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Nuclear and nucleon transitions of the H di-baryon

Glennys R. Farrar and Gabrijela Zaharijas
Center for Cosmology and Particle Physics

New York University, NY, NY 10003,USA

We consider 3 types of processes pertinent to the phenomenology of an H di-baryon: conversion
of two Λ’s in a doubly-strange hypernucleus to an H, decay of the H to two baryons, and – if
the H is light enough – conversion of two nucleons in a nucleus to an H. We compute the spatial
wavefunction overlap using the Isgur-Karl and Bethe-Goldstone wavefunctions, and treat the weak
interactions phenomenologically. The observation of Λ decays from doubly-strange hypernuclei puts
a constraint on the H wavefunction which is plausibly satisfied. In this case the H is very long-lived
as we calculate. An absolutely stable H is not excluded at present. SuperK can provide valuable
limits.

I. INTRODUCTION

The most symmetric color-spin representation of six
quarks (uuddss) is called the H dibaryon. It is flavor
singlet with strangeness -2, charge 0, and spin-isospin-
parity I(JP ) = 0(0+). In 1977 Jaffe calculated its mass
[1] to be about 2150 MeV in the MIT-bag model and thus
predicted it would be a strong-interaction-stable bound
state, since decay to two Λ particles would not be kine-
matically allowed. Since then its mass has been esti-
mated in many different models, with results lying in the
range 1 – 2.3 GeV. On the experimental side, there have
been many inconclusive or unsuccessful attempts to pro-
duce and detect it. See [2] for a review.

The purpose of this paper is to study several processes
involving the H which are phenomenologically important
if it exists: conversion of two Λ’s in a doubly-strange hy-
pernucleus to an H, decay of the H to two baryons, and –
if the H is light enough – conversion of two nucleons in a
nucleus to an H. The amplitudes for these processes de-
pend on the spatial wavefunction overlap of two baryons
and an H. We are particularly interested in the possibil-
ity that the H is tightly bound and that it has a mass less
than mN +mΛ. In the case, as we shall see, its lifetime
is longer than the age of the Universe.

If the H is tightly bound, it would be expected to be
spatially compact. Hadron sizes vary considerably, for a
number of reasons. For instance the nucleon is more than
twice as large as the pion, with charge radius rN = 0.88
fm compared to rπ = 0.38 fm. Lattice and instanton-
liquid studies can account for these diverse radii and fur-
ther predict that the glueball is even more tightly bound:
rG ≈ (1/4− 1/6) rN [3]. If the analogy suggested in ref.
[4] between H, Λ1405 and glueball is correct, it would
suggest rH ≈ rG<∼ 1/4 rN . The above size relationships
make sense: the nucleon’s large size is due to the low
mass of the pion which forms an extended cloud around
it, while the H and glueball do not couple to pions, due
to parity and flavor conservation, are thus are small com-
pared to the nucleon. In the absence of an unquenched,
high-resolution lattice QCD calculation capable of a re-
liable determination of the H mass and size, we will con-
sider all values of mH and take rH/rN ≡ 1/f as a pa-

rameter, with f in the range 2-6. For a more detailed
discussion of the motivation and properties of a stable or
long-lived H and a review of experimental constraints on
such an H, see ref. [5].

In this paper we calculate the lifetime for decay of the
H to various final states, and we consider two types of ex-
perimental constraints on the transition of two baryons
to an H in a nucleus, ABB → A′

HX . To estimate the
rates for these processes requires calculating the overlap
of initial and final quark wavefunctions. We model that
overlap using an Isgur-Karl harmonic oscillator model for
the baryons and H, and the Bethe-Goldstone wavefunc-
tion for a nucleus. The results depend on rN/rH and the
nuclear hard core radius.

Experiments observing single Λ decays from dou-
ble Λ hypernuclei AΛΛ[6, 7] indicate that τ(AΛΛ →
A′

HX)>∼ 10−10 sec. Our calculations show that adequate

suppression of Γ(AΛΛ → A′
HX) requires rH <∼ 1/2 rN ,

consistent with expectations, Thus an H with massmH <
2mΛ can still be viable in spite of the observation of
double-Λ hypernuclei, as also found in ref. [8].

We calculate the lifetime of the H, in three qualita-
tively distinct mass ranges, under the assumption that
the conditions to satisfy the constraints from double-Λ
hypernuclei are met. The ranges are mH < mN + mΛ,
in which H decay is a doubly-weak ∆S = 2 process,
mN +mΛ < mH < 2mΛ, in which the H can decay by a
normal weak interaction, and mH > 2mΛ, in which the
H is strong-interaction unstable. The H lifetime, in these
ranges respectively, is a few×1012 yr, about a month, and
∼ 10−9 sec.

Finally, if mH <∼ 2mN , nuclei are unstable to ∆S = −2
weak decays converting two nucleons to an H. In this case,
the stability of nuclei is a more stringent constraint than
the double-Λ hypernuclear observations, but our results
show that nuclear stability bounds can also be satisfied if
the H is sufficiently compact: rH <∼ 1/4 rN depending on
mass and nuclear hard core radius, although this option
is vulnerable to experimental exclusion by SuperK.

This paper is organized as follows. In section II we
describe in greater detail the two types of experimental
constraints on the conversion of baryons to an H in a
nucleus. In section III we setup the theoretical appara-
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tus to calculate the wavefunction overlap between H and
two baryons. We determine the weak interaction matrix
elements phenomenologically in section IV. Lifetimes for
various processes are computed in sections VB and VI.
The results are reviewed and conclusions are summarized
in section VII.

II. EXPERIMENTAL CONSTRAINTS

A. Double Λ hyper-nucleus detection

There are five experiments which have reported posi-
tive results in the search for single Λ decays from double
Λ hypernuclei. We will describe them briefly. The three
early emulsion based experiments [9–11] suffer from am-
biguities in the particle identification, and therefore we
do not consider them further. In the latest emulsion ex-
periment at KEK [7], an event has been observed which
is interpreted with good confidence as the sequential de-
cay of He6ΛΛ emitted from a Ξ− hyperon nuclear capture
at rest. The binding energy of the double Λ system is ob-
tained in this experiment to be BΛΛ = 1.01 ± 0.2 MeV,
in significant disagreement with the results of previous
emulsion experiments, finding BΛΛ ∼ 4.5 MeV.

The BNL experiment [6] used the (K−,K+) reaction
on a Be9 target to produce S=-2 nuclei. That experi-
ment detected pion pairs coming from the same vertex
in the Be target. Each pion in a pair indicates one unit
of strangeness change from the (presumably) di-Λ sys-
tem. Observed peaks in the two pion spectrum have
been interpreted as corresponding to two kinds of de-
cay events. The pion kinetic energies in those peaks are
(114,133) MeV and (104,114) MeV. The first peak can
be understood as two independent single Λ decays from
ΛΛ nuclei. The energies of the second peak do not corre-
spond to known single Λ decay energies in hyper-nuclei
of interest. The proposed explanation[6] is that they are
pions from the decay of the double Λ system, through
some specific He resonance. The required resonance has
not yet been observed experimentally, but its existence
is considered plausible. This experiment does not suf-
fer from low statistics or inherent ambiguities, and one
of the measured peaks in the two pion spectrum sug-
gests observation of consecutive weak decays of a double
Λ hyper-nucleus. The binding energy of the double Λ
system BΛΛ could not be determined in this experiment.

The KEK and BNL experiments are generally accepted
to demonstrate quite conclusively, in two different tech-
niques, the observation of Λ decays from double Λ hyper-
nuclei. Therefore τAΛΛ→A′

H
X cannot be much less than

≈ 10−10s. (To give a more precise limit on τAΛΛ→A′

H
X

requires a detailed analysis by the experimental teams,
taking into account the number of hypernuclei produced,
the number of observed Λ decays, the acceptance, and
so on.) As will be seen below, this constraint is readily
satisfied if the H is compact: rH <∼ 1/2 rN .

B. Stability of nuclei

There are a number of possible reactions by which two
nucleons can convert to an H in a nucleus if that is kine-
matically allowed (mH <∼ 2mN). The initial nucleons are
most likely to be pn or nn in a relative s-wave, because
in other cases the Coulomb barrier or relative orbital an-
gular momentum suppresses the overlap of the nucleons
at short distances which is necessary to produce the H.
If mH <∼ 2mN − nmπ

1, the final state can be Hπ+ or

Hπ0 and n− 1 pions with total charge 0. For mH >∼ 1740

MeV, the most important reactions are pn → He+νe or
the radiative-doubly-weak reaction nn→ Hγ.

The best experiments to place a limit on the stability of
nuclei are proton decay experiments. Super Kamiokande
(SuperK), can place the most stringent constraint due to
its large mass. It is a water Cerenkov detector with a
22.5 kiloton fiducial mass, corresponding to 8 1032 oxy-
gen nuclei. SuperK is sensitive to proton decay events in
over 40 proton decay channels[12]. Since the signatures
for the transition of two nucleons to the H are substan-
tially different from the monitored transitions, a specific
analysis by SuperK is needed to place a limit. We will
discuss the order-of-magnitude of the limits which can be
anticipated.

Detection is easiest if the H is light enough to be pro-
duced with a π+ or π0. The efficiency of SuperK to
detect neutral pions, in the energy range of interest (KE
∼ 0 − 300 MeV), is around 70 percent. In the case that
a π+ is emitted, it can charge exchange to a π0 within
the detector, or be directly detected as a non-showering
muon-like particle with similar efficiency. More difficult
is the most interesting mass range mH >∼ 1740 MeV, for

which the dominant channel pn → He+ν gives an elec-
tron with E ∼ (2mN − mH)/2<∼ 70 MeV. The chan-
nel nn → Hγ, whose rate is smaller by a factor of or-
der α, would give a monochromatic photon with energy
(2mN −mH)<∼ 100 MeV.

We can estimate SuperK’s probable sensitivity as
follows. The ultimate background comes primar-
ily from atmospheric neutrino interactions, νN →
N ′(e, µ), νN → N ′(e, µ) + nπ and νN → νN ′ + nπ,
for which the event rate is about 100 per kton-yr. With-
out a strikingly distinct signature, it would be difficult to
detect a signal rate significantly smaller than this, which
would imply SuperK might be able to achieve a sensitiv-
ity of order τANN→A′

H
X
>∼ few1029 yr. Since the H pro-

duction signature is not more favorable than the signa-
tures for proton decay, the SuperK limit on τANN→A′

H
X

can at best be 0.1τp, where 0.1 is the ratio of Oxygen
nuclei to protons in water. Detailed study of the spec-
trum of the background is needed to make a more precise

1 Throughout, we use this shorthand for the more precise inequal-
ity mH < mA −mA′ −mX where mX is the minimum invariant
mass of the final decay products.
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statement. We can get a lower limit on the SuperK life-
time limit by noting that the SuperK trigger rate is a few
Hz[12], putting an immediate limit τO→H+X >∼ few1025

yr, assuming the decays trigger SuperK.

SuperK limits will apply to specific decay channels, but
other experiments potentially establish limits on the rate
at which nucleons in a nucleus convert to an H which
are independent of the H production reaction. These
experiments place weaker constraints on this rate due
to their smaller size, but they are of interest because
in principle they measure the stability of nuclei directly.
Among those cited in ref. [13], only the experiment by
Flerov et. al.[14] could in principle be sensitive to tran-
sitions of two nucleons to the H. It searched for decay
products from Th232, above the Th natural decay mode
background of 4.7 MeV α particles, emitted at the rate
Γα = 0.7 10−10yr−1. Cuts to remove the severe back-
ground of 4.7 MeV α’s may or may not remove events
with production of an H. Unfortunately ref. [14] does
not discuss these cuts or the experimental sensitivity in
detail. An attempt to correspond with the experimental
group, to determine whether their results are applicable
to the H, was unsuccessful. If applicable, it would estab-
lish that the lifetime τTh232→H+X > 1021 yr.

Better channel independent limits on N and NN de-
cays in nuclei have been established recently, as summa-
rized in ref. [15]. Among them, searches for the radioac-
tive decay of isotopes created as a result of NN decays
of a parent nucleus yield the most stringent constraints.
This method was first exploited in the DAMA liquid Xe
detector [16]. BOREXINO has recently improved these
results[15] using their prototype detector, the Counting
Test Facility (CTF) with parent nuclei C12,C13 and O16.
The signal in these experiments is the beta and gamma
radiation in a specified energy range associated with de-
excitation of a daughter nucleus created by decay of
outer-shell nucleons in the parent nucleus. They obtain
the limits τpp > 5 1025 yr and τnn > 4.9 1025 yr. How-
ever H production requires overlap of the nucleon wave-
functions at short distances and is therefore suppressed
for outer shell nucleons, severely reducing the utility of
these limits. Since the SuperK limits will probably be
much better, we do not attempt to estimate the degree
of suppression at this time.

Another approach could be useful if for some reason the
direct SuperK search is foiled. Ref. [17] places a limit
on the lifetime of a bound neutron, τn > 4.9 1026 yr, by
searching for γ’s with energy Eγ = 19 − 50 MeV in the
Kamiokande detector. The idea is that after the decay
of a neutron in oxygen the de-excitation of O15 proceeds
by emission of γ’s in the given energy range. The back-
ground is especially low for γ’s of these energies, since
atmospheric neutrino events produce γ’s above 100 MeV.
In our case, some of the photons in the de-excitation pro-
cess after conversion of pn to H, would be expected to fall
in this energy window.

III. OVERLAP OF H AND TWO BARYONS

We wish to calculate the amplitudes for a variety of
processes, some of which require one or more weak in-
teractions to change strange quarks into light quarks.
By working in pole approximation, we factor the prob-
lem into an H-baryon-baryon wavefunction overlap times
a weak interaction matrix element between strange and
non-strange baryons, which will be estimated in the next
section. For instance, the matrix element for the transi-
tion of two nucleons in a nucleus A to an H and nucleus
A′, ANN → A′

HX , is calculated in the ΛΛ pole approxi-
mation, as the product of matrix elements for two subpro-
cesses: a transition matrix element for formation of the H
from the ΛΛ system in the nucleus, |M|{ΛΛ}→H X , times
the amplitude for a weak doubly-strangeness-changing
transition, |M|NN→ΛΛ. We ignore mass differences be-
tween light and strange quarks and thus the spatial wave-
functions of all octet baryons are the same. In this section
we are concerned with the dynamics of the process and
we suppress spin-flavor indices.

A. Isgur-Karl Model and generalization to the H

The Isgur-Karl (IK) non-relativistic harmonic oscilla-
tor quark model[18–20] was designed to reproduce the
masses of the observed resonances and it has proved to
be successful in calculating baryon decay rates [19]. In
the IK model, the quarks in a baryon are described by
the Hamiltonian

H =
1

2m
(p21 + p22 + p23) +

1

2
KΣ3

i<j(~ri − ~rj)
2, (1)

where we have neglected constituent quark mass differ-
ences. The wave function of baryons can then be written
in terms of the relative positions of quarks and the cen-
ter of mass motion is factored out. The relative wave
function in this model is [19, 20]

ΨB(~r1, ~r2, ~r3) = NB exp

[

−α
2
B

6
Σ3

i<j(~ri − ~rj)
2

]

, (2)

where NB is the normalization factor, αB = 1√
<r2

B
>

=
√
3Km, and < r2B > is the baryon mean charge radius

squared. Changing variables to

~ρ =
~r1 − ~r2√

2
, ~λ =

~r1 + ~r2 − 2~r3√
6

(3)

reduces the wave function to two independent harmonic
oscillators. In the ground state

ΨB(~ρ,~λ) =

(

αB√
π

)3

exp

[

−α
2
B

2
(ρ2 + λ2)

]

. (4)

One of the deficiencies of the IK model is that the
value of the αB parameter needed to reproduce the mass
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splittings of lowest lying 1
2

+
and 3

2

+
baryons, αB =

0.406 fm−1, corresponds to a mean charge radius squared
for the proton of < r2ch >=

1
α2

B

= 0.49 fm. This is dis-

tinctly smaller than the experimental value of 0.86 fm.
Our results depend on the choice of αB and therefore we
also report results using αB = 0.221 fm−1 which repro-
duces the observed charge radius at the expense of the
mass-splittings.
Another concern is the applicability of the non-

relativistic IK model in describing quark systems, espe-
cially in the case of the tightly bound H. With rH/rN =
1/f , the quark momenta in the H are ≈ f times higher
than in the nucleon, which makes the non-relativistic ap-
proach more questionable than in the case of nucleons.
Nevertheless we adopt the IK model because it offers a
tractable way of obtaining a quantitative estimate of the
effect of the small size of the H on the transition rate,
and there is no other alternative available at this time.
We fix the wave function for the H particle starting

from the same Hamiltonian (1), but generalized to a six
quark system. For the relative motion part this gives

ΨH = NH exp



−α
2
H

6

6
∑

i<j

(~ri − ~rj)
2



 . (5)

The space part of the matrix element of interest,
< A′

H |AΛΛ >, is given by the integral

∫ 6
∏

i=1

d3~riΨ
a
Λ(1, 2, 3)Ψ

b
Λ(4, 5, 6)ΨH(1, 2, 3, 4, 5, 6). (6)

Therefore it is useful to choose variables for the H wave-
function as follows, replacing

~r1, ~r2, ~r3, ~r4, ~r5, ~r6 → ~ρa, ~λa, ~ρb, ~λb,~a, ~RCM (7)

where ~ρa(b) and ~λa(b) are defined as in eq (3), with a(b)
referring to coordinates 1, 2, 3 (4, 5, 6). (Since we are ig-
noring the flavor-spin part of the wavefunction, we can
consider the six quarks as distinguishable and not worry
about fermi statistics at this stage.) We also define the
center-of-mass position and the separation, ~a, between
initial baryons a and b:

~RCM =
~Ra
CM + ~Rb

CM

2
, ~a = ~Ra

CM − ~Rb
CM . (8)

Using these variables, the H ground state wave function
becomes

ΨH =

(

3

2

)3/4 (
αH√
π

)15/2

(9)

× exp[−α
2
H

2
( ~ρa

2
+ ~λa

2
+ ~ρb

2
+ ~λb

2
+

3

2
~a2)].

As for the 3-quark system, αH = 1√
<r2

H
>
.

B. Bruecker-Bethe-Goldstone Nuclear

Wavefunction

To describe two Λ’s or nucleons in a nucleus we use
solutions of the Bruecker-Bethe-Goldstone equation de-
scribing the interaction of a pair of fermions in an in-
dependent pair approximation; see, e.g., [21]. The solu-
tion of the Schrodinger equation for two fermions in the
Fermi sea interacting through a potential v(~x1, ~x2) takes
the form

ψ(1, 2) =
1√
V
ei

~P ~RCM ψ(~a) (10)

where ~RCM and ~a are defined as in (8). The first factor
contains the center-of-mass motion and the second is the
internal wave function of the interacting pair. ψ(~a) is
a solution of the Bethe Goldstone equation (eq (36.15)
in [21]) which is simply the Schrodinger equation for two
interacting fermions in a Fermi gas, where the Pauli prin-
ciple forbids the appearance of intermediate states that
are already occupied by other fermions. Both wave func-
tions are normalized so that the space integral of the wave
function modulus squared equals one. In the application
of this equation to nuclear matter, the interaction of each
particle from the pair with all particles in nuclei through
an effective single particle potential is included, in the in-
dependent pair approximation known as Bruecker theory
(see eq (41.1) and (41.5) in [21]).
We are interested in s-wave solutions to the above

equation since they are the ones that penetrate to small
relative distances. Following [21], an s-wave solution of
the internal wave function is sought in the form

ψ(a) ∼ u(a)

a
(11)

which simplifies the Bethe Goldstone equation to

(
d2

dx2
+k2)u(a) = v(a)u(a)−

∫ ∞

0

χ(a, y)v(y)u(y)dy (12)

where v(a) is the single particle potential in the effective-
mass approximation, and the kernel χ(a, y) is given by

χ(a, y) =
1

π

[

sin kF (a− y)

a− y
− sin kF (a+ y)

a+ y

]

. (13)

For the interaction potential between two nucleons in
a nucleus we choose a hard core potential for the fol-
lowing reasons. The two particle potential in a nucleus
is poorly known at short distances. Measurements (the
observed deuteron form factors, the sums of longitudinal
response of light nuclei,...) only constrain two-nucleon
potentials and the wave functions they predict at inter-
nucleon distances larger than 0.7 fm [22]. The Bethe-
Goldstone equation can be solved analytically when a
hard-core potential is used. While the hard-core form is
surely only approximate, it is useful for our purposes be-
cause it enables us to isolate the sensitivity of the results
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to the short-distance behavior of the wavefunction. We
stress again, that more “realistic” wavefunctions are in
fact not experimentally constrained for distances below
0.7 fm. Rather, their form at short distance is chosen for
technical convenience or aesthetics.
Using the hard core potential, the s-wave BG wave-

function is

ΨBG(~a) =

{

NBG
u(kF a)
kF a for a > c

kF

0 for a < c
kF

(14)

where c
kF

is the hard core radius. Expressions for u can

be found in [21], eq. (41.31). The normalization fac-
tor NBG is fixed setting the integral of |ψBG|2 over the
volume of the nucleus equal to one. The function u van-
ishes at the hard core surface by construction and then
rapidly approaches the unperturbed value, crossing over
that value at the so called “healing distance”. At large
relative distances and when the size of the normalization
volume is large compared to the hard core radius, u(a)/a
approaches a plane wave and the normalization factor
NBG reduces to the value 1/

√
V , as

ψBG(a) = NBG
u(kF a)

kF a
→ 1√

V
eika. (15)

C. Overlap Calculation

The non-relativistic transition matrix element for a
transition ΛΛ → H inside a nucleus is given by (sup-
pressing spin and flavor)

T{ΛΛ}→H = 2πiδ(E)

∫

d3a d3RCM

∏

i=a,b

d3ρid3λi

× ψ∗
Hψ

a
Λ ψb

Λ ψnuc e
i(~kH−~kΛΛ)~RCM (16)

where δ(E) = δ(EH − EΛΛ), ψ
a,b
Λ = ψa,b

Λ (~ρa,b, ~λa,b), and
ψnuc = ψnuc(~a) is the relative wavefunction function of
the two Λ′s in the nucleus. The notation {ΛΛ} is a re-
minder that the Λ’s are in a nucleus. The plane waves
of the external particles contain normalization factors
1/

√
V and these volume elements cancel with volume

factors associated with the final and initial phase space
when calculating decay rates. The integration over the
center of mass position of the system gives a 3 dimen-
sional momentum delta function and we can rewrite the
transition matrix element as

T{ΛΛ}→H = (2π)4iδ4(kf − ki) M{ΛΛ}→H , (17)

where |M|{ΛΛ}→H is the integral over the remaining in-
ternal coordinates in (16). In the case of pion or lepton
emission, plane waves of the emitted particles should be
included in the integrand. For brevity we use here the

zero momentum transfer, ~k = 0 approximation, which
we have checked holds with good accuracy; this is not
surprising since typical momenta are <∼ 0.3 GeV.

Inserting the IK and BBG wavefunctions and perform-
ing the Gaussian integrals analytically, the overlap of the
space wave functions becomes

|M|ΛΛ→H =
1

4

(

2f

1 + f2

)6 (
3

2

)3/4 (
αH√
π

)3/2

(18)

× NBG

∫ ∞

c

kF

d3a
u(kFa)

kFa
e−

3
4α

2
H
a2

where the factor 1/4 comes from the probability that two
nucleons are in a relative s-wave, and f is the previously-
introduced ratio of nucleon to H radius; αH = f αB.
Since NBG has dimensions V −1/2 the spatial overlap
M{ΛΛ}→H is a dimensionless quantity, characterized by
the ratio f , the Isgur-Karl oscillator parameter αB,
and the value of the hard core radius. Fig. 1 shows
|M|2{ΛΛ}→H versus the hard-core radius, for a range of

values of f , using the standard value of αB = 0.406 fm−1

for the IK model[20] and also αB = 0.221 fm−1 for com-
parison.

-50
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-25

-20

-15

-10

-5

0.3 0.35 0.4 0.45 0.5 0.55 0.6

Lo
g 

10
 [|

M
|2   {

 Λ
Λ

 }
 →

 H
]

c[fm]

f = 4
f = 4
f = 5
f = 5
f = 6
f = 6

Figure 1: Log10 of |M|2
ΛΛ→H versus hard core radius in

fm, for ratio f = RN/RH and two values of the Isgur-Karl

oscillator potential, with αB = 0.406 fm−1 (thick lines), and

αB = 0.221 fm−1 (thin lines).

IV. WEAK INTERACTION MATRIX

ELEMENTS

Transition of a two nucleon system to off-shell ΛΛ
requires two strangeness changing weak reactions.
Possible ∆S = 1 sub-processes to consider are a weak
transition with emission of a pion or lepton pair and an
internal weak transition. These are illustrated in Fig. 3
for a three quark system. We estimate the amplitude
for each of the sub-processes and calculate the overall
matrix element for transition to the ΛΛ system as a
product of the sub-process amplitudes.
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u u

d d d d

u

d

W

W W

s s

e

ν d

s u u

d u

u

u

d

u

Figure 3: Some relevant weak transitions for NN → HX

The matrix element for weak pion emission is esti-
mated from the Λ → Nπ rate:

|M|2Λ→Nπ =
1

(2π)4
2mΛ

Φ2

1

τΛ→Nπ
= 0.8× 10−12 GeV2.

(19)
By crossing symmetry this is equal to the de-
sired |M|2N→Λπ , in the approximation of momentum-
independence which should be valid for the small mo-
menta in this application. Analogously, for lepton pair
emission we have

|M|2Λ→Neν =
1

(2π)4
2mΛ

Φ3

1

τΛ→Neν
= 3× 10−12. (20)

The matrix element for internal conversion, (uds) →
(udd), is proportional to the spatial nucleon wave func-
tion when two quarks are at the same point:

|M|Λ→N ≈< ψΛ|δ3(~r1−~r2)|ψN >
GF sin θc cos θc

mq
, (21)

where mq is the quark mass introduced in order to make
the 4 point vertex amplitude dimensionless[23]. The ex-
pectation value of the delta function can be calculated in
the harmonic oscillator model to be

< ψΛ|δ3(~r1−~r2)|ψN > =

(

αB√
2π

)3

= 0.4×10−2 GeV3.

(22)
The delta function term can also be inferred phenomeno-
logically in the following way, as suggested in [23]. The
Fermi spin-spin interaction has a contact character de-
pending on ~σ1 ~σ2/m

2
qδ(~r1 − ~r2), and therefore the delta

function matrix element can be determined in terms of
electromagnetic or strong hyperfine splitting:

(mΣ0 −mΣ+)− (mn −mp) = α
2π

3m2
q

< δ3(~r1 − ~r2) >(23)

m∆ −mN = αS
8π

3m2
q

< δ3(~r1 − ~r2) > .(24)

where mq is the quark mass, taken to be mN/3. Using
the first form to avoid the issue of scale dependence of
αS leads to a value three times larger than predicted by
the method used in (22), namely:

< ψΛ|δ3(~r1 − ~r2)|ψN > = 1.2× 10−2 GeV3. (25)

We average the expectation values (22) and (25) and
adopt

|M|2Λ→N = 4.4× 10−15. (26)

In this way we have roughly estimated all the matrix
elements for the relevant sub-processes based on weak-
interaction phenomenology.

V. NUCLEAR DECAY RATES

A. Lifetime of doubly-strange nuclei

The decay rate of a doubly-strange nucleus is:

ΓAΛΛ→A′

H
π ≈ K2(2π)4

m2
q

2(2mΛΛ)
(27)

× Φ2|M|2ΛΛ→H .

where Φ2 is the two body final phase space factor, defined
as in [13], and mΛΛ is the invariant mass of the Λ’s,
≈ 2mΛ. The factor K contains the transition element
in spin flavor space. It can be estimated by counting
the total number of flavor-spin states a uuddss system
can occupy, and taking K2 to be the fraction of those
states which have the correct quantum numbers to form
the H. That gives K2 ∼ 1/1440, and therefore we write
K2 = (1440 κ1440)

−1. Combining these factors we obtain
the lifetime estimate

τAΛΛ→A′

H
π ≈ 3(7) κ1440

|M|2ΛΛ→H

10−18 s, (28)

where the phase space factor was evaluated for mH =
1.8(2) GeV.
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Figure 2: Log10 of |M|2
ΛΛ→H versus hard core radius in

fm, for f=2, 3 and 4 and two values of the Isgur-Karl oscillator

potential. Thick lines refer to αB = 0.406 fm−1, and thin lines to

αB = 0.221 fm−1.

Fig. 2 shows |M|2{ΛΛ}→H in the range of f and hard-

core radius where its value is in the neighborhood of
the experimental limits, for the standard choice αB =
0.406 fm−1 and comparison value αB = 0.221 fm−1. In
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order to suppress Γ(AΛΛ → A′
HX) sufficiently that some

Λ’s in a double-Λ hypernucleus will decay prior to forma-
tion of an H, we require |M|2ΛΛ→H

<∼ 10−8. This is satis-

fied even for relatively large H, e.g., rH <∼ rN/2.3 (rN/2.1)
for a hard-core radius 0.4 (0.5) fm. Thus the observa-
tion of single Λ decay products from double-Λ hyper-
nuclei cannot be taken to exclude the existence of an H
with mass below 2mΛ unless it can be demonstrated that
rH ≥ 1/2 rN .

B. Nuclear conversion to an H

If the H is actually stable (mH < 2mp +2me) two nu-
cleons in a nucleus may convert to an H and cause nuclei
to disintegrate. NN → HX requires two weak reactions.
Thus the rate for the process ANN → A′

Hππ, is approx-
imately

ΓANN→A′

H
ππ ≈ K2 (2π)4

2(2mN)
Φ3 (29)

×
( |M|2N→Λπ|M|ΛΛ→H

(2mΛ −mH)2

)2

where the denominator is introduced to correct the di-
mensions in a way suggested by the ΛΛ pole approxi-
mation. Since other dimensional parameters relevant to
this process, e.g., mq = mN/3 or ΛQCD, are comparable
to 2mΛ − mH and we are only aiming for an order-of-
magnitude estimate, any of them could equally well be
used. The lifetime for nuclear disintegration with two
pion emission is thus

τANN→A′

H
ππ ≈ 40 κ1440

|M|2ΛΛ→H

yr, (30)

taking mH = 1.5 GeV in the phase space factor. For the
process with one pion emission and an internal conver-
sion, our rate estimate is

ΓANN→A′

H
π ≈ K2 (2π)4

2(2mN)
Φ2 (31)

× (|M|N→Λπ |M|N→Λ|M|ΛΛ→H)2

leading to a lifetime, for mH = 1.5 GeV, of

τANN→A′

H
π ≈ 3 κ1440

|M|2ΛΛ→H

yr. (32)

If mH >∼ 1740 MeV, pion emission is kinematically for-

bidden and the relevant final states are e+ν or γ; we now
calculate these rates. For the transition ANN → A′

Heν,
the rate is

ΓANN→A′

H
eν ≈ K2 (2π)4

2(2mN)
Φ3 (33)

× (|M|N→Λeν |M|N→Λ|M|ΛΛ→H)2.

In this case, the nuclear lifetime is

τANN→A′

H
eν ≈ κ1440

|M|2ΛΛ→H

105 yr, (34)

taking mH = 1.8 GeV. For ANN → A′
Hγ, the rate is

approximately

ΓANN→A′

H
γ ≈ K2(2π)4

αEMm
2
q

2(2mN)
(35)

× Φ2(|M|2N→Λ|M|ΛΛ→H)2,

leading to the lifetime estimate

τANN→A′

H
γ ≈ 2 κ1440

|M|2ΛΛ→H

106 yr, (36)

for mH = 1.8 GeV.

One sees from Figure 1 that a lifetime bound of
>∼ few 1029 yr is not a very stringent constraint on this
scenario if mH is large enough that pion final states are
not allowed. E.g., with κ1440 = 1 the rhs of eqn (34)
is >∼ few 1029 yr, for standard αB, a hard core radius
of 0.45 fm, and rH ≈ 1/5 rN – in the middle of the
range expected based on the glueball analogy. If mH

is light enough to permit pion production, experimental
constraints are much more powerful. We therefore con-
clude that mH <∼ 1740 MeV is disfavored and is likely to
be excluded, depending on how strong limits SuperK can
give.

TABLE I: The final particles and momenta for nucleon-
nucleon transitions to H in nuclei. For the 3-body final states
marked with *, the momentum given is for the configuration
with H produced at rest.

mass final state final momenta partial lifetime

mH [GeV] A′ H + p [MeV] ×K2|M|2ΛΛ→H [yr]

1.5 π 318 2 10−3

1.5 ππ 170* 0.03

1.8 eν 48* 70

1.8 γ 96 2 103

VI. DECAYS OF A QUASI-STABLE H

If 2mN <∼mH < mN +mΛ, the H is not stable but it
proves to be very long lived if its wavefunction is compact
enough to satisfy the constraints from doubly-strange hy-
pernuclei discussed in sections II and VA. The limits on
nuclear stability discussed in the previous section do not
apply here because nuclear disintegration to an H is not
kinematically allowed.
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A. Wavefunction Overlap

To calculate the decay rate of the H we start from
the transition matrix element (16). In contrast to the
calculation of nuclear conversion rates, the outgoing nu-
cleons are asymptotically plane waves. Nonetheless, at
short distances their repulsive interaction suppresses the
relative wavefunction at short distances much as in a nu-
cleus. It is instructive to compute the transition ampli-
tude using two different approximations. First, we treat
the nucleons as plane waves so the spatial amplitude is:

TH→ΛΛ = 2πiδ(EΛΛ − EH)

∫

∏

i=a,b

d3ρid3λid3a d3RCM

× ψHψ
∗a
Λ ψ∗b

Λ ei(
~ka

N
+~kb

N
−~kH )~RCM . (37)

The integration over ~RCM gives the usual 4D δ function.
After performing the remaining integrations leading to
|M|H→ΛΛ, as in (17), the amplitude is:

|M|H→ΛΛ =

(

2f

1 + f2

)6 (
3

2

)3/4 (
αH√
π

)3/2

(38)

×
∫ ∞

0

d3a e−
3
4α

2
H
a2−i

~k
a
N

−~k
b
N

2 ~a

=

(

8

3π

)3/4 (
2f

1 + f2

)6

α
−3/2
H e

−
(~ka

N
−~k

b
N

)2

12 α2
H .

The amplitude depends on the size of the H through the
factor f = rN/rH . Note that the normalization NBG in
the analogous result (18) which comes from the Bethe-
Goldstone wavefunction of Λ’s in a nucleus has been re-
placed in this calculation by the plane wave normaliza-
tion factor 1/

√
V which cancels with the volume factors

in the phase space when calculating transition rates.
Transition rates calculated using eq. (38) provide an

upper limit on the true rates, because the calculation
neglects the repulsion of two nucleons at small distances.
To estimate the effect of the repulsion between nucleons
we again use the Bethe-Goldstone solution with the hard
core potential. It has the desired properties of vanishing
inside the hard core radius and rapidly approaching the
plane wave solution away from the hard core. As noted
in section III B, NBG → 1/

√
V , for a → ∞. Therefore,

we can write the transition amplitude as in (18), with

the normalization factor 1/
√
V canceled with the phase

space volume element:

|M|H→ΛΛ =

(

2f

1 + f2

)6 (
3

2

)3/4 (
αH√
π

)3/2

(39)

×
∫ ∞

0

d3a
u(kF a)

kF a
e−

3
4α

2
H
a2

.

This should give the most realistic estimate of decay
rates. Table 2 shows the overlap values for a variety of
choices of rH , hard-core radii, and αB.

B. Decay rates and lifetimes

Starting from |M|H→ΛΛ we can calculate the rates for
H decay in various channels, as we did for nuclear conver-
sion in the previous section. The rate of H → nn decay
is

ΓH→nn ≈ K2
(2π)4m5

q

2 mH
Φ2(mH) (40)

× (|M|2N→Λ|M|H→ΛΛ)
2.

The lifetime for this transition, for mH = 1.9 (2) GeV, is

τH→NN ≈ 5(2) 1012 κ1440 µ0 yr, (41)

where we have introduced |M|2H→ΛΛ ≡ 7 10−8/µ0; values
of µ0 ≥ 1 are consistent with hypernuclear constraints.
Thus we see that the H is stable on cosmological time
scales if its mass is <∼ 2.04 GeV.
If 2.04 GeV < mH < 2.23 GeV, H decay requires only

a single weak interaction, so the rate in eq. (40) must be
divided by |M|2N→Λ given in eqn (26). Thus we have

τH→NΛ ≈ 105 sec κ1440 µ0. (42)

Finally, if mH > 2.23 GeV, there is no weak interaction
suppression and

τH→ΛΛ ≈ 10−9 κ1440 µ0 sec. (43)

Equations (41)-(43) with µ0 = 1 give the lower bound on
the H lifetime, depending on its mass.
Our results for the H lifetime are dramatically differ-

ent from the classic calculation of Donoghue, Golowich,
and Holstein [24], because we rely on experiment to put
an upper limit on the wavefunction overlap |M|2H→ΛΛ.
The bag model is not a particularly good description
of sizes of hadrons, and in the treatment of [24] the H
size appears to be fixed implicitly to some value which
may not be physically realistic. Furthermore, it is hard
to tell whether the bag model analysis gives a good ac-
counting of the known hard core repulsion between nu-
cleons. As our calculation of previous sections shows,
these are crucial parameters in determining the overlap.
Our treatment of the color-flavor-spin and weak inter-
action parts of the matrix elements is rough but should

TABLE II: |M|2H→ΛΛ in GeV−3/2 for different values of 1/f
(rows) and nuclear hard core (columns), for αB1 = 0.406 fm−1

and αB2 = 0.221 fm−1 .

0.4 fm 0.5 fm

αB1 αB2 αB1 αB2

0.3 2 10−10 4 10−6 4 10−13 6 10−7

0.4 9 10−7 8 10−4 2 10−8 3 10−4

0.5 4 10−4 0.02 1 10−5 0.01
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give the correct order-of-magnitude, so the difference in
lifetime predictions of the two models indicates that the
spatial overlap in the bag model is far larger than in our
model using a standard hard core and taking rH ≈ 0.4
fm (which accounts for the suppression measured in hy-
pernuclear experiments). The calculation of the weak
interaction and color-flavor-spin matrix elements in ref.
[24] is more detailed than ours and should be more ac-
curate. It could be combined with a phenomenological
approach to the spatial wavefunction overlap to provide
a more accurate yet more general analysis. We note that
due to the small size of the H, the p-wave contribution
should be negligible.
One would like to use experiment to place limits on

the product of the local density of H’s and the H decay
rate, if the H is long-lived enough to be dark matter,
i.e., mH < mN + mΛ. Estimates of the local number
density of H’s at various depths in the Earth, assuming
the dark matter consists of H’s and H̄’s, will be discussed
in ref. [25]. The Sudbury Neutrino Observatory (SNO)
can probably place good limits on the rate of H → nn
in that detector. The next most important channel H →
nnγ should be easy to detect in SuperK for photon energy
in the low-background range ≈ 20− 100 MeV [26], or in
Kamland for lower photon energies.2 The rate is:

ΓH→nnγ ≈ K2αEM

(2π)4m3
q

2 mH
Φ3(mH) (44)

× (|M|2N→Λ|M|H→ΛΛ)
2

leading to

τH→NNγ ≈ 2 1019 (3 1017) κ1440 µ0 yr, (45)

for mH = 1.9 (2) GeV. The lifetime for H → npeν is
similar in magnitude. It is more sensitive to mH due to
the 4-body phase space.

ΓH→pneν ≈ K2 (2π)
4 mq

2 mH
Φ4(mH) (46)

× (|M|N→Λ|M|N→Λeν |M|H→ΛΛ)
2

and

τH→pneν ≈ 5 1019 (3 1016) κ1440 µ0 yr. (47)

for mH = 1.9 (2) GeV .

VII. SUMMARY

We have considered the constraints placed on the H
di-baryon by the stability of nuclei and hypernuclei with
respect to conversion to an H dibaryon, and we have cal-
culated the lifetime of the H if it is not stable. We used

2 GRF thanks T. Kajita for discussions on these issues.

the Isgur-Karl wavefunctions for quarks in baryons and
the H, and the Bethe-Goldstone wavefunction for nucle-
ons in a nucleus, to obtain a rough estimate of the H-
baryon-baryon wavefunction overlap. Observation of Λ
decays in double-Λ hypernuclei is shown not to exclude
an H as long as rH <∼ 1/2 rN .

Combining our wavefunction overlap estimates with
phenomenological weak interaction matrix elements, per-
mits the lifetime of the H and the rate for conversion of
nuclei to H to be estimated. The results depend radi-
cally on which channels are kinematically allowed, and
hence on the H mass, since for each weak interaction
required there is a substantial suppression in the ma-
trix element. Our estimates have uncertainties of greater
than an order of magnitude: the weak interaction ma-
trix elements are uncertain to a factor of a few, fac-
tors of order 1 were ignored, a crude statistical estimate
for the flavor-spin overlap was used, mass scales were
set to mN/3, and, most importantly, the models used
to calculate the wavefunction overlap surely oversimplify
the physics. The wavefunction overlap is highly uncer-
tain because it depends on nuclear wavefunctions and
hadronic dynamics which are not adequately understood
at present. Nonetheless, the enormous suppression of H
production and decay rates found in the model calcula-
tion means that the observation of double-Λ hypernuclei
does not exclude mH < 2mΛ. It is even conceivable that
an absolutely stable H is possible[5].

We calculate the lifetime of the H for various mass
ranges, taking the H wavefunction to be compact enough
that hypernuclear constraints are satisfied. If the H
decays through strong interactions, mH > 2mΛ, its
lifetime is >∼ 10−9 sec. If its mass is in the range

mN +mΛ<∼mH <∼ 2mΛ, its lifetime is longer than a few

105 sec, and if 2mN <∼mH <∼mN+mΛ the H lifetime is at
least an order of magnitude greater than the lifetime of
the Universe. Note that these lifetime bounds do not suf-
fer from the large uncertainties associated with estimat-
ing the wavefunction overlap because, for a given value
of mH , the H lifetime can be related to the hypernuclear
conversion rate for which we have a rough experimental
upper limit. It may be that the production rate of H’s
in double Λ hypernuclei is about equal to the Λ decay
rate, so that an appreciable fraction of double Λ hyper-
nuclei produce an H. One might hope that in this case
the H could be observed by reconstructing it through its
decay products, e.g., H → Σ−p. Unfortunately, however,
the long lifetimes implied by the limit on the wavefunc-
tion overlap mean that the H’s would diffuse out of the
apparatus before decaying.3

SuperK can place important constraints on the conjec-
ture of an absolutely stable H, or conceivably discover ev-
idence of its existence, through observation of the pion(s),
positron, or photon produced when two nucleons in an

3 GRF thanks K. Imai for enlightening discussions of this topic.
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oxygen nucleus convert to an H. We estimate that Su-
perK could achieve a lifetime limit τ >∼ few 1029 yr which

is in the estimated lifetime range for mH >∼ 1740 MeV
and rH ≈ 1/5 rN . SuperK and SNO can also place lim-
its on signatures of H decays if it is not absolutely stable
yet contributes to the dark matter of the Universe. This
calculation will be reported elsewhere. The possibility
that H and anti-H were produced in sufficient abundance
in the early universe to account for the dark matter and

baryon asymmetry will also be elaborated elsewhere.
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