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Abstract

Observations show that the universe is nearly isotropic on very large scales.

It is much more difficult to show that the universe is radially homogeneous—

that is, independent of distance from us—or equivalently, that the universe

is isotropic about distant points. This is usually taken as an axiom, since

otherwise we would occupy a special position. Here we consider several em-

pirical arguments for radial homogeneity, all of them based on the cosmic

microwave background (CMB). We assume that physical laws are uniform,

but we suppose that structure on very large scales may not be. The tightest

limits for inhomogeneity on the scale of the horizon appear to be of order ten

percent. These involve observations of the Sunyaev-Zel’dovich effect in clus-

ters of galaxies, excitation of low-energy atomic transitions, and the accurately

thermal spectrum of the CMB. Weaker limits from primordial nucleosynthesis

are discussed briefly.
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I. INTRODUCTION

Homogeneity and isotropy are independent cosmological assumptions. General relativity
allows homogeneous but anisotropic universes (e.g. [1]), and also spherically symmetric but
inhomogeneous ones (e.g. [2]). If the universe is isotropic around two or more distinct points,
however, then it must be homogeneous.

Homogeneity is more fundamental and powerful than isotropy but also more difficult to
verify. Homogeneity allows local measurements to be applied to the whole universe; and
conversely it allows observations of high-redshift regions to constrain the history of the local
volume. Without homogeneity, modern cosmology would be very difficult. Nevertheless, in-
homogeneous models are occasionally proposed. For example, it has been suggested recently
that spherically symmetric, inhomogenous universes are a natural consequence of inflation
[3]. Such speculations, though unorthodox, demonstrate that homogeneity is not yet fully
established.

By contrast, the isotropy of the universe on large scales is well established. It is supported
by deep, wide-angle surveys of radio [4] and infrared [5] sources. Results from the Cosmic
Background Explorer satellite (COBE) show that the temperature of the microwave back-
ground (CMB) deviates slightly from isotropy, but only at the level (∆T/T )rms ≈ 1.1×10−5

on angular scales ≥ 10◦, apart from a dipole pattern that is conventionally attributed to the
peculiar velocity of the Sun and the Galaxy [6].

To the extent that the universe is isotropic, it can be inhomogeneous only if it is sym-
metric around ourselves. We therefore ask whether present observations permit large-scale
radial inhomogeneity, and if so, what future measurements might detect or exclude it.

Galaxy counts against redshift or magnitude are consistent with a homogeneous,
uniformly-populated universe in the redshift range 0.03 ≤ z ≤ 0.3, although statistical
fluctuations associated with structure on scales ≤ 30h−1Mpc, due perhaps to the relatively
narrow fields surveyed, make strong limits dificult to obtain [7]. By z ≈ 0.4, counts in the
blue are already discrepant, perhaps because of rapid evolution among fainter galaxies [8].
Even conservative models predict significant evolutionary effects on near-infrared counts by
z ∼ 1, and the model parameters, though easily adjusted to fit the data, are poorly con-
strained a priori [9]. This is typical of the evolutionary uncertainties that for decades have
prevented the use of galaxies and other beacons to determine cosmic geometry, even when
homogeneity is assumed, because noneuclidean effects are strong only for objects so distant
as to be seen when the universe was much younger than it is now.

There may exist “standard candles” at z >∼ 1, such as Type I supernovae [10]. Among
homogeneous Friedmann models, unfortunately, the shape of the magnitude-redshift relation
for standard candles already depends on two parameters: the density parameter, Ω, and the
cosmological constant, Λ. Only superb data will permit one to fit for a third parameter and
thereby constrain the homogeneity of the universe on the scale of the present horizon. Similar
remarks apply to more recently-proposed cosmological tests, such as the use of gravitational
lenses to determine the dependence of angular-diameter distance on redshift [11].

The prospects for constraining the homogeneity of the CMB are better. In Sec. II we
discuss two observational tests that are sensitive to radial inhomogeneity of the CMB in
first order. Both of these involve measurement of the angle-averaged temperature of the
CMB seen by a distant object, either through scattering or molecular absorption. Using
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recent measurements, we can limit generic radial inhomogeneities to <∼ 10%. We then show
in Sec. III that if one assumes a substantial fraction of all baryons to reside in an ionized
intergalactic medium, then the accurately thermal nature of the CMB spectrum provides
another ∼ 10% limit, due to second-order effects of scattering. In Sec. III we compare these
limits with an argument for homogeneity based on light-element nucleosynthesis.

II. THERMOMETERS AT MODERATE REDSHIFT

The CMB is homogeneous if it is isotropic around distinct points. Imagine therefore
that one is provided with a mirror at a cosmological distance, and that the mirror is tilted
at some angle to the line of sight. If the universe is isotropic around the distant mirror
and the mirror has negligible peculiar velocity, then the CMB spectrum seen in the mirror
is the same as that seen directly along unobstructed lines of sight. If the universe is not
homogeneous, then it cannot be isotropic around both us and the mirror, so the mirror
spectrum will generally differ from the direct spectrum.

To elaborate this idea, imagine that the mirror is half silvered, so that it reflects a
fraction f of the radiation and transmits the rest (this ideal mirror does not absorb). Then
the spectrum seen in the mirror is

Iν = (1− f)Bν(T0) + fBν(Tr)

≈ Bν [(1− f)T0 + fTr] + O(∆T 2), (1)

where Bν(T0) and Bν(Tr) are the direct and reflected spectra. We have assumed that the
spectrum in any single direction is thermal. The combined spectrum is not, unless Tr = T0,
but it can be approximated by a thermal spectrum to first order in Tr − T0.

Electron scattering serves as such a mirror. One requires a cluster of galaxies at redshift
zcl ∼ 1 with a nonnegligible electron-scattering optical depth, τ . If the cluster fills the
telescope beam, the observed spectum summed over polarizations is, for τ ≪ 1,

Iobsν = (1− τ)Bν(T0) + τ
∫

3
4
(1 + cos2 ψ)I ′ν(Ω)

d2Ω

4π

+ y ν4
∂

∂ν

1

ν2
∂

∂ν
Bν(T0), (2)

where Bν(T0) is the unscattered thermal spectrum, obtained from other lines of sight; (1 +
zcl)

3I ′ν(Ω) is the specific intensity at the cluster in the direction Ω; and ψ is the scattering
angle between this direction and the line of sight. The factor of (1 + cos2 ψ) expresses
the angular dependence of electron scattering, summed over polarizations. Similar formulae
hold for the individual polarizations, with integrands depending differently on the scattering
angles. The third term on the right of Eq. (2) is the Sunyaev-Zel’dovich distortion due to
the finite temperature of the electrons (Te ≫ T0): y ≡ τkBTe/mec

2 [12]. Since the first and
last term have a known dependence on frequency, multifrequency observations can be used
to constrain the middle term.

Even in a homogeneous universe, a radial peculiar velocity vr produces a distortion
equivalent to the middle term in Eq. (2). To first order, the anistropic part of I ′ν(Ω) is then
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a dipole pattern of amplitude vr/c relative to the monopole [13]. The angular average of this
dipole is zero in the cluster rest frame, so that the cluster sees the same average temperature
as it would if vr = 0. However, an observer at rest with respect to the CMB who views
the cluster along direction n̂ sees the scattered photons to have suffered a decrease in their
energy by a factor of (1− ~v · n̂/c) on average. Thus, the conventional interpretation of any
non-y-type distortion would be that the cluster has a peculiar velocity. In a homogeneous
universe, the sign of vr should be random on very large scales. In a radially inhomogeneous
universe, vr will have a trend with systematically with redshift, and 〈vr〉 → 0 as z → 0
because of spherical symmetry. Sec.III calculates these effects explicitly in linear theory for
a universe close to an Einstein-de Sitter model.

The Sunyaev-Zel’dovich effect has now been measured in several clusters out to z ∼ 0.2
in the Rayleigh-Jeans part of the spectrum, where positive peculiar velocities can not be
distinguished from the y distortion [14]. Successful results near the Wien peak been reported
recently [15]. The temperature decrements are 1-2 mK with one-sigma errors ∼ 10-30%. No
increments have been reported, such as might be produced by a large negative vr.

Lacking multifrequency data for individual clusters, we may derive a limit on vr and hence
on radial inhomogeneity by the following argument. Assuming homogeneity and neglecting
vr, several groups have combined SZ measurements with X-ray data to derive Hubble’s
constant, H0 [16]. The result scales as H0 ∝ ΣXT

5/2
e /y2, where ΣX is the Xray surface

brightness at energies < kBTe. The electron temperature, Te, can be estimated directly
from the Xray spectrum. Although the results are smaller than some local estimates of H0

[17], they fall within a factor ∼ 2, which indicates that peculiar velocities have not altered
the estimates of y by more than ∼

√
2. Hence

ytrue√
2
< ytrue +

vrτ

2c
<

√
2ytrue, (3)

− 0.012 <
vr
c
< 0.016, (4)

since ytrue/τ = kBTe/mec
2 ≈ 0.02 for a typical temperature of 10 keV. In a radially inho-

mogeneous universe smooth on sufficiently large scales, the mean value of vr would vary
linearly with z at small z. Hence we should divide the above limit on vr/c by the typical
cluster redshift z ≈ 0.2 to obtain a limit on inhomogeneity ≈ 8%. Since the temperature
decrement is independent of distance, multifrequency measurements at higher z could—and
probably soon will—improve this limit substantially.

Peculiar velocities and inhomogeneities can also be constrained by using atomic and
molecular excitation as a thermometer for the CMB [18]. One measures optical absorption
from an excited level lying ∼ kBTCMB above the ground state. Clearly, it is important to use
systems in which collisional excitation is small or negligible, so that the observed excitation
represents the angle-averaged radiation temperature seen by the atomic or molecular system,
T̄CMB,z. Any discrepancy between this temperature and the redshifted temperature of the
local CMB can be explained by a radial peculiar velocity:

vr
c

≈ (1 + z)TCMB,0

T̄CMB,z
− 1 (5)
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If vr is large or if it has a trend with z, one has evidence of radial inhomogeneity.
Fine-structure lines of neutral carbon have been measured in absorption (against a back-

ground quasar) at z = 1.776, with the result that T̄CMB,z = 7.4 ± 0.8 K, as compared to
(1 + z)TCMB,0 = 7.58 K [19]. Since the agreement is well within the errors, we can use the
errors to set a limit ∼ 0.8/7.58 = 11%.

Whether we consider scattering or absorption, the tests of this section are sensitive
primarily to dipole1 anisotropies in the CMB as it might be seen by distant observers. For
a cluster or absorption system at a given redshift z, the measured temperature difference is
linearly proportional to the strength of the dipole seen at z. The test described in the next
section is sensitive to distant anisotropies of all multipoles, but at second rather than first
order.

III. SPECTRAL DISTORTIONS BY DIFFUSE SCATTERING

Sufficiently strong radial inhomogeneity at z ∼ 1000 would produce a noticeable spectral
distortion because of the finite thickness of the recombination surface [20]. This would
measure inhomogeneities on a comoving scale only ∼ 10−2 of the present horizon.

A spectral distortion sensitive to much larger scales could arise from scattering by plasma
associated with Lyα clouds and a possible intercloud medium. Absorption lines in quasar
spectra reveal the presence of diffuse, probably intergalactic, clouds at z ∼ 2− 4 containing
small amounts of atomic hydrogen. Physical considerations indicate that the hydrogen must
be predominantly ionized, and it is plausible that the ionized intergalactic medium contains a
significant fraction fIGM ∼ 1 of the hydrogen indicated by cosmic nucleosynthesis arguments
[20,21], namely [22]

n̄H ≈ 0.76n̄B ≈ (1.1± 0.2)× 10−7cm−3. (6)

As discussed in Sec. (IV), the luminous parts of galaxies account for only a fraction of the
n̄H cited above, so that most of the baryons in the universe must be sequestered in some
form other than visible stars. Although an ionized IGM is not the only possible hiding place
for these baryons, it is a plausible one because hot gas accounts for most the baryonic mass
in Xray-emitting clusters of galaxies [23,24], and because searches sensitive to local neutral
hydrogen have found it in amounts much smaller than Eq. (6) [25].

If the ionized IGM has persisted from zion = 4 to the present, then its total optical depth
is τIGM ≈ 10−2fIGM if the present age of the universe is 13Gyr. (With this choice of zion,
τIGM is almost independent of Ω for Λ = 0.) On this assumption, about 1% of the CMB
photons that we observe in any direction have been scattered at least once. To the extent
that the electrons are cold (kBTe ≪ mec

2), these scatterings have negligible effect on the
CMB spectrum in a homogeneous universe, but they will produce a slightly nonthermal
spectrum in a radially inhomogenous universe.

1In fact, by analyzing the two photon polarizations separately in the cluster test, one could

measure both the dipole and one linear combination of quadrupole moments.
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To make this discussion more quantitative, we consider scattering in a spherically-
symmetric but radially inhomogenous matter-dominated universe [2]. Since we cannot con-
sider all possibile forms of inhomogeneity, we shall adopt the following simplifying assump-
tions and hope that our results are representative of more difficult cases:

(S.1) The model departs only slightly from a homogeneous matter-dominated Einstein-de
Sitter universe, so that we may use first-order perturbation theory.

(S.2) The inhomogeneities are growing adiabatic perturbations.

(S.3) Recombination occurs instantaneously at a fixed value of the local temperature
T (r, t) = Trec.

(S.4) After recombination, the universe is sufficiently optically thin that CMB photons
scatter at most once before reaching us, and most photons do not scatter at all.

(S.5) The photon energy is not changed in the local matter rest frame by the scattering
process.

Assumptions (S.1) and (S.2) are arbitrary and could be relaxed, but they permit an easy
Sachs-Wolfe treatment. Concerning (S.3), the actual width of the recombination epoch has
been calculated to be ∆t/t ≈ 0.2 [20]. but to treat this epoch properly would require a
dynamical analysis of the interaction between matter and inhomogeneous radiation. As-
sumption (S.4) is probably justified. The possibility that the universe was reionizeed early
enough to produce a substantial optical depth has been much discussed, but this appears
unlikely because CMB anisotropies are now seen on degree scales [26]. As we shall see,
the spectral distortions produced by inhomogeneity would be indistinguishable from those
caused by a hot intergalactic medium in a homogeneous universe. The two effects are addi-
tive and cannot be made to cancel, so assumption (S.5) is conservative.

We look out towards the recombination epoch along past-directed null geodesics. Ac-
cording to assumption (S.4), most of the CMB photons we receive never scattered on their
way to us, so these photons sample the recombination epoch on a sphere of comoving radius
rd. (“d” for “direct”.) Because of isotropy, all photons reaching us from this sphere have
been drawn from a Planck distribution with a common temperature and have suffered the
same redshift, so their spectrum is completely thermal.

A minority of photons have scattered once. Consider all such photons that have scattered
towards us through angle ψ at some epoch ts, where trec < ts < tnow. Traced backwards
from ts, the paths of these photons intercept the recombination era on a common sphere
of radius ri(ts, ψ) < rd (“i” for “indirect”). Because of assumption (S.2), photons from
the spheres rd and ri were drawn from the same Planck distribution. In a homogeneous
universe, photons from both spheres would suffer the same redshift, (1 + zrec), and because
of this and assumption (S.5), the CMB spectrum would be unaffected by scattering. In an
inhomogeneous universe, however, there is a first-order perturbation in these redshifts:

ζ ≡ δ ln(1 + z) = 1
3
{φ(0)− φ[r(ηrec)]} (7)

+
1

3







(1− cosψ)ηs
dφ

dr
[r(ηs)] + ηrec

(

dr

dη

dφ

dr

)

r(ηrec)






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Here r =
√
x2 + y2 + z2 is the comoving radius in the unperturbed Einstein-de Sitter metric,

ds2 = dt2 − a2(t)(dx2 + dy2 + dz2), (8)

η is the arc parameter,

η(t) ≡
t
∫

0

dt′

a(t′)
, (9)

φ(r) is the potential fluctuation associated with the perturbation in the mass density,

φ(~r) = −a2(t)G
∫

d3~r ′

|~r − ~r ′|δρ(~r
′, t), (10)

and the path of the photon is (for ηrec ≤ ηs ≤ η0)

r(η) =











[(η0 − ηs)
2 + (ηs − η)2

+ 2(η0 − ηs)(ηs − η) cosψ]1/2 η ≤ ηs,
η0 − η η ≥ ηs,

(11)

where η0 ≡ η(t0) is the present epoch, ηs ≡ η(ts) is the epoch of scattering, and ψ is the
scattering angle. The potential φ(r) defined by (10) is time independent, since δρ ∝ a−2 for
the growing mode [δρ/ρ ∝ a ∝ t2/3]. That the redshift perturbation can be written in terms
of such a potential is the fundamental result of Sachs and Wolfe [27].

The first two terms contributing to the redshift perturbation (7) reflect the difference
in potential between the origin and destination of the photon. The remaining terms are
Doppler shifts: they arise from the peculiar velocities of the matter with respect to the
unperturbed background Einstein-de Sitter cosmology. These velocities are produced by the
peculiar gravitational acceleration −dφ/dr acting over arc-parameter “time” η. In our case,
the peculiar velocities are radial, so the Doppler shift is proportional to dr/dη, which is the
cosine of the angle between the photon momentum and the radial direction. The Doppler
shift at the scattering epoch depends upon the change in that cosine, whence the (1− cosψ)
factor. Since ηrec/η0 = (1+zrec)

−1/2 ≈ 10−1.5 ≪ 1, we simplify Eqs. (7) and (11) by replacing
ηrec with 0.

The CMB spectrum seen by an observer at r = 0 is a weighted sum of redshifted Planck
functions:

Iν(r = 0) =
∫

Bν(e
−ζT0)dP (ζ) (12)

where Bν(T0) is a Planck function at the present-day CMB temperature, T0 ≡ Trec/(1+zrec,0),
and P (ζ) is the probability distribution for ζ . The probability density dP/dζ consists of two
parts: a delta function of area e−τIGM at the value of ζ for unscattered photons [computed
from (7) by setting ψ = 0]; and a continuous part of total area 1 − e−τIGM ≈ τIGM ≪ 1
representing the once-scattered photons.

It is clear that if ζ were the same along all paths, the spectrum Iν(0) would remain
thermal but would have temperature e−ζT0 instead of T0. Thus nonthermal distortions
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depend upon the differences in ζ among scattered paths. This can be demonstrated formally
by expanding Bν(T ) in equation (12) as a Taylor series in lnT about the point lnT =
lnT0 − 〈ζ〉, with the result

Iν(0) = Bν(T0e
−〈ζ〉)

+

[

∞
∑

n=2

〈(ζ − 〈ζ〉)n〉
(

T
∂

∂T

)n

Bν(T )

]

T0e−〈ζ〉

(13)

The moments of ζ are

〈ζn〉 ≡
∫

ζndP (ζ). (14)

If the width of the redshift distribution P (ζ) is small, as it is when |φ(r)|, |rφ′(r)| ≪ c2,
we do not need to go beyond the second-derivative term in the expansion (13). So we have
only to compute the variance in the log redshift. The unscattered paths contribute to 〈ζ〉
but not to the variance 〈(ζ − 〈ζ〉)2〉. So we may compute modified moments, marked by a
prime, by averaging over the scattered paths only:

〈ζm〉′ =
η0
∫

ηrec

dηs
dτ

dηs

+1
∫

−1

d cosψ 3
8
(1 + cos2 ψ)ζm(ηs, ψ), (15)

where ζ(ηs, ψ) is the function (7).
The differential optical depth is

dτ

dηs
= σT ne(t)c

dt

dηs
= 3σTne(t0)

ct0
η0

×
{

(ηs/η0)
−4 if ηs ≥ ηion,

0 if ηrec < ηs < ηion.
(16)

Following the discussion above, we have taken the comoving density of electrons to be
constant from the present back to a redshift factor 1 + zion = (ηion/η0)

−2. The total optical
depth is (assuming full ionization of 4He)

τIGM = σTne(t0)ct0[(1 + zion)
3/2 − 1]

≈ 1.0× 10−3fIGM[(1 + zion)
3/2 − 1]. (17)

To compute the variance of ζ and hence the distortion (13), we must assume a functional
form for the perturbed potential φ(r). Rather arbitrarily, we choose

φ(r) = φ0 cos(ωr), (18)

in which φ0 is a normalization and 2π/ω is an adjustable comoving radial wavelength. A
general spherically-symmetric linear perturbation could be written as a superposition of
Fourier components of this form. To fix the meaning of ω, a(t) will be scaled so that η0 = 1
[a(t0) = 3t0]. Therefore r = 1 is the present horizon, and a(t0) = 3t0. After substitution of
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equations (7) and (18) into the formula for the moments (15), the integrations over ψ and
ηs can be expressed in closed but lengthy form, which we omit.

The variance 〈ζ2〉−〈ζ〉2 ≡ 〈∆ζ2〉 is clearly proportional to φ2
0, but it vanishes for certain

functional forms of φ(r). In the limit ω → 0, φ(r) becomes constant and has no affect on the
observed spectrum [cf. equation (7)]. Even a quadratic potential φ(r) = φ0 · [1 − (ωr)2/2]
would spoil neither the thermality of Iν(0) nor the homogeneity of the geometry: such a
perturbation corresponds to a slightly non-flat Friedmann model. It follows that for ω ≪ 1,
〈ζ2〉 ∝ ω8φ2

0.
One coordinate-independent way to characterize the sensitivity of the spectrum (13) to

the degree of radial inhomogeneity is to compare the spectral distortion at r = 0 with the
anisotropy seen by a typical non-central observer. In the limit τIGM → 0, an observer at
robs > 0 and η = η0 sees the CMB as thermal in every direction, but the temperature varies
with angle according to

δT

T
(θ) =

1

3

{

φ[rrec(θ)]− φ(robs) + η0 cos θ
dφ

dr
(robs)

}

(19)

apart from a constant. Here θ is measured with respect to the radial direction, and

rrec(θ) = [r2obs + η20 + 2η0robs cos θ]
1/2 (20)

is the locus of the non-central observer’s horizon. We calculate the variance

(

∆T

T

)2

robs

≡
+1
∫

−1

d cos θ

[

δT (θ)

T

]2

−




+1
∫

−1

d cos θ
δT (θ)

T





2

. (21)

When ω ≫ 1, (∆T/T )2 can oscillate rapidly with robs, so we compute a smoothly-tapered
radial average:

〈

(

∆T

T

)2
〉

≡
1
∫

0

drobs

(

∆T

T

)2

robs

1
2
sin2(πrobs). (22)

Finally, we define the “normalized” spectral distortion ŷ by

τIGMŷ ≡ 〈∆ζ2〉
〈(∆T/T )2〉 (23)

Since both the numerator (the spectral distortion at the center of the universe) and the
denominator (the typical angular temperature variance off center) are proportional to φ2

0,
the quantity ŷ is independent of the amplitude of the potential fluctuations in the linear
regime. We have also scaled the total optical depth (17) out of ŷ. However, ŷ does depend
somewhat on ω and zion.

Table I shows some representative values of ŷ. The notation “0+” under the heading for
ω/2π denotes the limit as ω → 0. One sees from the Table that ŷ is essentially independent
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of ω if there are two or more cycles within the horizon (ω/2π >∼ 2), but ŷ decreases sharply
at smaller ω. Thus the spectral distortion is relatively insensitive to density perturbations
that are well fit by a quadratic function of radius (corresponding to a quartic potential, since
δρ/ρ ∝ η2∇2φ).

The value of ŷ decreases noticeably if ztextion ≫ 1. In that case, since the differential
optical depth dτ ∝

√
1 + z, most of the scatterings occur very early, at z ∼ zion, when the

photons have not moved far from their positions at recombination. If ω is moderate, the
potential φ is nearly constant over this small range in ri. On the other hand, if ω ≫ 1, the
redshift perturbation (7) is dominated by the Doppler term ηsdφ/dηs, which decreases with
scattering epoch ηs ∝ (1+zs)

−1/2. [For ω ≫ 1, the denominator of (23) is also dominated by
Doppler shifts—those of the noncentral observers themselves—but these shifts are evaluated
at the present epoch and are not suppressed by the (1 + zs)

−1/2 factor.] So ŷ is small for
large zion, regardless of ω.

We have scaled the total optical depth τIGM out of ŷ, however, so that the observed
distortion is proportional to τIGMŷ. For zion = 2, 4, and 10, equation (17) predicts τIGM ≈
0.004f , 0.01f , and 0.04f , respectively; at larger zion, the approximation of single scattering
begins to break down. At any rate, for a fixed nonzero amplitude φ0 and for ω > 0, the
observed spectral distortion tends to increase with zion despite the decrease in ŷ.

We have adopted the notation “ŷ” because the spectral distortion produced by radial
inhomogeneity has the same form as the distortion arising from inverse compton scattering
provided that Tγ ≪ Te ≪ mec

2/kB, where Tγ and Te are the photon and electron temper-
atures. Quite generally, a mixture of Planck functions at slightly different temperatures is
indistinguishable from a slightly comptonized spectrum ( [28]). The correspondance in Eq.
(13) is 〈ζ〉 → −3y and 〈∆ζ2〉 → y; higher-order moments of ζ are negligible if y ≪ 1.

This means that we can translate published upper limits on comptonization of the CMB
into limits on radial inhomogeneity. The limit reported by the COBE collaboration is
y < 2.5× 10−5 ( [29]). Hence the limit on inhomogeneity as defined by (22) is

(

∆T

T

)

≤
(

y

τIGMŷ(ω, zion)

)1/2

<∼ 0.05f−1/2. (24)

In the final numerical form, we have taken ŷ ≈ 1 as a typical value from Table 1, and we
have assumed zion = 4. As Table I shows, ŷ is much smaller and our limit correspondingly
weaker if ω < π.

IV. DISCUSSION

We have discussed three tests of the large-scale radial homogeneity of the universe. All
three involve possible distortions or variations in the CMB spectrum. There is, however, a
fourth test that is more widely recognized than any of these: big-bang nucleosynthesis of
the light elements (henceforth BBN).

The standard theory of BBN predicts the primordial abundances of the light elements
1H, 2H, 3He, 4He, and 7Li in terms of a single parameter, η, the number of baryons per CMB
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photon. (We ignore complications such as a nonstandard number of neutrino flavors.) From
the observed relative abundances of these elements in the local universe, it appears that [22]

2.8 ≤ η10 ≤ 4.0, η10 ≡ 1010η. (25)

Measuring abundance ratios such as N(2H/N(1H) in cosmologically distant systems tests
radial homogeneity without reference to the CMB or to BBN, since it is sensitive to inhomo-
geneities in whatever processes create and destroy these elements. Since such measurements
have only just begun to come in during the past year [30], and since a consensus has not
yet been reached, this is not the fourth test we referred to above. Nevertheless it may give
very interesting results in the near future.

The value of η constrained by (25) pertains to photons that resided here at the time
of nucleosynthesis. Those photons are no longer with us: they have been streaming away
since recombination and are now almost at the horizon. On the hypothesis of homogeneity,
however, the CMB photons seen today stand as proxies for those long-gone photons. In
particular, we may evaluate η using the present-day density of CMB photons in our vicinity,
nγ ∝ T 3

CMB. Hence the local mean density of baryons should be [22]

n̄B = 20.3T 3
CMBη cm−3 ≈ (1.4± 0.3)× 10−7 cm−3, (26)

where we have taken T = 2.726 K ( [29]) and adopted the range (25) for η. To the extent
that n̄B can be measured and compared with this prediction, one tests the spatial constancy
of η. Under the assumptions (S.1)-(S.5) of Sec. III, we have

(nmeas.
B /npred.

B ) − 1 = φ(0)− φ(r = ηrec), (27)

provided both sides of this equation are small compared to unity. To be competitive with
the limits presented in Secs. II-III, one should measure n̄B to ∼ 30% or better.

It seems that n̄B has not yet been measured to the required accuracy. It is estimated that
the luminous parts of galaxies account for a mean mass density ≈ 5× 10−8e±0.3h2mH cm−3,
where h ≡ H0/(100 km s−1 Mpc−1), based on the observed luminosity density and an as-
sumed mass-to-light ratioM/LB = 12Msun/Lsun [20]. Since this ratio counts all of the mass
within the Holmberg radius, it may include some nonbaryonic dark matter; and probably
h < 1. Thus the visible parts of galaxies fall short of the nucleosynthetic prediction (27)
by a factor of at least 3. In some clusters of galaxies, hot Xray-emitting gas increases the
total baryonic M/LB by a factor 5.6 to 16, depending on h [23]. In summary, while the
observed baryon density is perhaps consistent with Eq. (26), the bookkeeping is not yet
accurate enough to yield a 10% limit on the radial homogeneity of the CMB temperature.
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TABLES

TABLE I. Normalized spectral distortion ŷ.

ω/2π zion = 2 zion = 4 zion = 100

0+ 0.040 0.029 0.0027

0.5 0.16 0.11 0.0076

1.0 1.31 0.98 0.026

2.0 2.31 1.23 0.056

10. 2.18 1.49 0.10

103 2.20 1.53 0.11
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