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ALTERNATIVE SPACE-TIME FOR THE POINT MASS

L. S. ABRAMS

Abstract. Schwarzschild’s actual exterior solution (gS) is resurrected,
and together with the manifold M0 = R4 − {r = 0} is shown to con-
stitute a space-time possessing all the properties historically thought to
be required of a point mass. On the other hand, the metric (gDW) that
today is ascribed to Schwarzschild, but which was in fact first obtained
by Droste and Weyl, is shown to give rise to a space-time that is neither
equivalent to Schwarzschild’s nor derivable from the “historical” prop-
erties of a point mass. Consequently, the point-mass interpretation of
the Kruskal-Fronsdal space-time (MW , gKF) can no longer be justified
on the basis that it is an extension of Droste and Weyl’s space-time.
If such an interpretation is to be maintained, it can only be done by
showing that the properties of (MW , gKF) are more in accord with what
a point-mass space-time should possess than those of (M0, gS). To do
this, one must first explain away three seeming incongruities associated
with (MW , gKF): its global nonstationarity, the two-dimensional nature
of its singularity, and the fact that for a finite interval of time it has no
singularity at all. Finally, some of the consequences of choosing (M0, gS)
as a model of a point mass are discussed.

1. Notation and introduction

Let K denote the analytic manifold consisting of R4 together with the
single-chart atlas {R4, Id}, and let the thereby-defined coordinates be de-
noted by (t, x, y, z). Let L denote the line x = y = z = 0, and M0 the
submanifold K − L. Since it is essential to what follows, note that the
dimensionality of any point set on a manifold is determined by the set’s
description in terms of the admissible coordinates, and thus has nothing to
do with the subsequent choice of a metric. Thus, e.g., the assertions that
L is a line, and that its intersection with t = const is a point, are valid no
matter what metric may be assigned to M0.

The properties that the metric (g) of a single, nonrotating, nonradiating,
uncharged point mass1 should possess were first stated by Einstein [1] in
1915, and subsequently employed by Schwarzschild [2], Droste [3], Weyl [4],
Hilbert [5], etc., to derive the exact form of g. An explicit formulation
of all these properties, including those that were only tacit (e.g., Lorentz-
signature, global time coordinate), together with those of the associated
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1Henceforth, this description will be shortened to point mass.
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manifold (M) was given by Finkelstein [6] in 1958. Specifically, M should
be M0, while g should be analytic, Lorentz signature, and

(a) a solution on M of Einstein’s free-space field equations;
(b) invariant under time translations;
(c) invariant under spatial rotations;
(d) (spatially) asymptotically flat;
(e) inextendable to L;
(f) invariant under spatial reflections;
(g) invariant under time reflection;
(h) have a global time coordinate.

Contrary to popular opinion, an analytic, Lorentz signature metric (gS)
possessing properties (a)-(h) on M0 does exist. Indeed, it has been available
ever since 1916, when Schwarzschild [2] derived it. Introducing quasipolar
coordinates via

x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ(1)

with

0 < r, 0 < θ < π, 0 ≤ φ < 2π,(2)

the components of gS in these coordinates2 are given by

ds2 = (1− α/f)dt2 − (1− α/f)−1f ′2dr2 − f2dΩ2,(3)

where α is a positive constant,

dΩ2 ≡ dθ2 + dφ2 sin2 θ,(4)

f ≡ (r3 + α3)1/3,(5)

and the prime denotes differentiation with respect to r.
That the metric possesses properties (b), (c), (d), (f), (g), and (h) is

evident by inspection. That it possesses property (a) can be verified by
direct substitution into the field equations, or by examining Schwarzschild’s
derivation. Lastly, that it has property (e) follows from the violation3 of
local flatness at every point of L. Clearly, (M0, gS) does not contain a black
hole.

2Since quasipolar coordinates are inadmissible on the surface x = y = 0, it is to be
understood here and afterwards that whenever a line element is displayed in terms of such
coordinates, this is done solely for ease of recognition, and that the metric is actually
defined by its components in terms of (t, x, y, z). In the case of gS these quasi-Cartesian
components are analytic everywhere on M0.

3Let Ca denote the circle of “radius” a defined by {(t, r, θ, φ)|t = const, r = a, θ = π/2}.
The proper circumference of Ca is seen from (3) to be 2πf(a). As a → 0+, this tends to
2πα, rather than to zero as local flatness requires.
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2. The Droste-Weyl metric

In 1917, Droste [3] and, independently, Weyl, [4] derived a metric (gDW)
for the point mass by techniques similar to that used by Schwarzschild. Let-
tingM0 denote a copy of M0 with the same admissible coordinates (t, x, y, z)
as before, and letting (t, r̄, θ, φ) denote the same quasipolar coordinates de-
fined by (1) and (2), the components of gDW are defined on that portion
(Mα) of M0 for which r̄ > α by

ds2 = (1− α/r̄)dt2 − (1− α/r̄)−1dr̄2 − r̄2dΩ2,(6)

and on the remainder of M0 by analytic continuation. Note that the r̄ in
(6), like the r in (3), is the ordinary quasipolar coordinate (x2 + y2+ z2)1/2,
and thus its M0-spanning values satisfy r̄ > 0.

Believing that gDW was “equivalent” to gS, both Droste and Weyl credited
their results to Schwarzschild. A few years later, Hilbert [5] opined that the
form of gDW was preferable to that of gS, and ever since then the phrase
“Schwarzschild solution” has been taken to mean gDW rather than gS.

3. Inequivalence of the Schwarzschild and Droste-Weyl

space-times

Let us relabel the r coordinate of points of M0 by means of the coordinate
transformation

T : r̄ = f(r) = (r3 + α3)1/3, r > 0(7)

(4) so that the M0-spanning values of r̄ satisfy r̄ > α.
Under T , gS is carried into ḡS:

ds2 = (1− α/r̄)dt2 − (1− α/r̄)−1dr̄2 − r̄2dΩ2.(8)

In the early years of relativity, when “physical equivalence” was thought
to be a relationship between metrics, the formal identity of (6) and (8) was
taken to mean that ḡS (and a fortiori gS) and gDW describe the same physical
phenomenon (which is the reason that both Droste andWeyl attributed their
results to Schwarzschild). Today, however, it is recognized that physical
equivalence is a relationship between space-times [7], and that for two space-
times (M,g1) and (M,g2) defined on the same manifold to be equivalent, it
is not only necessary that a coordinate transformation carry g1 into g2, but
also that the transformation be a diffeomorphism [8]. In the present case
this latter requirement is not met, since T carries M0 into M0 (viz., onto
Mα), rather than onto it, and is thus not a diffeomorphism. Consequently
(M0, gS) and (M 0, gDW) are inequivalent space-times. This invalidates one
of the two historical bases for regarding gDW as the metric of a point mass.

4Here too, as in footnote 2, this equation is written in polar coordinates for simplicity.
The actual transformation is defined by the corresponding relations in terms of the quasi-
Cartesian coordinates (t, x, y, z) and (t, x̄, ȳ, z̄), obtainable from (7) by cubing both sides

and then using (1) to eliminate the polar coordinates, e.g., x̄3 = x3+α3x3/(x2+y2+z2)3/2,
etc. These relations are defined everywhere on M0.
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4. Derivation of the Droste-Weyl space-time

The other historical basis for the point-mass interpretation of gDW is that
Droste [3], Weyl [4], Hilbert [5], etc., believed that they had derived it by
explicitly tailoring the general metric to have properties (a)-(h). As will now
be shown, their derivations produce not gDW, but rather ḡS, the coordinate-
transformed version of gS, in which r̄ > α spans M0.

Consider a typical derivation5. Although the manifold is not specified,
there is no basis for supposing that anything other than M0 was contem-
plated, so that this will be assumed in what follows.

To begin with, properties (b), (c), (f), (g), and (h) are imposed on the
metric, which as is well known [2, 3, 4, 5] restricts the line element to the
form

ds2 = A(r)dt2 −B(r)dr2 − C(r)dΩ2(9)

in terms of the quasipolar coordinates defined by (1) and (2). Note that
property (h) requires that A be positive on M0, and that this together with
the Lorentz-signature requirement compels B and C to be positive as well.

Next, the unknown C is eliminated by making the coordinate transfor-
mation

r̄ = [C(r)]1/2,(10)

thereby transforming (9) into

ds2 = A(r̄)dt2 −B(r̄)dr̄2 − r̄2dΩ2.(11)

Property (a) is now imposed, which leads to two ordinary differential equa-
tions for the unknown A and B. The solution of these equations determines
both unknowns, apart from two constants of integration. Property (d) is
used to eliminate one of them, whereupon the metric, hereinafter referred
to as g′S, takes the form of (6). Finally, a comparison is made with Newto-
nian physics to evaluate α - for our purposes, this step can be replaced by
imposing property (e), which requires that α be nonzero.

As is evident from this brief sketch, in order for g′S to be gDW it is necessary
that the M0-spanning values of r̄ in (11) be the same as those of the r̄ in
(6), viz., r̄ > 0 [10]. But as can be seen from (10), the M0-spanning values
of r̄ in (11) depend on the behavior of C(r) ar r varies over (0,∞). Thus
the only way to determine the values in question is to substitute (9) directly
into the empty-space field equations and solve for the most general C(r)
compatible with properties (d) and (e). This is done in the Appendix, and
the result is

[C(r)]1/2 = α/[1 −A(r)],(12)

where α is a positive constant and A is any analytic, strictly monotonic
increasing function of r which tends to zero as r → 0 and behaves like

5Although what follows is really a generic version of the classical derivation, it is closely
approximated by that in Ref. [9].
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1 − α/r as r → ∞. Together with (10), the just-mentioned properties of
A show that the r̄ in (11) is a strictly monotonic increasing function of r
which tends to α as r → 0, and to infinity as r → ∞. Consequently, no
matter what choice of admissible A (and thus of admissible C) is made, the
M0-spanning values of r̄ in (11), and a fortiori in g′S, satisfy r̄ > α, not
r̄ > 0, and thus g′S is not gDW

6. [As a matter of fact, since g′S has the same
form as ḡS, and since the r̄ in (11) has the same M0-spanning values as the
r̄ in (8), g′S is ḡS.]

It is worth emphasizing that there is nothing wrong with making the
transformation (10). An error arises only if it is assumed that the resulting
r̄ is a “centered” radial coordinate - i.e., one whose M0-spanning values
satisfy r̄ > 0 (whereas by “noncentered” is meant one whose M0-spanning
values satisfy r̄ > b > 0).

To clarify this last point, consider Minkowski’s space-time (K, gM ), where
in polar coordinates the components of gM are described by (see footnote 2)

ds2 = dt2 − dr2 − r2dΩ2.(13)

If one makes the coordinate transformation

r̄ = r + a (a > 0),(14)

then the transformed metric (ḡM ) is given by

ds2 = dt2 − dr̄2 − (r̄ − a)2dΩ2 (r̄ > a).(15)

Again, there is nothing wrong with the use of (14), and (K, ḡM ) is still
Minkowski’s space-time, so long as one remembers that in (15), r̄ = (x2+y2+

z2)1/2 + a, so that its K-spanning values satisfy r̄ ≥ a - that is to say, if one
remembers that values of r̄ < a are meaningless, just as are values of r < 0
in (13). It is only if one decides to regard r̄ in (15) as the ordinary, centered

radial coordinate (x2 + y2 + z2)1/2, whose K-spanning values satisfy r̄ ≥ 0,
that the interpretation of (K, ḡM ) as Minkowski’s space-time is incorrect.

Similarly, it is the interpretation of r̄ in (6) as the ordinary, centered,
quasipolar radial coordinate that invalidates the derivation of gDW from
(a)-(h), and thus deprives gDW of the other of its two historical bases for
being interpreted as the metric of a point mass.

6Droste’s derivation (Ref. [3]) differed from that described here, since he chose to define

a new radial coordinate by setting B = 1, rather than by setting C = r̄2. This new radial
coordinate is a more complicated function of A than the right-hand side of (12), and by
suitable choice of an integration constant its M0-spanning values can be made to satisfy
r̄ > 0. However, at the next-to-last step of his derivation he introduced another radial
coordinate to bring the metric into the form of (6). The M0-spanning values of this last
r̄ satisfy r̄ > α, so that his final result is not gDW, but g′S.
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5. Comparison of the Schwarzschild and Kruskal-Fronsdal

space-times

An extension of (M 0, gDW) to a portion (MW ) of R2 × S2 was found by
Synge [11], Szekeres [12], Kruskal [13] and Fronsdal [14]; the latter two also
showed that the extended space-time (MW , gKF) contains a black hole.

Because of the belief that gDW was the metric of a point mass, and because
heretofore there has been no viable7 challenger for the role, (MW , gKF) has
come to be accepted as the space-time of a point mass. As seen in Secs.
3 and 4, however, neither of the two historical bases for regarding gDW as
the metric of a point mass is valid. Moreover, (M0, gS) was shown in Sec.
1 to be an eminently qualified challenger. Consequently, the point-mass
interpretation of (MW , gKF) can no longer be based on the fact that it is
an extension of Droste and Weyl’s space-time. If such an interpretation is
to be maintained, it can only be done on the basis of its own properties
- more precisely, by comparing its properties with those of (M0, gS), and
articulating the reasons why the former are more in accord with a point
mass than the latter. To facilitate this comparison, the following table
describes the candidates’ behavior with respect to several areas of interest:

Comparison of Schwarzschild and Kruskal-Fronsdal Space-Times

Property Schwarzschild Kruskal-Fronsdal

1. Topology Euclidean non-Euclidean
2. Type of singularity point two-surface [17]
3. Presence of singularity all time absent for a finite time [15]
4. Geometry globally static globally nonstationary [14]
5. Curvature invariant finite as r → 0 infinite as v2 − u2 → 1−.

Not all these properties are on the same footing as regards their decisive-
ness for the choice in question. In particular, few today would argue that the
topology of a point-mass universe must be Euclidean - about the most that
can be said is that “other things being equal”, a simple model is preferable
to a complicated one. Likewise, there is no absolute necessity for polynomial
curvature invariants to tend to infinity as a singularity is approached [18] -
all that can be said is that bounded values are the exception [19].

On the other hand, the behavior exhibited by Schwarzschild’s space-time
with regard to 2, 3, and 4 would seem to be inherent in the very concept
of a point mass. Consequently, in order to choose (MW , gKF) over (M0, gS),

7A Euclidean-topology but nonanalytic model was constructed by A. Komar [15];
shortly thereafter Brans (Ref. [10]) showed that it was afflicted with a number of un-
desirable properties. A model proposed by A. Janis, E. Newman, and J. Winicour [16]
was also nonanalytic, and its derivation involved a somewhat arbitrary choice for the limit
of the coefficient of dΩ2 as r → α+.
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one should be prepared to explain, first, how it is possible for a static phe-
nomenon to give rise to a time-varying geometry; second, how, in a theory
in which matter is manifested by metric singularities, it is possible to rep-
resent a point mass for a finite time by a universe whose metric has no
singularity whatever; and third, how it is possible for a mathematical point
to be modeled as a two-dimensional surface. Although these contradictions
have been pointed to in the past, so far as I am aware they have never
been squarely faced by the proponents of the point-mass interpretation of
(MW , gKF). Now that the historical basis for this interpretation has been
invalidated, it appears to be essential to do so.

6. Conclusions

Irrespective of which space-time is chosen, it should be clear from the anal-
ysis of Sec. 4 that use of (11) to represent a spherically symmetric phenome-
non generally makes r̄ a noncentered radial coordinate, which if regarded as
centered will give rise to an error similar to that which occurred in connection
with gDW. Since (11) (and its cylindrical counterpart) has been used to de-
rive many of the exact solutions known today (e.g., the Reissner-Nordström
metric8), the interpretation of the associated space-times is suspect, and
might more appropriately be conferred on their “Schwarzschild-type” alter-
natives, obtained by substituting (9) directly into the field equations. The
same suspicion also attaches to those exact solutions which have not been
derived but merely “found”, and which for certain values of their parameters
reduce to gDW (e.g., the Boyer-Lindquist version [21] of Kerr’s metric).

If Schwarzschild’s space-time should ultimately prevail as a model for a
point-mass, then two additional consequences arise:

First, of course, current ideas as to the nature of physics in the immediate
neighborhood of a mass point will have to be revised, since until now this
domain has been thought to be the inside of a black hole.

Second, analysis of gravitational equilibrium [22] or collapse [23] involves
the choice of both an “interior” and an “exterior” metric. For the spherically
symmetric case the exterior metric must be that of a point mass9, so that
heretofore gDW has been used. With (M0, gS) as the model for a point mass,
the exterior metric must be gS

10, so that all work done to date on spherically
symmetric equilibrium or collapse would be invalid. In particular, with gS
as the exterior metric no black hole is formed no matter how far the collapse

8See, for example, the derivation given by R. Tolman [20].
9For the case of collapse to a point. In other cases, the fact that the exterior metric

need not possess property (e) permits use of a wider class of metrics than just that of a
point mass. See, e.g. K. Schwarzschild [24].

10For the case of collapse to a point. In other cases, gS should be replaced by the
generalization of the point-mass metric that is obtained by omitting property (e). As may
be seen from Schwarzschild’s paper cited in Ref. [24], this generalization of gS has the

same form as (3), but with (5) replaced by f = (r3 + ρ3)1/3, where ρ is independent of α.
The corresponding generalization of (28) is similar - (28) is unaffected, but it is no longer
necessary that A tend to zero as r → 0.
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proceeds - consequently, if uncharged, nonrotating, spherically symmetric
black holes exist, they were not created by gravitational collapse, but are
primordial.
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Appendix: The most general analytic, Lorentz metric

satisfying (a)− (h)

Although Schwarzschild [2] did not make use of (10), he did impose an ex-
traneous condition on the solution, namely, that its determinant be −1 when
expressed in terms of (t, x, y, z). Since this requirement has nothing to do
with the physics of a point mass, its imposition may eliminate some metrics
that are consistent with Finkelstein’s (a)-(h). By dropping this requirement
and avoiding the use of (10), the most general solution is obtained.

To this end, let us suppose that A, B, C denote any analytic function
of r such that (9) satisfies (a), (d), (e). Substituting (9) into Dingle’s11

expressions for T i
j results in

− 8πT 1
1 = −1/C + C ′2/4BC2 +A′C ′/2ABC = 0,(16)

− 8πT 2
2 = C ′′/2BC +A′′/2AB − C ′2/4BC2 −B′C ′/4B2C(17)

−A′2/4A2B −A′B′/4AB2 +A′C ′/4ABC = 0,

T 3
3 = T 2

2 ,(18)

− 8πT 4
4 = C ′′/BC − 1/C −B′C ′/2B2C − C ′2/4BC2 = 0,(19)

with all other T i
j identically zero.

Subtracting (19) from (16) leads to

2C ′′/C ′ − C ′/C −B′/B −A′/A = 0(20)

which integrates to

C ′2 = JABC,(21)

where J is an arbitrary constant. Since A, B, C are positive (see Sec. 4),
it follows that J ≥ 0. But if J were zero, then C ′ would be identically zero,
which would make C constant and thus violate property (d). Hence J > 0,
and C ′ never vanishes.

11See Ref. [20], pp. 253-257.
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Solving (21) for B and substituting therefrom for B into (16) yields, after
some algebra

C ′(C ′/C + 2A′/A− 4C ′/JAC) = 0.(22)

Since C ′ 6= 0, we obtain from the other factor in (22)

C = α2/(4/J −A)2,(23)

where α is an arbitrary nonzero constant. Substituting for C and C ′ from
(23) into (21) gives

B = 4α2A′2/JA(4/J −A)4.(24)

Substituting for B and C from (24) and (23) into (17) shows that the latter
is satisfied identically for arbitrary A. Hence, (9) becomes

ds2 = Adt2 − [4α2A′2/JA(4/J −A)4]dr2 − [α2/(4/J −A)2]dΩ2.(25)

Applying property (d) to the coefficient of dΩ2 shows that

α2/(4/J −A)2 ∼ r2 as r → ∞,(26)

which reduces to

A ∼ 4/J − α/r as r → ∞.(27)

Applying property (d) to the coefficient of dr2 adds nothing to (27), but
applying it to the coefficient of dt2 shows that J = 4. Hence (25) becomes

ds2 = Adt2 − [α2A′2/A(1 −A)4]dr2 − [α2/(1−A)2]dΩ2.(28)

A cannot be 1 since this would destroy the analyticity of the coefficient of
dΩ2. This, together with the positivity of the coefficient of dr2, shows that
A′ cannot be zero. Together with the analitycity of A, this means that
A′ is either always negative or always positive. Ruling out the former on
Newtonian grounds12, it follows from (27) that α > 0.

Finally, if A → a > 0 as r → 0, then the transformation r̄ = A(r)
would result in a diagonal set of ḡij whose elements are nonzero, finite, and
have a nonzero determinant as r → 0, which would permit the metric to
be extended to L, contrary to property (e). Hence, A must tend to zero as
r → 0. We conclude: The most general analytic, Lorentz-signature metric
satisfying (a)-(h) (and having positive mass: see footnote 12) is given in
quasipolar coordinates by (28), where α is an arbitrary positive constant,
and A(r) is an arbitrary analytic, strictly monotonic increasing function of
r which tends to zero as r → 0 and behaves like 1− α/r as r → ∞.

Comparison of (28) and (3) shows that the A(r) which gives rise to
Schwarzschild’s solution is

AS(r) = 1− α/f(r),(29)

12A′ < 0 would require α < 0, which in turn would give rise to negative mass when
compared to the Newtonian expression for the potential at large values of r [see [25]].
There seems to be no way to rule this out on the basis of (a)-(h) alone.
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which is easily seen to satisfy all of the above-mentioned requirements on
A. Moreover, if A∗ denotes any admissible choice of A, the resulting metric
can always be transformed into gS by means of the transformation

1− α/f(r̄) = A∗(r),(30)

which converts (28) into (3) with r replaced by r̄ - and equally important,
makes r̄ a strictly monotonic increasing function of r, with M0-spanning
values satisfying r̄ > 0. Thus gS can be regarded as a canonical form for the
metric of a point mass.

On the other hand, comparison of (28) and (6) shows that the A(r) which
gives rise to the Droste-Weyl metric is

ADW(r) = 1− α/r,(31)

which violates the requirement that A → 0 as r → 0.
Finally, the simplest metric obtainable is that corresponding to A(r) =

r/(r + α). This gives

ds2 = [r/(r + α)]dt2 − [(r + α)/r]dr2 − (r + α)2dΩ2.(32)

Erratum [26]

1st and 3rd lines under Eq. (6): Replace M0 by M 0.
9th line under Eq. (8): Insert “, when regarded as a mapping from M to

M ,” between “transformation” and “be”.
2nd line under Eq. (11): Replace A by A, and B by B.
Also, the proof of the requirement A(0+) = 0 is incorrect; however, the

requirement is still valid [27].
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