − 1
2

(

(ϕ − 1)
2

+ 1
3

). For this model wehave u± = ±1, A+ = − 3
2 , and A− = − 1

2 .Let us now onsider suh potentials V (ϕ) that V ′
c = 0.If K(ϕ) is a di�erentiable funtion, then, in the ase un-der onsideration, the equation of motion (IV.4) obvi-ously has a �xed-point solution ϕ(t) ≡ 0 but this solu-tion is not neessarily the unique one. When V ′

c = 0 and
K ′

c > 0, then, as follows from the ondition (III.22), theonly value ϕ̇, where a phase urve ould have oinidingpoints with the ritial line, is ϕ̇ = 0. From the analy-sis made in Se. III A, we have already learned that thetransition is impossible in this ase. Nevertheless it isworth to showing expliitly how the phase urves lookat this ase. Taking into onsideration only the leadingorder in the numerator and denominator of Eq. (IV.5)and assuming that V ′′
c 6= 0, we obtain
dϕ̇

dϕ
≃ − V ′′

c

2ϕ̇K ′
c

. (IV.12)The solution of this equation, going through the point
(0, 0) on the phase plot, is

ϕs = −ϕ̇2

(

K ′
c

V ′′
c

)

. (IV.13)In Fig. 6 we have plotted the phase urves obtainednumerially for a toy model with the Lagrangian density
p = 1

2ϕϕ̇2 − 1
2

(

ϕ2 + 2
). As one an see from Fig. 6,the parabolalike phase urve ϕs, given by the formula(IV.13), is the separatrix going through the �xed-pointsolution ϕ(t) ≡ 0. Moreover, this �gure on�rms thatthere are no phase urves interseting the ritial line by�nite ϕ̇.
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Figure 5: The typial behavior of the phase urves in theneighborhood of the ritial line where K(ϕ) = 0 (here ϕ̇ axis) is plotted for the ase when K′
c > 0 and V ′

c < 0. Horizontaldashed lines are the analytially obtained separatries ϕ̇± and
(0, u±) are the points of transition.

0

.ϕ

ϕ

Figure 6: The typial behavior of the phase urves in theneighborhood of the ritial line where K(ϕ) = 0 (here ϕ̇ axis) is plotted for the ase when K′
c > 0, V ′

c = 0, and V ′′
c > 0.B. General di�erentiable K(ϕ)The models we are going to disuss below belong tothe more general lass of models for whih the funtion

K(ϕ) has zero of an odd order 2n + 1 (where n ≥ 0)at ϕ = 0. For the linear in X Lagrangians, we have
ε,XX ≡ 0; therefore, if n > 0 then K ′

c = 0 and εc
,ϕX = 0.That is why the general analysis made in the Se. III Cdoes not work for this ase. Therefore it is interesting toinvestigate on this simple example whether the desiredtransition ould be possible for models not overed byour former analysis. If K(ϕ) is a su�ient many times

di�erentiable funtion, then for |ϕ| ≪ 1 we have
K(ϕ) ≃ K

(2n+1)
c

(2n + 1)!
ϕ2n+1, (IV.14)where K

(2n+1)
c is the (2n + 1)th ϕ derivative of K at

ϕ = 0. If there is a phase urve, rossing the ritial lineat a �nite nonvanishing ϕ̇c, then integrating both sidesof the equation of motion (IV.4) we obtain
ϕ̇c − ϕ̇in = −3

∫ 0

ϕin

H(ϕ)dϕ −
∫ 0

ϕin

ε,ϕ

ϕ̇K
dϕ. (IV.15)Here (ϕin, ϕ̇in) is a point on the phase urve in the neigh-borhood of the ritial line. The �rst integral on theright-hand side of Eq. (IV.15) is always �nite, whereas,as follows from the relation (IV.14), the seond integralis de�nitely divergent, if εc

,ϕ 6= 0. This divergene on-tradits to our initial assumption: ϕ̇c - �nite. There-fore we again obtain the ondition (III.22), whih re-strits the possible intersetion points on the ritial linein the sense that in the other points, where the ondi-tion does not hold, not only the seond derivative ϕ̈ doesnot exist, but there are no solutions ϕ(t) at all. More-over, it is lear that the ondition (IV.7) is not enoughfor the existene of the solutions interseting the ritialline. Thus, if the order of V ′(ϕ) exeeds the order on ϕof K ′(ϕ) for |ϕ| ≪ 1, then one an neglet V ′(ϕ) andthe integral (IV.15) has the logarithmi divergene (notethat we do not onsider the points ϕ̇c = 0 beause aswe already know the transition does not our via thesepoints). When the order of V ′(ϕ) is lower than K ′(ϕ)(and therefore lower than the order of K(ϕ)), we an ne-glet ϕ̇2K ′(ϕ) and the integral (IV.15) has a power-lowdivergene. Finally, if the funtions K ′(ϕ) and V ′(ϕ)have the same order on ϕ for |ϕ| ≪ 1 and are of oppositesigns in a su�ient small neighborhood of ϕ = 0, thenone an �nd an appropriate �nite value ϕ̇2
c 6= 0 for whihthe divergene on the right-hand side of Eq. (IV.15) isaneled. One would expet that at this point the phaseurves interset the �ritial� line and the dark energyhanges the sign of (w + 1). Below, we give the diretalulation of these ϕ̇c and the phase urves in a neigh-borhood of them. Suppose that the order of the funtions

(V (ϕ) − Vc) and K(ϕ) is (2n + 1) and there exist theirderivatives of the order (2n + 2). Then for the ϕ deriva-tive of the energy density we have in the neighborhoodof the supposed intersetion point (0, ϕ̇c):
ε,ϕ ≃ 1

2

ϕ2n

(2n)!

[(

ϕ̇2
cK

(2n+1)
c + V (2n+1)

c

)

+ 2ϕ̇cK
(2n+1)
c δϕ̇

+
ϕ

(2n + 1)

(

ϕ̇2
cK

(2n+2)
c + V (2n+2)

c

)]

, (IV.16)whereas the denominator ϕ̇K(ϕ) of the seond integral onthe right-hand side of Eq. (IV.15) has the order (2n + 1)on ϕ. The only possibility to get rid of the divergenein the integral under onsideration is to assume that the



12�rst term in the brakets in the asymptoti (IV.16) for
ε,ϕ is zero. Therefore the possible rossing points aregiven by

ϕ̇c = u± = ±

√

− V
(2n+1)
c

K
(2n+1)
c

. (IV.17)Taking into aount only the leading order on ϕ and δϕ̇in the denominator and the numerator of Eq. (IV.5), weobtain di�erential equation for the phase urves in theneighborhoods of the intersetion points (0, u±):
dδϕ̇

dϕ
= A± − (2n + 1)

δϕ̇

ϕ
, (IV.18)where

A± = −3Hc +
K

(2n+2)
c V

(2n+1)
c − K

(2n+1)
c V

(2n+2)
c

2
[

K
(2n+1)
c

]2

u±

.(IV.19)The solutions of this equation are given by the formula
(

δϕ̇ − A±

2n + 2
ϕ

)

ϕ2n+1 = const, (IV.20)whih is a generalization of formula (IV.9). Similarly tothe ase n = 0 (K ′
c > 0) the solutions, on whih the tran-sition ours, have the measure zero in the phase urvesset. Therefore we infer that the dynamial transitionfrom the phantom states with w ≤ −1 to the usual with

w ≥ −1 (or vie versa) is impossible.Now we would like to mention the models, for whih
V ′(ϕ) is one order higher on ϕ than K ′(ϕ) for small ϕ.From the asymptoti expression for ε,ϕ (IV.16) and therelation, giving the possible values of ϕ̇c (IV.15), we seethat the only point on the ritial line whih ould bereahed in a �nite time is ϕ̇c = 0. Therefore, as we haveseen in Se. III A, the transition is impossible. The phaseurve going trough the �xed-point solution ϕ(t) ≡ 0 is aparabola given by the generalization of Eq. (IV.13) :

ϕ ≃ −ϕ̇2

[

K
(2n+1)
c

V
(2n+2)
c

]

. (IV.21)If V ′(ϕ) is more than one order higher on ϕ than K ′(ϕ),then as we have already mentioned ϕ̇c = 0 and the tran-sition is impossible as well.C. Pole-like K(ϕ)In this subsetion, we brie�y onsider the ase whenthe funtion K(ϕ) has a pole of an odd order, so
K ∼ ϕ−2n−1, where n > 0, for |ϕ| ≪ 1. This kind offuntions K(ϕ) is often disussed in the literature inonnetion with the k−essene models (see [10℄). Letus keep the same notation as in subsetion IVA. The

potential V (ϕ) an not have a pole at the point ϕ = 0,beause, if it were the ase, either the energy density εor the pressure p would be in�nite on the ritial line.In order to obtain �nite values of the energy density
ε and pressure p, it is neessary to assume that thesystem intersets the ritial line at ϕ̇ = 0. But, aswe have already seen in Se. III A, the dark energyannot hange the the sign of (w + 1) at the points ϕ̇ = 0.Thus, we have shown that in the partiular ase ofthe theories desribed by the linear in X Lagrangians
p(ϕ, X) = K(ϕ)X − V (ϕ), whih are di�erentiable inthe neighborhood of Ψ+

c (K(ϕ) and V (ϕ) di�erentiablebut not neessary linearizable) the results, obtained forlinearizable funtions ε,X , ε,ϕ, and p,X , hold as well. Thisgives rise to hope that the same statement is true for thegeneral nonlinear in X Lagrangians as well. Espeiallywe have proven that, if the onstrution of the linear in
X Lagrangian allows the transition, then the transitionsalways realize on a pair of the phase urves. One phaseurve orresponds to the transition from w > −1 to w <
−1 while another one realizes the inverse transition. Thispair of phase urves obviously has the measure zero in theset of trajetories of the system. Therefore we infer thatthe onsidered transition is physially implausible in thisase.V. SCALAR DARK ENERGY IN OPEN ANDCLOSED UNIVERSES IN THE PRESENCE OFOTHER FORMS OF MATTERIn the previous setions, we have seen that the desir-able transition from w > −1 to w < −1 is either impos-sible or dynamially unstable in the ase when the salardark energy is a dominating soure of gravity in the �atFriedmann universe. Let us now investigate whether thisstatement is true in the presene of other forms of matterand in the ases when the Friedmann universe has openand losed topology.Following Ref. [19℄, the e�etive sound speed cs is givenby the same Eq. (II.14) for the �at, open, and losed uni-verses. Therefore, if the dark energy is the dominatingsoure of gravitation (in partiular this means that theenergy density of the dark energy ε 6= 0 ), then the anal-ysis made in Se. III B is appliable to open and loseduniverses as well as to the �at universe.If the dark energy under onsideration interatswith ordinary forms of matter only through indiretgravitational-strength ouplings, then the equation ofmotion (II.13) an be written in the following form:

ϕ̈ε,X + 3ϕ̇Hp,X + ε,ϕ = 0, (V.1)where merely the Hubble parameter depends on the spa-tial urvature and other forms of matter. This depen-dene is given by the Friedmann equation:
H2 +

k

a2
=

1

3

(

ε +
∑

εi

)

, (V.2)



13where∑ εi is the total energy density. It is obvious thatthe points on the plot (ϕ, ϕ̇) onsidered in the most ofthis paper do not de�ne the whole dynamis of the sys-tem anymore and therefore do not de�ne the states ofthe whole system. The analysis made in Ses. III A,III C, and IV leans only on the behavior of the salar�led ϕ and its �rst t derivative ϕ̇ in the neighborhoodsof their seleted values, namely, suh as where some ofthe onditions p,X = 0, ϕ̇ = 0, or ε,X = 0 et. hold.For these onditions, the ontributions into the equationof motion (V.1) oming from the other forms of mat-ter and spatial urvature would be of a higher order andtherefore are not important for the loal behavior of ϕand the problem as a whole. In fat, the value of theHubble parameter did not hange the qualitative futuresof the phase urves onsidered in Ses. III A,III C, andIV. To illustrate this statement, we plot the trajetoriesof the system p = 1
2ϕϕ̇2 − 1

2

(

(ϕ − 1)
2

+ 1
3

) (it is thesame system that we onsidered in previous subsetion)in presene of dust matter for various values of the initialenergy densities of the dust (see Fig. 7). The only thingthat is important is that H 6= 0. The universe should nothange the expansion to the ollapse and the plot of thesale fator a(t) should not have a usp diretly at thetime of the transition. Thus, we infer that the most ofour analysis is appliable to a more general physial situ-ation of a Friedmann universe �lled with various kinds ofusual matter, whih interat with the dark energy onlythrough indiret gravitational-strength ouplings. More-over, if the interation between the dark energy �eld ϕand other �elds does not inlude oupling to the deriva-tives ∇µϕ, then the obtained result holds as well.VI. CONCLUSIONS AND DISCUSSIONIn this paper we have found that the transitions from
w > −1 to w < −1 (or vie versa) of the dark energydesribed by a general salar-�eld Lagrangian p(ϕ,∇µϕ)are either unstable with respet to the osmologial per-turbations or realized on the trajetories of the measurezero. If the dark energy dominates in the universe, thisresult is still robust in the presene of other energy om-ponents interating with the dark energy through nonk-ineti ouplings. In partiular, we have shown that, un-der this assumption about interation, the dark energydesribed by Lagrangians linear in (∇µϕ)

2 annot yieldsuh transitions even if it is a subdominant soure ofgravitation.Let us now disuss the onsequenes of these results. Iffurther observations on�rm the evolution of the dark en-ergy dominating in the universe, from w ≥ −1 in the losepast to w < −1 to date, then it is impossible to explainthis phenomenon by the lassial dynamis given by ane�etive salar-�eld Lagrangian p(ϕ,∇µϕ). In fat, themodels whih allow suh transitions have been alreadyproposed (see e.g., [31, 32, 36℄ and other models from the

.
ϕ ΩmΩϕ

ϕ

10

0

=

.
ϕ

ϕ
0

mΩϕΩ =

.
ϕ ΩmΩϕ

0

0.1=

ϕ

Figure 7: Numerially obtained trajetories of the dark energydesribed by a Lagrangian linear in X are plotted for the ases
Ωϕ = 10Ωm, Ωϕ = Ωm, and Ωϕ = 0.1Ωm.Ref. [24℄) but they inorporate more ompliated physisthen the lassial dynamis of a one salar �eld.If observations reveal that w < −1 now and if we dis-regard the possibility of the transitions, then the energydensity of the dark energy should grow rapidly duringthe expansion of the universe and therefore the oini-dene problem beomes even more di�ult. Thus, fromthis point of view the transitions onsidered in this pa-per would be rather desirable for the history of the uni-verse. As we have shown, to explain the transition underthe minimal assumptions of the nonkineti interation ofdark energy and other matter one should suppose that



14the dark energy was subdominating and desribed by anonlinear in (∇µϕ)2 Lagrangian. Thus, some nonlinear(or probably quantum) physis must be invoked to ex-plain the value w < −1 in models with one salar �eld.The seond appliation of our analysis is the problem ofthe osmologial singularity. To obtain a boune insteadof ollapse, the salar �eld ϕ must hange its equation ofstate to the phantom one before the boune and shoulddominate in the universe at the moment of transition.Otherwise, if the salar �eld was subdominant then it isstill subdominant after the transition as well, beause itsenergy density dereases during the ollapse, while theother nonphantom forms of matter inrease their energydensities. The disappearing energy density of ϕ does nota�et the gravitational dynamis and therefore does not
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