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We study the drag force on objects moving in a Fermi superfluid at velocities on the order of the
Landau velocity vL. The expectation has been that vL is the critical velocity beyond which the
drag force starts to increase towards its normal-state value. This expectation is challenged by a
recent experiment measuring the heat generated by a uniformly moving wire immersed in superfluid
3He. We introduce the basis for the calculation of the drag force on a macroscopic object using the
Fermi-liquid theory of superfluidity. As a technical tool in the calculations we propose a boundary
condition that describes diffuse reflection of quasiparticles from a surface on a scale that is larger
than the superfluid coherence length. We calculate the drag force on steadily moving objects of
different sizes. For an object that is small compared to the coherence length, we find a drag force
that is in accordance with the expectation. For a macroscopic object we need to take into account
the spatially varying flow field around the object. At low velocities this arises from ideal flow of the
superfluid. At higher velocities the flow field is modified by excitations that are created when the
flow velocity locally exceeds vL. The flow field causes Andreev reflection of quasiparticles and thus
leads to change in the drag force. We calculate multiple limiting cases for a cylinder-shaped object.
In the absence of quasiparticle-quasiparticle collisions we find that the critical velocity is larger than
vL and the drag force (per cross-sectional area) at 2vL is reduced by an order of magnitude compared
to the case of a small object. In a collision-dominated limit the flow shows signs of instability at a
velocity below vL.

I. INTRODUCTION

For many purposes it would be beneficial to travel fast.
The problem is that higher velocities generally require
more power. Often the force needed to move an object
increases rapidly beyond a critical velocity. For example,
an airplane exceeding the velocity of sound requires more
power as it starts to emit a cone of sound waves [1]. These
waves are stationary in the frame fixed to the airplane.
Related energy loss mechanism appears for fast charged
particles in a medium, observed as Cherenkov radiation,
when the particle velocity exceeds the velocity of light
in the medium [2]. Similar situation occurs in media
supporting waves or elementary excitations which have
nontrivial dispersion. For example, there is a critical ve-
locity for emission of waves on the surface of liquid [3, 4].
For ships this critical velocity is impractically low, but
nevertheless the power consumption of a ship increases
rapidly when the ship velocity exceeds the phase velocity
of relevant surfaces waves (leading to the concept of hull
speed). The leading waves, and the only ones in linear
approximation, have a phase velocity whose component
in the direction of the ship equals the ship velocity, and
thus are stationary in the frame of the ship. The same
concept applies to objects moving in superfluids. In this
context the condition is known as Landau criterion. Lev
Landau suggested that superfluidity results from the ab-
sence of these type of stationary elementary excitations
[5]. Such a linear-response critical velocity has been ob-
served in the boson superfluid 4He under pressure with
ions [6]. There is evidence of a similar critical velocity in
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the fermion superfluid 3He, also obtained with ions [7].
Often the critical velocity derived from a linear theory

is considered as an upper limit of low-dissipation mo-
tion. Namely, there can be other, more complicated and
nonlinear effects that lead to large dissipation already at
lower velocities. In particular, there can be eddies in the
fluid. In superfluids, the eddies consist of quantized vor-
tices. For most experiments in superfluids with either a
moving macroscopic object or flow, the motion becomes
dissipative at such low velocities that even achieving the
Landau velocity becomes difficult [8–12].

Against this background, it came as a surprise that
Bradley et al. [13] reported observation of low-dissipation
motion of a macroscopic object in superfluid 3He at veloc-
ities exceeding twice the Landau critical velocity. The ex-
periment was made in superfluid 3He-B at temperatures
T well below the superfluid transition temperature Tc.
The moving object was a wire able to move at a constant
velocity for a time span of ∼ 100 ms. The dissipation
increased gradually with increasing velocity, but there
were no particular features that could be interpreted as
a critical velocity.

The purpose of this communication is to present some
theoretical models that are related to fast motion in a
Fermi superfluid. We start by setting up the problem
and explaining some basic concepts that are used in the
calculations (Sec. II). For a pointlike impurity we cal-
culate the force which, according to expectation, van-
ishes at T = 0 for velocities below the Landau velocity,
v < vL, and starts to increase toward its normal state
value for v > vL (Sec. IV). The situation is more compli-
cated for an object larger than the coherence-length scale.
Firstly, the superfluid flow around the object causes An-
dreev reflection of quasiparticles. This reduces the num-
ber of scattered quasiparticles that are able to escape
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from the object and thus reduces the force on the object.
We demonstrate this by calculating the drag force on a
cylinder assuming an ideal-fluid flow field (Sec. V). Sec-
ondly, the flow field is modified by local pair breaking
already at object velocities less than vL. We calculate
self-consistently the velocity field in two extreme cases.
In the limit of no collisions between quasiparticles we
show that a local supercritical flow could be stable in
some range of object velocities (Sec. VI). The opposite
extreme is that full equilibrium is achieved through col-
lisions in the region near the object. In this case we find
indication of instability, possibly towards vortex forma-
tion (Sec. VII). As a technical tool in the calculations we
propose a mesoscopic diffuse-scattering boundary condi-
tion in the superfluid state (Sec. III).

II. BASIC CONCEPTS

We study a rigid object moving at velocity v in an oth-
erwise stationary medium. By Galilean invariance, this
problem is equivalent to a flow of the medium past a sta-
tionary object. We call the latter frame of reference the
object frame, which will be very useful in the following.
There is an important difference between the case of a
single object, the case studied here, and the case of there
being a distribution of objects that fill the volume under
study. The latter case appears, for example, in impure
superconductors under superflow. We briefly return to
this topic after discussion of Fig. 2.

In general, there will be a drag force opposing the mo-
tion of the object. For example, consider a fluid that can
be described by hydrodynamic theory. In the Navier-
Stokes equations, the force is caused by viscous terms
[14, 15]. At low velocities the force is linear in velocity.
With increasing velocity the viscous terms and nonlinear
convective terms in the Navier-Stokes equations cause
the flow to separate from the object surface. This leads
to eddies and a wake, which increase the drag. These
effects, however, are not our main interest in the follow-
ing, and thus we assume that they are small. Neglecting
both the viscous and the nonlinear terms in the Navier-
Stokes equations means that the system is sufficiently
described by the linearized Euler equation together with
the linearized continuity equation and boundary condi-
tions. Under these assumptions, the force vanishes for an
object moving at a constant, low velocity. Below we im-
plicitly make the same assumptions in the more detailed
theories we use.

The linearized equations allow also the determination
of the elementary excitations of the system. For exam-
ple, the hydrodynamic equations for a simple fluid have
one type of elementary excitation, the longitudinal sound
wave. The angular frequency ω of the wave is related to
the wave vector k by a linear dispersion relation ω = ck,
where c is the sound velocity. Let us consider the prob-
lem of emission of sound from a rigid object moving at
constant velocity v. For this we change to the object

frame. In this frame the frequency of the excitation is
ω′ = ω − v · k according to the Galilei transformation.
Since the source is stationary in the object frame, the
only wave that the object generates in the linear approx-
imation corresponds to zero frequency, ω′ = ω−v ·k = 0,
that is,

ω = v · k. (1)

This has to be satisfied simultaneously with the disper-
sion relation ω = ck. As a result, no waves are generated
at v < c. When v > c there is a wavefront that forms a
cone of angle α with v = vx̂, so that sinα = kx/k = c/v.
The waves carry off energy, and thus a dissipative force is
exerted on the object when v exceeds the critical velocity
c.

More generally, we can assume a medium with a gen-
eral dispersion relation ω(k) of the waves. In quan-
tum mechanics we can alternatively speak of the energy
ε = ~ω and momentum p = ~k of an elementary exci-
tation. It is standard to define phase velocity vp, the
velocity of the wave crests, and group velocity vg, the
velocity of a wave packet. For an excitation with wave
vector k these are

vp(k) =
ω(k)

k
k̂, vg(k) = ∇k ω(k). (2)

The condition for a rigid object to emit elementary exci-
tations is the same as was discussed above and given in
Eq. (1). Thus the emitted waves need to satisfy simulta-
neously ω = v ·k and ω(k). As v ·k ≤ vk, we must have
v ≥ ω(k)/k in order to be able to create an excitation
with wave vector k. The minimum of the right-hand side
is the velocity below which no excitations can be created,

vL =

(
ω(k)

k

)
min

. (3)

This is known as the Landau velocity and the condition
v < vL as the Landau criterion for superfluidity [5]. In
order to find the minimum, the gradient of ω(k)/k with
respect of k should vanish. This means that for the exci-
tation created just at the Landau velocity, the phase and
group velocities are equal. At a slightly larger v there will
be two types of emitted waves, one with group velocity
larger than vL and one with a smaller group velocity. In
order to be able to neglect the viscous force at v < vL,
we have to assume that no elementary excitations are ex-
cited initially. This means a temperature that is small
compared to the minimum of ~ω. For simplicity, we take
the limit of zero temperature, T = 0.

The most commonly observed dispersive waves are the
waves on the surface of water [3, 4]. The factors deter-
mining the dispersion are gravity and surface tension.
These waves have a critical velocity of 23 cm/s (under
standard conditions). The wave pattern generated by a
ship can to a large extent be explained by linear gravity
waves, which have vg = vp/2.

We now concentrate on a Fermi superfluid. Serene and
Rainer have formulated a general quasiclassical approach
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[16]. For consistency, our notation below is close to theirs.
The energy of a quasiparticle excitation with momentum
p is

ε(p) =
√

[ξp + u(p̂)]2 + ∆2 + a(p̂), (4)

where ξp = vF (p−pF ), pF is the Fermi momentum, vF =
pF /m

∗ the Fermi velocity, m∗ the effective mass, and
p̂ = p/p the direction of the momentum. The superfluid
has energy gap ∆. Compared to Ref. [16] we simplify
a bit by dropping the p̂ dependence of ∆. This can be
justified in the B phase of superfluid 3He at low velocities.
The dispersion relation (4) also depends on quasiparticle
potentials u and a (denoted by ũ and ã in Ref. [16]),
which by definition are even and odd in the momentum
direction, u(−p̂) = u(p̂) and a(−p̂) = −a(p̂). According
to the quasiclassical assumption all energies in the theory
are small compared to the Fermi energy ∼ vF pF . That
is, ξp, ∆, u, a, ε � vF pF , and we calculate everything
only in the leading order of these small quantities.

In equilibrium in the rest frame of the superfluid, the
quasiparticle potentials vanish, u = a = 0. We see
that in this case the minimum excitation energy is ∆,
and it is achieved at the Fermi surface p = pF . There
are two types of excitations, particle-type with p > pF
and hole-type with p < pF . Their group velocities are

vF ξpp̂/
√
ξ2
p + ∆2, which for hole-type excitations is in

the direction opposite to momentum. The Landau crite-
rion (3) gives the critical velocity

vL =
∆

pF
(5)

with a vanishingly small correction in the quasiclassical
approximation [17].

It is useful to look at the dispersion (4) in a frame
moving at velocity v with respect to the rest frame of
the fluid. In this case u = 0 but a = −pF p̂ · v [in ac-
cordance with the Galilei transformation discussed above
in connection with Eq. (1)]. The dispersion relation at
a subcritical velocity is depicted in Fig. 1(a). The ex-
citation energies are given by the blue lines, which have
ε > 0. In addition, Fig. 1(a) has black lines corresponding
to the negative branch of the square root in (4). These
can be considered as quasiparticle states that are filled
in the ground state. Removing a fermion from such a
state of momentum p is equivalent to an excitation with
momentum −p. Considering both the negative and posi-
tive energy states is called the semiconductor picture [18].
One advantage of this picture is that we can see in Fig.
1(a) that there are more filled states with negative p than
with positive p. This just corresponds to superflow with
velocity vs = −v, since we are in a frame that is moving
at velocity v with respect to the superfluid rest frame.

Figure 1(b) describes the dispersion of superfluid
quasiparticles seen in a frame moving at a supercriti-
cal velocity. In this case the part of the dispersion re-
lation with negative square root (4) has positive energy
(branches C and D). These states are filled in superfluid

(a)

(b)

FIG. 1. A sketch of the equilibrium excitation spectrum
(4) seen from a frame moving at (a) a subcritical velocity
vk = 0.5vL and (b) a supercritical velocity vk = 1.5vL. The
abscissa gives the momentum p parallel to an arbitrary di-
rection k̂, and vk is the component of the velocity in that
direction. Figure (a) uses the semiconductor picture, which
includes also negative-energy states. It has the advantage of
showing the filled states (black lines) that lead to supercur-
rent to the left. Figure (b) uses excitation picture where only
positive-energy states are shown. An object at rest in (b)
frame leads to scattering from the filled states C and D to
the empty states A and B. States A and C are particle-type
(motion in the same direction as the momentum), while B
and D are hole-type (motion in the direction opposite to the
momentum).

equilibrium state, whereas the states with positive square
root are empty. In order to avoid double representation
of states, Fig. 1(b) uses the excitation picture, where only
positive energy states are shown.

Suppose now that the moving frame is the object
frame. The object scatters quasiparticles between states
at the same energy. At a subcritical velocity this has no
effect since at a given energy all states are either filled
or empty. At a supercritical velocity there can be scat-
tering from the filled states C and D to the empty states
A and B. Such scattering causes a drag force on the ob-
ject. This scattering process is called pair breaking as it
reduces the number of Cooper pairs. It should be noted,
however, that this scattering process remains also in the
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FIG. 2. The quasiparticle energies as a function of direction
cosine cos θ = p̂ · v̂ in a frame moving at supercritical velocity
v = 1.5vL with respect to the superfluid. A stationary object
in this frame can scatter ground state quasiparticles (gray) to
the empty excited states (blue) in the energy range limited
by the dashed horizontal lines.

limit v � vL and also in the case ∆ = 0. In the lat-
ter case there are no pairs and the scattering is just the
same as the elastic impurity scattering that causes the
electrical resistivity of normal state metals at T = 0.

Figure 2 shows the allowed quasiparticle states for ar-
bitrary momentum direction cos θ = p̂·v̂. We see that for
energies 0 < ε < pF v−∆ there are incoming ground state
quasiparticles in momentum directions cos θ < −(∆ +
ε)/pF v. These are scattered elastically to empty states
with momentum directions cos θ > (∆ − ε)/pF v. The
particle-type ground state quasiparticles [C in Fig. 1(b)]
come from the front direction. The hole-type ground
state quasiparticles [D in Fig. 1(b)] come from the back
direction, as their propagation direction is opposite to the
momentum direction. The outgoing particle-type excita-
tions [A in Fig. 1(b)] come out predominantly (depending
on ε and v/vL) from the front direction and hole-type ex-
citations [B in Fig. 1(b)] from the back direction.

Let us comment on the relation of the present problem
of a moving impurity with gapless superconductivity. The
latter can appear, for example, in superconductors under
superflow [18–20]. The quasiparticle energies are similar
to those presented in Figs. 1 and 2, but the difference is
that quasiparticle equilibrium has already been achieved
by scattering. That is, all states with positive energies
are empty, while those with negative energies are filled.
Superfluid can still flow in this state as long as some
pairs survive, keeping the quasiparticle energies asym-
metric. Applied to a p-wave superfluid, namely 3He-B,
this problem has been studied in Refs. [21, 22]. These
studies imply that superfluid flow is in principle possible
at velocities exceeding the Landau velocity (5), but they
do not imply an increased critical velocity for a moving
object[23]. Another case of gapless superconductivity ap-
pears in systems with gap nodes, for example, in the A
phase of superfluid 3He [24]. There superflow is possible
although vL vanishes. We are not aware of calculations
of the pair breaking by moving objects in such systems.

In Sec. III we formulate a simple boundary condition

surface layer

far region

near region

flow lines

a quasiparticle tr
ajectory

P

Q

FIG. 3. A sketch of a wire moving in a superfluid. The curves
are flow lines of the superfluid seen in the rest frame of the
wire according to the ideal fluid model (8), see also Fig. 6(a).
The maximal velocity is reached at points P and Q where the
velocity vs(r) is twice as large as far from the wire. The near
and far regions and a thin surface layer on the wire surface
are indicated. An example quasiparticle trajectory hitting the
wire is shown.

that can be used to calculate the distribution of scattered
quasiparticles. In Sec. IV this is used to calculate the
force on a small object. By small we mean in comparison
with the superfluid coherence length ξ0 = ~vF /2πkBTc.

The moving object we consider in particular (besides
the small one) is a circular cylinder of radius R to mimic
a wire. We assume that the cylinder diameter 2R is
large in comparison with the superfluid coherence length,
R� ξ0. We assume the cylinder is moving at velocity v
perpendicular to its axis in an initially stationary super-
fluid. We need to define three different regions, which are
illustrated in Fig. 3: 1) The surface layer at the cylinder
surface of thickness on the order of ξ0. 2) The near region
around the cylinder of size on the order of the cylinder
radius R. 3) The far region at distances r � R.

The surface layer has bound quasiparticle states at en-
ergies below the gap ∆. The bound quasiparticles collide
with the wire wall at intervals ξ0/vF ∼ 10−9 s. This time
is short compared to the oscillation or acceleration time
scales of the wire, which are 10−3 s or longer. Thus we as-
sume that the distribution of these states always remains
in equilibrium in the cylinder frame. It should be noted
that this assumption automatically excludes the dissipa-
tion mechanism proposed by Lambert [25, 26] and similar
arguments presented in later work [13, 27, 28]. Another
objection against this mechanism is that the bound states
are not found to cross zero energy, at least for small ob-
jects [29].

The flow around the cylinder has to satisfy mass con-
servation. In time-independent case this means that the
divergence of the mass current vanishes,

∇ · j = 0. (6)

At T = 0 and vs < vL, all the flow is superflow, j =
js = ρsvs, and the superfluid density equals the liquid
density, ρs = ρ = mnf . Here m is the fermion mass and
nf = p3

F /3π
2~3 their equilibrium number density. The
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superfluid velocity is given by the gradient of the phase,

vs =
~

2m
∇ψ. (7)

These imply the Laplace equation ∇2ψ = 0, and one
easily finds the flow field around the cylinder,

~
2m

ψ(r) = −v cosϕ

(
R2

r
+ r

)
. (8)

This gives vs in the cylinder frame. We have represented
r in cylindrical coordinates (r, ϕ, z) with the cylinder at
the origin aligned along the z-axis. Some flow lines are
drawn in Fig. 3. It is noteworthy that the maximum
velocity, which is reached at points P and Q, is twice the
velocity v in the far region.

The flow field around a macroscopic object causes the
quasiparticle energy (4) to vary locally. A possible varia-
tion of the allowed energies on a quasiparticle trajectory
is depicted in Fig. 4. Consider first a thermally excited
hole-type quasiparticle entering from the right. In the
energy range M′ it hits the wire and is scattered there.
In the energy range N′ it cannot reach the wire since at
some locations in the near region of the wire its energy
is not in the allowed range. Instead, the quasiparticle
will be Andreev reflected back as a particle-type quasi-
particle [30]. There is only a small momentum transfer
in Andreev reflection, |p′ − p| � pF , and the momen-
tum is transferred to the superfluid condensate, not the
wire. Thus, when an incoming quasiparticle is Andreev
reflected before reaching the wire surface, it does not con-
tribute to the force on the wire. This effect has been
extensively studied by the Lancaster group in order to
calculate the thermal damping force on a wire [31–34].
We point out that Andreev reflection is important also
at T = 0 at large velocities. Namely, at the Landau ve-
locity the states N′ start shifting to negative energies.
In spite of this, states N′ remain empty because of the
energy barrier that separates them from the scattered
states at the wire surface. Thus the trajectory in Fig.
4 contributes to force only at a higher velocity v > vL,
when ε3 crosses zero and scattered quasiparticles can es-
cape from the near region. In Sec. V we calculate the
force on a cylinder assuming the quasiparticle potential
is fixed by ideal-fluid flow field (8), a = pF p̂ · vs. We
indeed find that the force becomes nonzero at a velocity
vc that is larger than the Landau velocity (5).

Another effect that has to be taken into account is that
the local superfluid velocity at points P and Q (Fig. 3)
exceeds the Landau velocity already at v = vL/2. Thus
depairing in the near region takes place starting from this
velocity. In Fig. 4 this appears as scattering from states
of the type L to L′ at velocities where ε2 is negative. This
modifies the flow field around the object from the ideal
flow profile (8). In Secs. VI and VII we calculate the flow
field at v > vL/2 in two extreme cases, and estimate its
effect on the drag force.

The theory behind all the calculations is the Fermi liq-
uid theory of superfluidity. A review of this theory is

K
L
M

K'
L'
M'

N

N'

surface near region far region

FIG. 4. The allowed quasiparticle energies on a trajectory.
Here s is the parameter along the trajectory measured from
the point on the object surface (Fig. 3). The figure gives filled
quasiparticle states with momentum to the left that are lifted
from the lower gap edge E = −∆, as in Fig. 1(a). These are
denoted by K, L, M and N. Correspondingly, there are empty
quasiparticle states with momentum to the right whose ener-
gies are reduced from the upper gap edge E = +∆, denoted
by K′, L′, M′ and N′. The filled states are responsible for the
superflow past the object. The figure corresponds to a low
velocity where ε1, ε2 and ε3 are all positive. With increas-
ing velocity the energies εi decrease and cross zero. With
ε1 < 0 the filled states K are lifted above the empty states
K′ but there is no scattering between these states as they are
not in contact with the object surface (as long as we neglect
quasiparticle-quasiparticle scattering). With ε2 < 0 the parti-
cles at states L start to scatter to states L′ (and corresponding
states on other trajectories hitting the same point on the sur-
face). The reduced current carrying capacity of states L leads
to redistribution of current pattern in the near region of the
object. With ε3 < 0, the scattered quasiparticles can escape
from the near region to the far region, and lead to dissipative
force on the object. The velocity required for ε3 to cross zero
is higher than the Landau velocity vL = ∆/pF .

given by Serene and Rainer [16]. Here we use only the
low-frequency, long-wavelength limit of the general the-
ory, which is described in Section 7 of the review [16].
The quasiparticle distribution is expressed by particle-
type and hole-type distribution functions φB1(p̂, r, ε, t)
and φB2(p̂, r, ε, t), which describe excitations traveling

at velocities v = ±vF p̂
√
ε̃2 − |∆|2/ε̃, respectively. In

addition to momentum direction p̂ and energy ε, the dis-
tributions depend on location r and time t in the general
case. We use the short-hand ε̃ = ε − a. The excitations
can also have magnetic properties, which are described
by vector distribution functions φB1 and φB2 [35]. In
this study we neglect magnetic excitations. The distri-
bution functions take values in the range [− 1

2 ,
1
2 ] and

their equilibrium form is φB1 = φB2 = − 1
2 tanh(ε/2T ).

Under a Galilei transformation to a frame moving at
uniform velocity v, the distribution functions change as
φBi(p̂, ε)→ φBi(p̂, ε+ pF p̂ · v).

We give here the equations of the low frequency dy-
namics in the simplified form that we use. An essential
quantity is the antisymmetric quasiparticle potential a.
In the approximation where we neglect all Fermi liquid
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interactions higher than first order, F sl = 0 for l ≥ 2, we
have a(p̂, r, t) = α(r, t) · p̂ and

α = mvFvs +
1

2

F s1
1 + 1

3F
s
1

∫
dΩp
4π

p̂

∫ Ec

−Ec

dε

×
{

|ε̃|√
ε̃2 − |∆|2

θ(ε̃2 − |∆|2)(φB1 + φB2)

}
.

(9)

Here
∫
dΩp denotes integration over the unit sphere of

p̂, Ec is a high energy cutoff and θ(x) is the Heaviside
step function. The parameter F s1 is related to the ef-
fective mass m∗ by m∗/m = 1 + F s1 /3. The distribu-
tions φB1 and φB2 carry independent information only on
positive energies as they are related by φB1(p̂, r, ε, t) =
−φB2(−p̂, r,−ε, t). As a first test of Eq. (9), consider
full equilibrium but seen from a frame moving with ve-
locity v. The quasiparticle distribution is then given by
φBi = − 1

2 tanh [(ε+ pF p̂ · v) /2T ]. Substituting this into
Eq. (9) gives a = −pF p̂ · v, which was claimed above.
The second test is that at T = 0 and vs < vL, a consis-
tent solution of Eq. (9) with quasiparticles in equilibrium
is a = pF p̂ · vs. For known distribution functions and a,
the mass current density is given by

j(r, t) = mvFN(0)

∫
dΩp
4π

p̂

∫ Ec

−Ec

dε

×
{

|ε̃|√
ε̃2 − |∆|2

θ(ε̃2 − |∆|2)(φB1 + φB2)

}
,

(10)

where 2N(0) = m∗pF /π
2~3 is the quasiparticle density

of states at the Fermi surface. It is worth noting that also
the supercurrent is contained in Eq. (10) through a even
though the distribution functions take their equilibrium
values, as discussed in connection with the semiconductor
model above (Fig. 1). An additional condition is that
the mass current has to be conserved, which in time-
independent case leads to Eq. (6). Equations (6), (7), (9)
and (10) form a set that determines vs at supercritical
velocities for given φB1, φB2 and |∆|. One more equation
that determines ∆(p̂, r) is needed in general, but here we
mostly assume |∆| to be a constant, for simplicity. Once
the flow field and the distribution functions are known,
we can calculate the stress tensor,

Π
↔

(r, t) = vF pFN(0)

∫
dΩ

4π
p̂ p̂

∫ Ec

−Ec

dε

×
{
θ(ε̃2 − |∆|2)(φB1 − φB2)

}
.

(11)

The force exerted on a surface with area dA and normal
n̂ is then given by (n̂ ·Π

↔
) dA.

III. BOUNDARY CONDITION

In this section we introduce a mesoscopic version of
the diffuse boundary condition for Fermi superfluids. The

diffuse boundary condition is a commonly used model to
describe the reflection of radiation or particles from a
surface. The basic assumption is that the reflected ra-
diance is independent of the direction of the incoming
radiation. The combination of diffuse and specular reflec-
tion has commonly been applied to normal-state Fermi
liquids. The application to the superfluid state can be
more complicated, in particular if the superfluid state is
modified in a surface layer. This typically occurs in non-
s-wave superconductors, where the order parameter has
nontrivial structure on the length scale of the superfluid
coherence length ξ0 from the surface. A quasiparticle re-
flected from the surface can be Andreev reflected back
to the surface from the surface layer. The classical dif-
fuse reflection model is insufficient to properly include
the repeated Andreev and bare surface reflections, and
one needs a model that works on the quantum level.
See Refs. [36–39] for discussion of some of these mod-
els. These quantum models give the “dressed” reflection
of a bulk quasiparticle, where the surface layer modifies
the bare reflection at the surface. The reflected distri-
bution generally has a smooth background and peaks in
the specular and retroreflection directions [35, 40]. For
many problems these quantum calculations are too com-
plicated. As an alternative, we formulate here a model
that mimics the diffuse reflection on a mesoscopic scale
(> ξ0). This model satisfies all the necessary conserva-
tion laws for elastic scattering. Its analytic form simpli-
fies its application to many problems. It provides a kind
of first approximation, against which more sophisticated
reflection models can be compared with.

Our starting point is the low-frequency superfluid dy-
namics as described in Sec. II. The boundary condition
can be used for arbitrary bulk gap amplitude |∆(p̂, r, t)|,
either singlet or triplet. In addition to the expression for
mass current (10), we need to define the number current
density of excitations [41],

je(r, t) = vFN(0)

∫
dΩp
4π

p̂

∫ Ec

−Ec

dε

×
{
θ(ε̃2 − |∆|2)(φB1 − φB2)

}
.

(12)

Our goal is to set up boundary condition to describe
elastic reflection from a planar piece of an impenetrable
wall. We study the problem in the rest frame of the wall,
and denote the surface normal with n̂. The boundary
condition have to obey conservation laws. Mass conser-
vation requires that the mass current component perpen-
dicular to the wall has to vanish, n̂ ·j = 0. In addition, it
is shown in Ref. [41] that the excitation number current
has to be conserved by elastic scattering, n̂·je = 0. In the
energy representation used above, the energy conserva-
tion is automatically satisfied if the outgoing excitations
are at the same energy as the incoming ones.
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On the surface we define

A(ε) =

∫
n̂·p̂<0

dΩp|n̂ · p̂|N(p̂, ε)φB1(p̂, ε)

−
∫
n̂·p̂>0

dΩp|n̂ · p̂|N(p̂, ε)φB2(p̂, ε),

B(ε) =

∫
n̂·p̂<0

dΩp|n̂ · p̂|Θ(p̂, ε)φB1(p̂, ε)

+

∫
n̂·p̂>0

dΩp|n̂ · p̂|Θ(p̂, ε)φB2(p̂, ε).

(13)

Here we have dropped the parameters r and t for sim-
plicity, and defined

Θ(p̂, ε) = θ([ε− a(p̂)]2 − |∆(p̂)|2), (14)

ν(p̂, ε) =
|ε− a(p̂)|√

[ε− a(p̂)]2 − |∆(p̂)|2
, (15)

N(p̂, ε) = ν(p̂, ε)Θ(p̂, ε). (16)

We see that A and B are fully determined by the incom-
ing excitations. We now state the boundary condition by
expressing the outgoing distributions as

φB1(p̂, n̂ · p̂ > 0, ε) =
g(ε)

2

[
ν−1(p̂, ε)A(ε) +B(ε)

]
,

φB2(p̂, n̂ · p̂ < 0, ε) =
g(ε)

2

[
−ν−1(p̂, ε)A(ε) +B(ε)

]
.

(17)

By this construction we can satisfy the conservation laws
n̂ · j = n̂ · je = 0 by fixing

g−1(ε) =

∫
n̂·p̂>0

dΩpn̂ · p̂Θ(p̂, ε), (18)

provided that n̂ · α = 0 and |∆(p̂)| = |∆(p̂)|. Here
p̂ = p̂ − 2n̂(n̂ · p̂) is the direction of specular reflec-
tion. The first condition just means that there is no flow
through the surface. The second condition limits the pos-
sible forms of the gap amplitude on the surface, but it
shouldn’t be too restrictive. The condition is fulfilled,
e.g., for s-wave superfluids and the two bulk phases of
superfluid 3He, the A phase and the B phase.

We now study some properties of the boundary condi-
tion (17). It represents diffuse reflection, since the outgo-
ing distribution depends on the incoming one through A
and B, which depend only on energy. In the normal state
|∆| = 0, and the boundary condition (17) reduces to the
standard diffuse boundary condition where g = 1/π. We
see that φB1 = φB2 = φ(ε) is a consistent solution of the
boundary condition for any a. There is conversion be-
tween the branches, that is, an incoming particle-like ex-
citation is reflected as hole-like excitation and vice versa.
Branch conversion takes place predominantly at low en-
ergies ε ∼ |∆|. At higher energies the conversion becomes

small because
√
ε̃2 − |∆|2/|ε̃| → 1. The conversion also

vanishes for a = 0 and constant |∆(p̂)| = ∆ because in

this case the factor
√
ε̃2 − |∆|2/|ε̃| =

√
ε2 −∆2/|ε| is a

function of energy only, and such factors cancel in substi-
tuting (13) into (17). The boundary condition (17) seems
to be the simplest generalization of the normal-state dif-
fusive boundary condition to superfluid state that satis-
fies the conditions n̂ · j = n̂ · je = 0.

IV. A SMALL OBJECT

In this section we calculate the drag force on a small
object using a modified version of the boundary condi-
tion introduced in Sec. III. We assume the object to be
small compared to the coherence length, but sufficiently
big that we can neglect its recoil in collisions with quasi-
particles. A negative ion in superfluid 3He could fall un-
der this characterization, see Refs. [42, 43] for reviews.
Small objects have been extensively studied using the
quantum approach, modeling the scattering of quasipar-
ticles from the object by scattering phase shifts [44–48].
We are interested in the motion of the object at veloci-
ties exceeding the Landau critical velocity. This problem
was previously studied by Bowley assuming a constant
cross section [49], and by Ashauer and Rainer using the
quantum approach [29, 41, 50]. Ashauer and Rainer give
examples of the scattered quasiparticle distributions, but
do not calculate the drag force.

We study the problem in the rest frame of the object,
with the object located at the origin. The diameter of
the object is denoted by d. We assume that d � ξ0.
The boundary condition of Sec. III was formulated for a
piece of wall with normal n̂. In order to satisfy conser-
vation of mass and excitation number, we required that
the normal components of j and je vanish at the surface,
n̂ · j = n̂ · je = 0. In the case of a small object we use a
slightly modified approach. We are only interested in the
behavior of the flow at a scale λ � d where the object
is essentially pointlike. We require that the conserva-
tion of mass and excitation number are satisfied at this
scale, meaning that the mass flux and the excitation flux
through a sphere of radius r ∼ λ around the object have
to vanish,

∫
r2dΩrr̂ ·j =

∫
r2dΩrr̂ ·je = 0. Here

∫
r2dΩr

denotes integration over a sphere of radius r, and r̂ is the
radial unit vector of the spherical coordinate system.

Following closely Sec. III, we define coefficients A and
B that depend on incident distributions,

A(ε) =

∫
dΩpN(p̂, ε)φB1(p̂,−rp̂, ε)

−
∫
dΩpN(p̂, ε)φB2(p̂, rp̂, ε),

B(ε) =

∫
dΩpΘ(p̂, ε)φB1(p̂,−rp̂, ε)

+

∫
dΩpΘ(p̂, ε)φB2(p̂, rp̂, ε).

(19)

Note that since the object is essentially pointlike, the
incident distributions with momentum direction p̂ come
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from directions r̂ = ±p̂. We propose a boundary condi-
tion where the scattered distributions are given by

φB1(p̂, rp̂, ε) =
g(ε)

2

[
ν−1(p̂, ε)A(ε) +B(ε)

]
,

φB2(p̂,−rp̂, ε) =
g(ε)

2

[
−ν−1(p̂, ε)A(ε) +B(ε)

]
,

(20)

with

g−1(ε) =

∫
dΩpΘ(p̂, ε). (21)

This satisfies the conservation laws
∫
r2dΩrr̂ · j =∫

r2dΩrr̂ · je = 0, conserves energy, and has the same
properties as the boundary condition in Sec. III.

To proceed, we assume that the object moves at a con-
stant velocity v in the laboratory frame. Since the object
is small, it does not disturb the fluid flow nor the gap.
This means that there is a uniform flow vs = −v in the
rest frame of the object with α = pFvs and |∆(p̂)| = ∆.
Incident distributions are zero-temperature equilibrium
distributions in the laboratory frame, φB1(p̂,−rp̂, ε) =
φB2(p̂, rp̂, ε) = 1/2− θ(ε+ pFv · p̂).

Calculating the integrals in Eq. (19) we see that A(ε) =
0 and

g(ε)B(ε)

2
=

{
1
2

ε
∆−α when |ε| ≤ α−∆

1
2 − θ(ε) when |ε| > α−∆

. (22)

To calculate the force F exerted on the object, we inte-
grate the radial component of the stress tensor (11) over
a sphere of radius r ∼ λ centered at the origin, resulting
in

F = θ(v − vL)
(v − vL)

2
(v + vL)

v3
Fn. (23)

Here Fn = −pFnfσv is the force in the normal state
[51], nf is the number density of fermions, and σ is the
cross-section of the particle. Similar calculation, but ap-
parently with somewhat different assumptions, was made
by Bowley [49]. His result is smaller than the one in Eq.
(23) by a factor of 1− vL/v.

The force in Eq. (23) vanishes at velocities lower than
vL since the object cannot scatter quasiparticles. At
velocities much higher than the critical velocity vL the
force approaches the normal state value. Figure 5 shows
the ratio F/Fn as a function of velocity. As a compari-
son, the figure also shows the force calculated in a case
where we don’t use the boundary condition (20), but in-
stead assume that the scattered distributions are equi-
librium distributions in the object frame, φB1(p̂, rp̂, ε) =
φB2(p̂,−rp̂, ε) = 1/2 − θ(ε). We see that the qualita-
tive behavior is similar in both cases. Critical velocities
are equal, and the results agree near the critical velocity.
At larger velocities the diffuse boundary condition (20)
yields a slightly larger force.
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FIG. 5. Drag force as a function of velocity for a small point-
like object (diameter� ξ0, see Sec. IV) and for a macroscopic
cylinder (diameter � ξ0, see Sec. V). The solid black line
(dashed red line) represents the force exerted on the point-
like object (macroscopic cylinder) assuming that the scat-
tered distributions are given by the diffuse boundary condi-
tion, Eq. (20) [Eq. (17)]. The dot-dashed green line (dotted
blue line) represents the force exerted on the pointlike ob-
ject (macroscopic cylinder) assuming that the scattered ex-
citations are given by equilibrium distributions in the object
frame, 1/2 − θ(ε). We have assumed zero temperature, con-
stant gap, no collisions between quasiparticles, and ideal flow
field. For both objects there is a clear critical velocity. For the
pointlike object the critical velocity equals the Landau veloc-
ity. In the case of the cylinder the critical velocity is shifted to
∼ 1.12vL due to the spatial dependence of the flow field. At
high velocities v � vL the forces approach the normal state
values.

V. A LARGE OBJECT IN THE
COLLISIONLESS APPROXIMATION

In this section we apply the boundary condition of Sec.
III to a cylinder of finite radius R � ξ0 moving at con-
stant velocity v = vx̂ perpendicular to its axis ẑ. We as-
sume zero temperature T = 0 and no collisions between
quasiparticles. We use the boundary condition to calcu-
late the stress tensor for a given flow field. Finally, we
use the results to calculate the drag force exerted on the
cylinder assuming an ideal flow field around the cylin-
der. The purpose of this calculation is to demonstrate
that even though the cylinder scatters quasiparticles at
velocities v > vL/2, the spatially varying flow field can
prevent them from escaping from the vicinity of the cylin-
der, thus reducing the force significantly.

We shall work in the rest frame of the cylinder. Be-
cause there are no collisions between excitations, the dis-
tribution functions satisfy [16] p̂ · ∇φBi(p̂, r, ε) = 0.
Inside the gap, i.e., at points where [ε − a(p̂, r)]2 −
|∆(p̂, r)|2 < 0, the distribution functions are not de-
fined. Thus the distribution functions are piecewise
constant along trajectories r = r0 + sp̂, where r0 is



9

fixed and s ∈ R. Andreev reflection occurs at points
[ε− a(p̂, r)]2− |∆(p̂, r)|2 = 0. At these points the distri-
bution functions are equal, φB1(p̂, r, ε) = φB2(p̂, r, ε).

In order to determine the scattered distributions (17),
we need to calculate the coefficients A, B, and g from
Eqs. (13) and (18). We split the integrals over p̂ into two
parts, over free states and over bound states. Free states
are such that, at given ε, no Andreev reflection occurs
at a trajectory along p̂. In Fig. 4 these correspond to
regions M and M′. This means that the value of the
incident distribution at the surface is equal to the value
of the distribution at the far region, which we take to be
the equilibrium distribution in the laboratory frame,

φfree
B1 (p̂, n̂ · p̂ < 0, ε) = φfree

B2 (p̂, n̂ · p̂ > 0, ε)

= φ∞Bi(p̂, ε) =
1

2
− θ(ε+ pFv · p̂).

(24)

Bound states, on the other hand, are such that Andreev

reflection occurs at some points of a trajectory along p̂.
In Fig. 4 these correspond to regions L and L′. Since
the distributions φB1 and φB2 are equal at the point of
Andreev reflection, the incident distribution φB1 is equal
to the scattered distribution φB2, and vice versa,

φbound
B1 (p̂, n̂ · p̂ < 0, ε) =

g(ε)

2

[
−ν−1(p̂, ε)A(ε) +B(ε)

]
,

φbound
B2 (p̂, n̂ · p̂ > 0, ε) =

g(ε)

2

[
ν−1(p̂, ε)A(ε) +B(ε)

]
.

(25)

Note that the regions K, K′, N and N′ in Fig. 4 are not
relevant here, since we are discussing points on the sur-
face of the cylinder.

Inserting the incident distributions into Eq. (13) leads
to a self-consistency equation for A and B,

[
−4g−1 +

∫
free

dΩp|n̂ · p̂|Θ(p̂, ε)

]
gA

2
+

[∫
free

dΩp(n̂ · p̂)N(p̂, ε)

]
gB

2
=

∫
free

dΩp(n̂ · p̂)N(p̂, ε)φ∞Bi(p̂, ε),[∫
free

dΩp(n̂ · p̂)ν−1(p̂, ε)Θ(p̂, ε)

]
gA

2
+

[∫
free

dΩp|n̂ · p̂|Θ(p̂, ε)

]
gB

2
=

∫
free

dΩp|n̂ · p̂|Θ(p̂, ε)φ∞Bi(p̂, ε).

(26)

Here we have transformed the integrals over bound states
into integrals over free states using the identity

∫
dΩp =∫

free
dΩp+

∫
bound

dΩp. This is a linear system of two equa-
tions and two unknowns, but the coefficients are quite
complicated. What can we say about the solution?

Let us consider a fixed point r0 on the surface of the
cylinder. Free states satisfy [ε−a(p̂, r)]2−|∆(p̂, r)|2 > 0
along the whole trajectory r = r0 + sp̂. Here s ≥ 0
if n̂ · p̂ > 0 and s ≤ 0 if n̂ · p̂ < 0. Let us denote
E±(p̂, r) = a(p̂, r)±|∆(p̂, r)|. In addition, let us denote
the maximum and the minimum of E±(p̂, r) along the
trajectory by E±max(p̂, r0) and E±min(p̂, r0), respectively.
We can then split the free states into two categories, F1 =
{p̂ |E+

max(p̂, r0) < ε} and F2 =
{
p̂ |E−min(p̂, r0) > ε

}
.

If both F1 and F2 are empty, Eq. (26) tells us that A =
0, but leaves B unspecified. Since all states are bound,
it is natural to assume that they are in equilibrium with
the cylinder. We therefore have gA/2 = 0 and gB/2 =
1/2 − θ(ε). If either F1 or F2, but not both, is empty,
we see that the solution to Eq. (26) is gA/2 = 0 and
gB/2 = 1/2−θ(ε). If neither F1 nor F2 is empty, then we
need to calculate the coefficients in Eq. (26) numerically.

Let us study the regions F1 and F2 more closely. Re-
gion F1 is empty when minp̂ {E+

max(p̂, r0)} ≥ ε. Region
F2 is empty when maxp̂

{
E−min(p̂, r0)

}
≤ ε. For pure

singlet or pure triplet superfluid we have E−(−p̂, r) =
−E+(p̂, r). This means that region F2 is empty when
minp̂ {E+

max(p̂, r0)} ≥ −ε. Thus neither of the regions is

empty when |ε| < −minp̂ {E+
max(p̂, r0)}. If we define

E(r0) = −min
p̂

{
E+

max(p̂, r0)
}
θ

(
−min

p̂

{
E+

max(p̂, r0)
})

,

(27)
then the only non-trivial region of energies where we need
to calculate A and B numerically is |ε| < E . When |ε| ≥
E , the scattered distributions are φB1(p̂, n̂ · p̂ > 0, ε) =
φB2(p̂, n̂ · p̂ < 0, ε) = 1/2− θ(ε). Physically the fact that
E is zero means that no quasiparticles can escape from
the vicinity of the cylinder.

The drag force exerted on the cylinder is given by

F = l

∫ π

−π
Rdϕn̂ ·Π

↔
(R,ϕ). (28)

Here l is the length of the cylinder and ϕ is the azimuthal

angle around the cylinder. The stress tensor Π
↔

is given
by Eq. (11). We split the integral over p̂ again into two
parts, over free states and over bound states. Substi-
tuting the incident and scattered distributions into the
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integrand yields

Π
↔

(R,ϕ) = 2vF pFN(0)

∫ E
0

dε

∫
free

dΩp
4π

p̂p̂Θ(p̂, ε)

×
{
g(ε)A(ε)

2
ν−1(p̂, ε) +

g(ε)B(ε)

2
sgn(n̂ · p̂)

− sgn(n̂ · p̂)φ∞Bi(p̂, ε)

}
.

(29)

Due to symmetries, the force is purely opposite to the
direction of motion, i.e. F = −F v̂. We see that the force
vanishes when E = 0 at all points on the surface of the
cylinder. This means that the critical velocity can be
defined as the smallest velocity for which E > 0.

We conclude this section by applying the above results
to the case of ideal flow around the cylinder. The ideal
velocity field is given by Eqs. (7) and (8), while the α-
field is given by α = pFvs. We also assume that the
gap amplitude is constant, |∆(p̂, r)| = ∆. Note that the
ideal flow field is not consistent with Eqs. (6), (7), (9) and
(10) at velocities v > vL/2. It is, however, a reasonable
starting point. Self-consistent flow will be considered in
Secs. VI and VII.

Figure 5 shows the force as a function of v in the case
of the ideal flow. The unit of force is chosen to be the
normal-state value [51] Fn = 43π

48 pFnfvlR. We see that
the critical velocity is increased from vL, and is now ap-
proximately 1.12vL. This is slightly smaller than 8vL/7,

which is when ε3 crosses zero (at s =
√

3R) on a tra-
jectory along p̂ = v̂ starting from either P or Q (see
Figs. 3 and 4). For velocities v < 2vL the ratio F/Fn
is nearly an order of magnitude smaller than in the case
of the small object. This shows the importance of the
spatial variation of the flow field. At high velocities the
force approaches the normal state value. It is again in-
teresting to compare the force we obtained above with
the force that is obtained if, instead of the boundary
condition (17), we assume that the scattered distribu-
tions are equilibrium distributions in the object frame,
φB1(p̂, n̂ · p̂ > 0, ε) = φB2(p̂, n̂ · p̂ < 0, ε) = 1/2 − θ(ε).
This is also shown in Fig. 5. As in the case of the small
object, the two different boundary conditions lead to a
qualitatively similar force. Both boundary conditions
yield the same critical velocity. The results agree near
the critical velocity, but start to deviate slightly from
each other at larger velocities where the diffuse bound-
ary condition (17) produces larger force.

VI. SELF-CONSISTENT FLOW IN THE
COLLISIONLESS APPROXIMATION

We shall now study how the excitations modify the
ideal-fluid flow field around the cylinder. We assume
that there are no collisions between quasiparticles. We
also assume zero temperature T = 0 and constant gap
|∆(p̂, r)| = ∆.

Let us define

I(r) =

∫
dΩp
4π

p̂

∫ Ec

a(p̂,r)+∆

dεN(p̂, ε, r)

×
{(

φB1(p̂, ε, r) +
1

2

)
+

(
φB2(p̂, ε, r) +

1

2

)}
.

(30)

Using Eqs. (9) and (10) we can write the mass current
density j as a sum of two parts,

j = mnfvs +
3m∗nf
pF

I. (31)

The first part here is explicitly proportional to the su-
perfluid velocity, while the second part depends on exci-
tations. Indeed, if there are no excitations present, then
φBi = −1/2, and thus I = 0. The set of equations (6),
(7), (9) and (10) that determine the flow can be written
as

α = pFvs + F s1 I, (32)

∇2ψ = − 2m

~pF
(3 + F s1 )∇ · I, (33)

vs =
~

2m
∇ψ. (34)

The integral in (30) is calculated over the upper
branches of states in Figs. 1, 2 and 4, denoted by blue
color. In order to carry out the integration, we need
to know the distribution functions φBi for these states.
Let us consider a fixed point r0 in the fluid. Since we
assumed that there are no collisions between quasiparti-
cles, the distribution functions φBi(p̂, ε, r) are piecewise
constant along trajectories r = r0 +sp̂, s ∈ R, as we saw
earlier.

If the excitations originate from the far region, then
we assume equilibrium in the laboratory frame, φBi =
φ∞Bi = 1/2− θ(ε+ pFv · p̂).

If the excitations originate from the surface of the
cylinder, then the distributions are determined by the
boundary condition (17), φBi = φbc

Bi. We saw in Sec.
V that when the velocity of the cylinder is below the
critical velocity, the scattered distributions are φbc

Bi =
1/2 − θ(ε). At higher velocities the scattered distribu-
tions are smoothed, and their widths are given by 2E .
The corrections to I caused by smoothing of the scat-
tered distributions are of order E . This means that at
velocities near the critical velocity, where E is small, the
approximation φbc

Bi ≈ 1/2 − θ(ε) is a decent one. We
already saw this earlier when we calculated the force ex-
erted on the small object and on the cylinder assuming
ideal flow, see Fig. 5. We shall therefore approximate
φbc
Bi = 1/2− θ(ε) in order to simplify the calculations.
Finally, it is possible that there are excitations trapped

in the fluid, φBi = φtrap
Bi . These excitations cannot reach

either the far region or the surface of the cylinder, but are
instead localized somewhere in the flow field, bouncing
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back and forth due to repeated Andreev reflections. In
this case we consider two different models.

In Model 1 we assume that the excitations are in equi-
librium with the local flow, φtrap

Bi = 1/2−θ(ε−a), meaning
that the states are always empty, since ε ≥ a + ∆. The
reasoning behind this model is that, once the equilibrium
is reached, there is no way for the excitations to scatter
into these states.

In Model 2 we assume two different distributions de-
pending on p̂. On trajectories that do not intersect
the cylinder the excitations are still in equilibrium with
the local flow, φtrap

Bi = 1/2 − θ(ε − a). On trajecto-
ries that do intersect the cylinder however, we assume
that the excitations are in equilibrium with the cylinder,
φtrap
Bi = 1/2−θ(ε). The reasoning behind this model is the

following. In the experiment the wire starts from rest and
is accelerated until it reaches velocity v. At velocities be-
low vL/2 there are no excitations present anywhere, since
the local flow velocity is below vL everywhere. At higher
velocities excitations start to emerge from regions on the
surface of the wire where the flow velocity exceeds vL.

These excitations, in turn, modify the flow near the wire.
It could then be possible that the flow field is modified in
such a way that some of these excitations get trapped in
the fluid. Note that since the excitations originate from
the surface of the cylinder, their p̂ points either towards
or away from the cylinder, and their distributions are de-
termined by the boundary condition, which we assumed
to be the equilibrium distribution 1/2− θ(ε).

In reality the acceleration of the wire is a complicated
process which should be modelled dynamically, but here
we consider these two simple extremes. A third model,
where we assume that all of the excitations trapped in the
fluid are in equilibrium with the cylinder, φtrap

Bi = 1/2−
θ(ε), is considered in Sec. VII. This equilibrium could be
achieved through quasiparticle-quasiparticle collisions.

At fixed r and p̂ we split the integration region over
energy into sets M′, L′, N′, K′ according to Fig. 4. In
regions M′, L′ and N′ the excitations originate either from
the far region or the surface of the cylinder, depending
on p̂ and the type of the excitation (B1 or B2). In region
K′ the excitations are trapped in the fluid. Substituting
the distributions into Eq. (30) yields

I(r) =

∫
hit+

dΩp
4π

p̂

{∫ Ec

εmax

dεN(p̂, ε, r)

(
φbc
B1(p̂, ε, r) +

1

2

)
+ 2

∫ εmax

ε2

dεN(p̂, ε, r)

(
φbc
B1(p̂, ε, r) +

1

2

)}

+

∫
hit−

dΩp
4π

p̂

{∫ Ec

εmax

dεN(p̂, ε, r)

(
φbc
B2(p̂, ε, r) +

1

2

)
+ 2

∫ εmax

ε2

dεN(p̂, ε, r)

(
φbc
B2(p̂, ε, r) +

1

2

)}

+

∫
hit

dΩp
4π

p̂

{
2

∫ εmin

ε0

dεN(p̂, ε, r)

(
φtrap
Bi (p̂, ε, r) +

1

2

)}
(35)

Here
∫

hit+
(
∫

hit−) means integration over trajectories

that intersect the cylinder with n̂ · p̂ > 0 (n̂ · p̂ < 0), and∫
hit

=
∫

hit+
+
∫

hit−. The limits of energy integration are

defined as ε0(p̂, r) = a(p̂, r)+∆, ε2(p̂, r) = amax<(p̂, r)+
∆, ε3(p̂, r) = amax>(p̂, r) + ∆, εmin = min{ε2, ε3}, and
εmax = max{ε2, ε3}. Here amax<(p̂, r0) [amax>(p̂, r0)] is
the maximum of a(p̂, r) towards (away from) the cylinder

along r = r0 + sp̂.

Let us now consider each of the models separately. In
Model 1 we denote I = I1 and substitute φbc

Bi = 1/2 −
θ(ε), φtrap

Bi = 1/2 − θ(ε − a) into Eq. (35). In Model
2 we denote I = I2 and substitute φbc

Bi = 1/2 − θ(ε),

φtrap
Bi = 1/2− θ(ε) into Eq. (35). This yields

I1(r) =

∫
hit

dΩp
2π

p̂ θ [−amax<(p̂, r)−∆]

{√
a(p̂, r)2 −∆2 −

√
[amax<(p̂, r)− a(p̂, r) + ∆]

2 −∆2

}
−
∫

hit

dΩp
4π

p̂ θ [−amax(p̂, r)−∆]

{√
a(p̂, r)2 −∆2 −

√
[amax(p̂, r)− a(p̂, r) + ∆]

2 −∆2

}
, (36)

I2(r) =

∫
hit

dΩp
2π

p̂ θ [−a(p̂, r)−∆]
{√

a(p̂, r)2 −∆2
}

−
∫

hit

dΩp
2π

p̂ θ [−amax>(p̂, r)−∆]

{√
a(p̂, r)2 −∆2 −

√
[amax>(p̂, r)− a(p̂, r) + ∆]

2 −∆2

}
+

∫
hit

dΩp
4π

p̂ θ [−amax(p̂, r)−∆]

{√
a(p̂, r)2 −∆2 −

√
[amax(p̂, r)− a(p̂, r) + ∆]

2 −∆2

}
. (37)
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In numerical calculations we measure α, I, ∆, and ε
in units of pF v, vs in units of v, r in units of R, and ψ in
units of 2mvR/~. In these units the flow equations (32),
(33) and (34) may be written as

α = δvs + v0 + F s1 I, (38)

∇2δψ = −(3 + F s1 )∇ · I, (39)

∇δψ = δvs, (40)

where the field δvs = vs−v0 represents the modification
to the ideal flow v0 [see Eqs. (7) and (8)] caused by the
presence of excitations. For a given δvs the field α can
be solved from Eq. (38). Calculation of the integral I
at location r0 requires a search for directions and energy
ranges in which excitations are able to escape the cylinder
surface into the surrounding liquid. These depend on the
value of α along trajectories r = r0 + sp̂ that intersect
the cylinder surface. In the discrete version of Eq. (38)
the value of α(r0) may thus depend on α(r) at any point
on these trajectories. This means that we have no a priori
knowledge of the form of the Jacobian of Eq. (38) and
sophisticated methods of solving α are not available to
us. We solve α using a simple fixed-point iteration

α(k+1) = α(k) − α
(k) − f(α(k))

1−M , (41)

where f(α) is the right-hand side of Eq. (38). This is
akin to the Newton-Raphson method [52], but instead
of calculating the derivative of f(α) we approximate it
with the parameter M ∼ 2. We begin the iteration with
α(0) = v0.

We use the finite difference method to solve the conti-
nuity equation (39) in cylindrical coordinates. Because of
symmetry conditions, we only need to solve the system in
a single quadrant of the space surrounding the cylinder,
0 ≤ ϕ ≤ π/2 and 1 ≤ r ≤ R∞. Here R∞ is a computa-
tional cutoff radius. The symmetry conditions translate
to boundary conditions (∂ϕδψ)(r, ϕ = 0) = δψ(r, ϕ =
π/2) = 0. In addition there should be no flow through
the surface of the cylinder and the flow should not be
modified far from the cylinder. For δψ these conditions
mean (∂rδψ)(r = 1, ϕ) = (∂rδψ)(r = R∞, ϕ) = 0. The
cutoff radius R∞ needs to be sufficiently large in order to
satisfy the latter condition. We use R∞ = 6 and our lat-
tice spacings are δr ∼ 10−2 and δϕ ∼ 10−2. The lattice
is more tightly spaced close to the cylinder surface.

We can expect the magnitude of δvs to approach zero
as we move away from the cylinder. For cylinder veloc-
ities below vL/2 the term on the right-hand side of Eq.
(39) disappears. This means that, due to our boundary
conditions, the quantity δψ is identically zero and the
ideal flow is unmodified. For cylinder velocities above
vL/2 but under vL the Landau velocity is exceeded lo-
cally, which leads to deviation from the ideal flow in the
near region. For cylinder velocities above vL the Lan-
dau velocity is exceeded even far from the cylinder, but
the right-hand side of Eq. (39) still approaches zero at

large distances as the solid angle covered by the cylinder
becomes small.

We employ the method of successive under-relaxation
[52] in an attempt to introduce stability to our iterative
process. Potential δψ at iteration step k is

δψ(k) = τδψ
(k)
C + (1− τ)δψ(k−1), (42)

where δψ
(k)
C is solved from the continuity equation (39)

using I at iteration step k. We start the iteration from
δψ(0) = 0. For under-relaxation, the relaxation parame-
ter τ ∈ ]0, 1[. All numerical results use F s1 = 5.4, which
is the zero pressure value in liquid 3He.

Results for the self-consistent α using I1 (36) and I2

(37) are shown in Fig. 6 together with the ideal flow,
for which α = pFv0. In Model 1 and Model 2, when
compared to the ideal flow, the magnitude of α is reduced
near the cylinder surface. Excitations in this region cause
a nonzero I and as a result αmust change in order for the
self-consistency equation (38) to be satisfied. Far away
from the cylinder the flow is unmodified.

The difference between Model 1 and Model 2 arises
from the occupation of K′-type states. These do not di-
rectly interact with the cylinder surface, but when occu-
pied will locally modify the superflow in a manner that
reduces α in the vicinity of the cylinder surface.

Figure 7 shows δvs-fields corresponding to the α-fields
in Fig. 6(b) and Fig. 6(c). The fields δvs are such that
part of the flow is driven to circumvent the areas close to
the cylinder surface where Landau velocity is exceeded
locally. This reduces the superfluid flow velocity towards
the cylinder in the front region and thus increases ε3 (Fig.
4). The same effect is present at higher velocities where
it leads to a reduction in the drag force compared to the
ideal-fluid case where I = 0. This effect is greater in
Model 2 where K′-type states are in equilibrium with the
cylinder. Total mass current is given by Eq. (31). The
term proportional to I represents a quasiparticle current
flowing in a direction opposite to vs, ensuring that mass
current is conserved.

After we have solved the self-consistent flow field, we
can calculate the force exerted on the cylinder. This is
given by Eqs. (28) and (29). Since we have assumed that
the scattered distributions are 1/2−θ(ε) when calculating
the flow field, we shall make the same assumption when
calculating the force. This means that we can substitute
gA/2 = 0 and gB/2 = 1/2−θ(ε) into Eq. (29). As we saw
in Secs. IV and V, and in Fig. 5, this will likely underes-
timate the force compared to using the exact boundary
condition, but the difference should be small in the vicin-
ity of the critical velocity.

Figure 8 shows the force calculated for the ideal flow
field, Model 1, and Model 2. The critical velocities are
equal in all three cases, approximately 1.12vL. The self-
consistent flow fields, Model 1 and Model 2, both yield
a force that is smaller than in the case of the ideal flow
field. The force for Model 1 is slightly larger than for
Model 2, but the difference between the two is small. The
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(a) Ideal flow (b) Model 1 (c) Model 2

FIG. 6. The field α in units of pF v calculated in three different cases: (a) Ideal-fluid flow field, valid at v < 0.5vL, where
α = pFvs and vs is given by Eqs. (7) and (8). (b), (c) Two models for self-consistent flow at v = 0.8vL. The field α gives the
quasiparticle potential a = α · p̂ in the dispersion relation (4). The gray segment of a disk represents the cylinder. The color
gradient signifies the magnitude of the field, and the stream lines its direction. Contour lines of constant magnitude are also
displayed at intervals of 0.1pF v. The distinguishing feature of the self-consistent models is the suppression of α near the top
surface of the cylinder, where locally vs > vL, to the degree that the field maximum has detached from the cylinder surface.
This happens for both models, but is more pronounced in Model 2. In Model 1 this suppression leads to a sharp gradient of α
near the cylinder surface.

(a) Model 1 (b) Model 2

FIG. 7. Modification to the ideal flow, δvs, in units of v at v = 0.8vL, corresponding to the quasiparticle potentials in Fig.
6(b) and Fig. 6(c). The gray segment of a disk represents the cylinder. The color gradient signifies the magnitude of the field
in question, and the stream lines its direction. Contour lines of constant magnitude are also displayed at intervals of 0.01v.
The ideal flow is modified in a manner that diverts the liquid from the regions where Landau velocity is exceeded locally. In
addition to the mass flow proportional to vs, there is a quasiparticle current ∝ I that on top of the cylinder is to the right.
The total current given by Eq. (31) is conserved.

similarity in forces between the two models is likely due to
the fact that, despite the differences in the α fields close
to the cylinder, the energy ε3 of Fig. 4 along quasiparticle
trajectories is mostly the same. The states bound to the
vicinity of the cylinder affect the force only by means of
raising or lowering this energy barrier, which in this case
is minimal.

VII. EQUILIBRIUM IN THE NEAR REGION

In the previous section we studied how the flow field
around a cylinder is modified when there are no collisions
between quasiparticles. In this section we assume the op-
posite extreme where, due to quasiparticle-quasiparticle
collisions, full equilibrium with the cylinder has been
achieved in the near region. We assume that the far re-
gion is still in equilibrium with the laboratory frame, and
that the gap amplitude there is isotropic, |∆(p̂)| = ∆.
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FIG. 8. Drag force exerted on a macroscopic cylinder (di-
ameter � ξ0) as a function of velocity in the collisionless ap-
proximation. The force is calculated for three different flow
fields, the ideal flow (solid black line), Model 1 (dashed red
line), and Model 2 (dotted blue line), see Secs. V and VI.
As a comparison, the figure also shows the force exerted on
a small pointlike object (diameter � ξ0) (dot-dashed green
line), see Sec. IV. In all cases we have assumed that the scat-
tered distributions are equilibrium distributions in the object
frame, 1/2 − θ(ε), since this was used to calculate the flow
fields in Model 1 and Model 2. We have also assumed zero
temperature, constant gap and F s

1 = 5.4, corresponding to
zero pressure in liquid 3He.

This situation can only be achieved at cylinder velocities
v less than the Landau velocity vL = ∆/pF . Unlike in
the collisionless case, we allow the gap amplitude to be-
come anisotropic in the near region. Parametrizing the
momentum direction as p̂ = p⊥+p‖α̂, where p⊥ · α̂ = 0,
the square of the gap amplitude in a p-wave superfluid
can be written as |∆(p̂, r)|2 = ∆⊥(r)2p2

⊥ + ∆‖(r)2p2
‖.

We shall study the system in the rest frame of the cylin-
der at T = 0. The flow obeys the same equations (32),
(33), and (34) as it did in the collisionless case. When
calculating I, we can use distributions φBi = 1/2− θ(ε)
everywhere. These describe equilibrium with the cylin-
der, which is required in the near region. In the far re-
gion I vanishes as it should, since there are no excitations
present.

Substituting the distributions and the gap amplitude
into Eq. (30) yields

I = −1

3
θ(α−∆‖)

(α2 −∆2
‖)

3/2

α2 + ∆2
⊥ −∆2

‖
α̂. (43)

We see from Eq. (32) that I and vs are parallel and
subsequently we can express the mass current density as

j = ρs(vs)vs. (44)

Here ρs is the superfluid density, which depends on the
magnitude of the superfluid velocity. The value of ρs is

0
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⊥
/∆
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FIG. 9. The equilibrium mass current j in units of j0 =
mnfvL for self-consistent gap (solid black line) and for con-
stant gap ∆ (dashed red line), together with the parallel and
perpendicular components of the self-consistent gap, ∆‖ (dot-
ted blue line) and ∆⊥ (dot-dashed green line), as functions
of superfluid velocity vs, with F s

1 = 5.4. See Refs. [21, 22] for
details.

given by

ρs(vs) = mnf −
mnf
pF

(3 + F s1 )
I(α(vs))

vs
, (45)

where α(vs) is the solution of the nonlinear equation

α = pF vs −
F s1
3
θ(α−∆‖)

(α2 −∆2
‖)

3/2

α2 + ∆2
⊥ −∆2

‖
. (46)

We can write Eqs. (32), (33), and (34) as

∇ · [ρs(vs)vs] = 0, (47)

vs =
~

2m
∇ψ. (48)

So far we have not specified the gap functions ∆‖ and
∆⊥. Obviously the correct choice would be to determine
∆‖ and ∆⊥ self-consistently from the gap equation. This
has been done in Refs. [21], [22]. The result is that for
F s1 = 5.4 both ∆‖ and ∆⊥, as well as j, are single-valued
functions of vs, see Fig. 9. (This is not the case for F s1 =
0.) For vs < vL the gap components are constants and j
grows linearly. Increasing vs beyond vL, the parallel gap
component ∆‖ drops rapidly to zero. The perpendicular
gap component ∆⊥ first grows slightly. Current j drops
sharply, recovering minutely as ∆⊥ begins to decrease.
Both ∆⊥ and j go to zero at vs = 5.3vL.

The equilibrium problem now consists of finding the
solution of Eqs. (47) and (48) with proper boundary con-
ditions. At v < vL/2 the solution is the ideal superfluid
flow (8). We have attempted to find a solution numeri-
cally at v > vL/2, but have been unsuccessful.
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In order to gain insight into the failure to find a stable
solution at v > vL/2, we have considered an alterna-
tive model. Instead of using the gap equation, we have
assumed a constant gap ∆‖ = ∆⊥ = ∆, which is inde-
pendent of vs. As seen in Fig. 9, in this case the mass
current j first increases slightly beyond vL, but after that
is a monotonically decreasing function of vs. It drops
more slowly than in the case of the self-consistent gap
and does not vanish at any finite vs.

Figure 10 displays numerical results for fields α and
δvs = vs − v0 in the case of the constant gap at
v = 0.65vL. We see that, unlike in the collisionless ap-
proximation, there is a region near the top surface of the
cylinder where the magnitude of α is larger than in the
case of the ideal flow. In the same region the length of
δvs is an order of magnitude larger than in the collision-
less approximation. In fact, δvs is of the same order as
v0, thus significantly changing the flow pattern. Outside
this region the flow is not significantly modified. For our
preferred lattice the calculation becomes nonconvergent
at velocities slightly greater than 0.7vL. Decreasing the
lattice spacing leads to nonconvergence at even lower ve-
locities.

What causes the difference between the collisionless
models and the equilibrium models is the number of ex-
citations present in the flow field, which can be much
larger in the latter case. This also explains the insta-
bility of the flow in the equilibrium models. In order
to satisfy conservation of mass, the local mass current
on the y-axis has to be larger than the far-region value
j∞ = mnfv. In ideal fluid j ∝ vs, and thus the mass
current can be increased simply by increasing the super-
fluid velocity. Increasing vs beyond the Landau velocity
also builds up the excitation current ∝ I opposite to the
direction of superflow, decreasing the total mass flow. In
the collisionless approximation I is generally small, since
only those trajectories that collide with the object con-
tribute to it. This means that increasing vs still increases
j, although at a smaller rate than for ideal fluid. In the
equilibrium model, however, I is so large that j starts to
decrease when vs is increased from ∼ vL, meaning that
j has a maximum value. Because of this, the equilib-
rium models have no solution at high enough velocities,
since it is not possible to satisfy conservation of mass.
The difference in convergence between the two equilib-
rium models seems to have the same origin. In addition
to these two, we have tested other j(vs) functions. It
seems that especially the sharp drop in j(vs) at vs = vL
is the cause of the instability of the self-consistent-gap
model.

The lack of convergence apparently means that the
true physical solution is not consistent with the assump-
tions made. The theory presented here is limited to long
length scale, time-independent solutions with a singly de-
fined phase ψ. Thus there could be an instability to some
time-dependent state that could have vortex-type struc-
tures.

VIII. SUMMARY

We have investigated objects moving in superfluid
Fermi liquid at velocities on the order of the Landau
velocity. The prevailing assumption that an object ex-
ceeding the Landau velocity would experience a sudden
onset of drag force seems to hold true only for objects
much smaller than the coherence length. For a large ob-
ject the fluid has to be pushed away from the object’s
path, resulting in a spatially varying flow field that af-
fects the quasiparticle energies. This leads to Andreev
reflections that prevent some excitations from escaping
into the surrounding fluid. Perhaps counterintuitively,
the critical velocity is increased and the drag force de-
creased.

This work was to a large extend motivated by the ex-
periment by Bradley et al. [13]. The drag force they mea-
sure is reduced from the normal-state value by a factor
on the order of 10−5 at v = 2vL. In the absence of col-
lisions between quasiparticles, we calculate theoretically
a reduction factor on the order of 10−2. In the opposite,
collision-dominated limit our calculation implies an in-
stability. The main theoretical problem concerning the
interpretation of the experiment is whether there could
be an intermediate state between the two limiting cases,
one with additional shielding factor three orders of mag-
nitude greater compared to the collisionless limit. Also,
what is the nature of this state? Does it contain vortices
and in what configuration? Is it a stable or a transient
state?

There are several limitations in the present work. It
is limited to time-independent states. Only two extreme
cases of quasiparticle-quasiparticle collisions were stud-
ied. Vortex-like structures were excluded. We have used
a simple boundary condition that ignores quantum pro-
cesses such as Andreev reflection and generation of mag-
netic excitations in the surface layer. We considered only
uniform motion, which leaves the occupation of trapped
states ambiguous in the collisionless limit. The assump-
tion of a constant, isotropic gap was also made in the
collisionless limit. We have assumed zero temperature
and a steplike distribution for the scattered quasiparti-
cles. The work presented here should be seen as the first
theoretical study of the drag force on a macroscopic ob-
ject exceeding the Landau velocity in a Fermi superfluid.
We hope our work stimulates further experimental and
theoretical studies on this topic.
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(a) α (b) δvs

FIG. 10. Equilibrium in the near region assuming constant ∆: (a) α in units of pF v and (b) δvs in units of v. The parameters
are v = 0.65vL, T = 0, and F s

1 = 5.4. For α, the contour lines are placed at intervals of 0.1pF v and for δvs at intervals of
0.25v. Note that the magnitude of δvs is much greater than in the collisionless case (Fig. 7), in spite of the smaller cylinder
velocity.
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