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We report the low-frequency and tunneling studies of yttrium hexaboride single crystal. Ac
susceptibility at frequencies 10 - 1500 Hz has been measured in parallel to the crystal surface DC
fields, H0. We found that in the DC field H0 > Hc2 DC magnetic moment completely disappears
while the ac response exhibited the presence of superconductivity at the surface. Increasing of
the DC field from Hc2 revealed the enlarging of losses with a maximum in the field between Hc2

and Hc3. Losses at the maximum were considerably larger than in the mixed and in the normal
states. The value of the DC field, where loss peak was observed, depends on the amplitude and
frequency of the ac field. Close to Tc this peak shifts below Hc2 which showed the coexistence
of surface superconducting states and Abrikosov vortices. We observed a logarithmic frequency
dependence of the in-phase component of the susceptibility. Such frequency dispersion of the in-
phase component resembles the response of spin-glass systems, but the out-of-phase component
also exhibited frequency dispersion that is not a known feature of the classic spin-glass response.
Analysis of the experimental data with Kramers-Kronig relations showed the possible existence of
the loss peak at very low frequencies (< 5 Hz). We found that the amplitude of the third harmonic
was not a cubic function of the ac amplitude even at considerably weak ac fields. This does not
leave any room for treating the nonlinear effects on the basis of perturbation theory. We show
that the conception of surface vortices or surface critical currents could not adequately describe
the existing experimental data. Consideration of a model of slow relaxing nonequilibrium order
parameter permits one to explain the partial shielding and losses of weak ac field for H0 > Hc2.

PACS numbers: 74.25.Nf, 74.25.Op, 74.70.Ad

I. INTRODUCTION

There is a growing interest in exploring physical prop-
erties of materials involving boron-cluster compounds be-
cause of a wide variety of applications [1]. Due to sp2 hy-
bridization of valence electrons, large coordination num-
ber and short covalent radius, boron atoms prefer to form
strong directional bonds with various elements. A large
number of experimental and theoretical studies are con-
centrated on the families of compact B12 icosahedrons
and B6 octahedrons with a large diversity of electrical
and magnetic characteristics. The highest critical tem-
peratures of the transition to the superconducting state
in MB6 and MB12 compounds were found in YB6 with
Tc ≤ 8.4 K and ZrB12 with Tc ≈ 6.0 K [2]. Both materials
have a highly symmetrical crystal structure (CaB6type
for YB6 and UB12 type for ZrB12) that can be described
as boron cages in which yttrium or zirconium atoms de-
velop large vibrational amplitudes with an Einstein-like
(nearly dispersionless) lattice mode. In spite of some
common features, the two crystals have a few distinct
physical characteristics: (i) while YB6 is a classical type-
II superconductor [3], ZrB12 (at least, for temperatures
above 4.5 K) may be regarded as a textbook example of

type-I superconductor [4]; (ii) while the superconducting
properties are enhanced at the ZrB12 surface [4], they
are suppressed in a YB6 surface (see our tunneling data
below). Therefore, ZrB12 and YB6 samples may serve
as model systems for investigating surface-related super-
conducting effects.

Nucleation of a superconducting phase in a thin sur-
face sheath, when the DC magnetic field, H0, paral-
lel to the sample surface decreases, was predicted in
1963 by Saint-James and de Gennes in their seminal
work [5]. They showed that the nucleation occurs for
H0 < Hc3 = 2.39κHc, where Hc is the thermodynamic
critical field and κ is the Ginzburg-Landau(GL) param-
eter. Experimental measurements confirm this predic-
tion [6, 7, 8, 9, 10, 11, 12], and it was found that at low
frequencies a sample in a surface superconducting state
(SSS) shows ac losses with a peak whose position with
respect to the DC field depends on the ac amplitude. The
peak magnitude exceeds the losses observed either in the
normal state (H0 > Hc3) or in the bulk superconducting
state(H0 < Hc2). It was also predicted that the Hc3/Hc2

ratio, is temperature independent. In contrast, a decrease

of this ratio was found in the vicinity of Tc in several
experiments [11, 12]. This behavior was associated with
the distribution of Tc at the surface [13].
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In the last few years the SSS has attracted renewed
interest from various directions [4, 14, 15, 16, 17, 18].
Stochastic resonance phenomena in Nb single-crystal
were observed in the SSS [14]. In [17] it was assumed
that atH0 ≤ Hc3 the sample surface consists of many dis-
connected superconducting clusters and subsequently the
percolation transition takes place at Hc

c3 = 0.81Hc3. The
paramagnetic Meissner effect is also related to the SSS
[18]. Voltage noise and surface current fluctuations in Nb
in the SSS have been investigated [15]. SSS’ were found
also in single crystals of ZrB12 [16]. In agreement with
the previous data [9] it was demonstrated [16] that the
waveform of the surface current in an ac magnetic field
has a non-sinusoidal character. A simple phenomenolog-
ical relaxation model provides the good explanation of
the experimental data for DC fields near Hc2 only [16].
The relaxation rate in this model depends on the ac fre-
quency and decreased with decreasing ω [16]. Detailed
experimental study of the linear ac response in the SSS
of single crystals Nb and ZrB12 was published recently in
our paper [4]. We showed that ac SSS losses in these ma-
terials could be considered in the achieved experimental
accuracy as a linear ones and for several DC fields the
real part of the ac magnetic susceptibility exhibited a
logarithmic frequency dependence as for a spin-glass sys-
tem.

In spite of the extensive studies, the origin of low fre-
quency losses in SSS is not clear as yet. The critical state
model developed for the SSS in [19] implies that if the
amplitude of the ac field, h0, is smaller than some crit-
ical value the losses disappear. The authors of Ref. [9]
claimed that the experiment on Pb-2%In alloy confirms
this prediction. On the other hand, the observed re-
sponse [17] for an excitation amplitude of 0.01 Oe that is
considerably smaller than used in [9] showed losses in SSS
in Nb sample at a frequency 10 Hz. Our measurement
on Nb and ZrB2 single crystals also have shown that the
out-of-phase part of the ac susceptibility, χ′′

1 , was finite
at low excitation level [4]. We consider these results as an
indication of the inadequacy the critical state model for
description of the ac response in SSS. If we assume that
the reason for this discrepancy with experimental data,
is the small value of the critical surface current, which is
much smaller than the current amplitudes at the surface,
then we have to expect a decreasing of the losses approx-
imately as 1/h0 when the amplitude of the applied ac
field, h0, increases. On the contrary, χ′′

1 increases with
h0. The ac investigation of YB6 samples has some advan-
tage due to actually ideal type II magnetization curves
in this material that permits one to avoid possible dif-
ficulties in the interpretation of the experimental data.
The experiment showed that near the transition temper-
atures SSS exist also in the fields below Hc2. We found
that some features of nonlinear response took place at
a very weak ac field with amplitude ≃ 0.005 Oe. The
ac response at the third harmonic of the fundamental
frequency did not leave any room for the perturbation
theory. It was proposed that the losses in SSS are due

to the slow relaxation of the order parameter at the sur-
face and could not be ascribed to surface vortices. We
found that for small h0 in quasilinear approximation the
integral equation with power dependent nuclear governed
the time behavior of the magnetization in ac fields. Some
features of the ac response resemble the ones of spin-glass
system but one has to note that SSS present a different
system with its unique properties.

II. EXPERIMENTAL DETAILS

A. Sample preparation

The yttrium hexaboride single crystal was grown by
the inductive floating zone method of a powder sintered
rod with an optimal composition YB6.85 under 1.2 MPa
of argon. According to the Y - B phase diagram, com-
position with the Y:B=1:6 ratio has undergoes peritectic
melting [20] and irrespective of the Y/B ratio the YB4

single crystal with preferential orientation [001] begins
to grow. After enrichment of the melting zone by boron
(flux method modification) the yttrium hexaboride single
crystals with the [100] orientation grow with the compo-
sition of YB5.79±0.02 (ESD). The total impurity concen-
tration is less than 0.001 % in weight and the obtained
lattice parameter is 4.1001(4) Å in accordance with pub-
lished data [21]. These single crystals exhibited a sharp
superconducting transition with Tc ≈ 7.15 K.

B. DC and ac measurements

The magnetization curves were measured using a com-
mercial SQUID magnetometer. In-phase and out-of-
phase components of the ac susceptibility at the funda-
mental frequency, and the response at the third harmonic
were measured using the pick-up coil method [9, 22].
A home-made setup was adapted to the SQUID mag-
netometer, and the block diagram of the experimental
setup was published in Ref. [16]. The crystal (10× 3× 1
mm3) was inserted into one of a balanced pair of coils.
The unbalanced signal and the third harmonic signal as
a function of the external parameters such as temper-
ature, DC magnetic field, frequency and amplitude of
excitation, were measured by a lock-in amplifier. The
experiment was carried out as follows. The sample was
cooled down at zero magnetic field (ZFC). Then the DC
magnetic field, H0, was applied. The amplitudes and the
phases at all frequencies of both signals were measured
in a given H0 (including at zero field). The excitation
amplitude,h0, was 0.0005 ÷ 0.5 Oe. It is assumed that
in H0 = 0, and at low temperature, the ac susceptibil-
ity equals to the DC susceptibility in the Meissner state
with negligible losses. This permits us to find the abso-
lute values of the in-phase and out-of-phase components
of the ac susceptibility for all applied DC and ac fields
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and for all frequencies. Both H0 and h0 were parallel to
the longest sample axis.

C. Tunneling measurements

Measurements of the tunneling spectra were carried
out using a home made scanning tunneling microscope.
The YB6 single crystal was mounted inside the cryogenic
scanning tunneling microscope and then cooled down to
4.3 K. The dI/dV vs. V tunneling spectra (proportional
to the local density of states) were acquired using a con-
ventional lock-in technique, while momentarily discon-
necting the feedback loop.

III. EXPERIMENTAL RESULTS

A. Tunneling characteristics

Direct information about the energy gap value ∆0 =
∆(T = 0) at the surface of YB6 was obtained from the
tunneling spectra. The ratio 2∆0/Tc is a well known
indicator of the electron-phonon coupling strength [24].
Two previous tunneling studies of YB6 were performed
on a single-crystal [3] and on thin films [23] and the ∆0

obtained were: 1.22 [3] and 1.24 [23] which yields the
ratio 2∆0/Tc ≈ 4. In both cases the tunneling con-
tacts were connected to underlying layers, and hence,
monitored bulk properties. Therefore those values which
signified a nearly strong coupling are attributed to the
bulk characteristics. It was confirmed, in particular by
Lortz et al. [25], who measured the deviation function
D(T ) = Hc(T )/Hc(0) − (1 − (T/Tc)

2) and found that
the value of 2∆0/Tc is slightly above 4.0. Our tun-
neling spectroscopy results were obtained by STM and
therefore better reflect the density of states at the sur-
face. In contrast to our previous measurements on ZrB12

single crystals that showed very high spatial homogene-
ity [4], the superconductivity in the present case ap-
peared to be degraded on parts of the YB6 sample sur-
face, where nearly featureless tunneling spectra were ob-
served. In other regions, however, reproducible ratios
of differential conductances in superconducting and nor-
mal states (dI/dV )s/(dI/dV )n showing very clearly that
BCS-like gap structures were acquired, such as presented
in Fig. 1 (solid line). The spectra were compared with a
temperature-smeared version of the Dynes formula [26]
wich takes into account the effect of incoherent scatter-
ing events by introducing a damping parameter Γ into the
conventional BCS expression for a quasiparticle density
of states

NS(E) = NN(0)Re[(E−iΓ)/
√
(E − iΓ)2 −∆2(T )]. (1)

A very good fit to the experimental data (except for a
small asymmetry in the normal resistance between neg-
ative and positive bias, the origin of which is not yet
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FIG. 1: Representative tunneling spectrum of YB6 at T 4.3
K (solid line) together with its fit to the Dynes function (see
text) shown by a dashed line, with fitting parameters ∆(T ) =
1.0 meV and Γ = 0.10 meV. The spectra were normalized to
the normal tunneling conductance at 5 meV (well above the
superconducting gap) .

clear to us) was achieved with ∆(4.3K) = 1.0 meV and
Γ = 0.10 meV. Recalling that the experimental spec-
trum was acquired at T = 4.3 K, which is about 0.6Tc,
with the BCS ∆(T ) dependence [27] we obtain the zero-
temperature value ∆(T = 0) = 1.1 meV. With that, we
find that 2∆0/Tc ≈ 3.59, very close to the BCS weak
coupling value of 3.53. In contrast to ZrB12, we assume
that in YB6 the electron-phonon strength is suppressed
at the surface to a weak coupling state.

B. DC and ac magnetic characteristics

Fig. 2 demonstrates the temperature dependence of the
sample magnetic moment. In this curve one can see that
Tc ≈ 7.15 K.
From the hysteresis curve measured at 4.5 K, shown

in Fig. 3, we are able to evaluate Hc = 295 Oe, Hc2 =
1500 Oe and GL parameter κ1 = Hc2/

√
2Hc = 3.58. Us-

ing the relation dM
dH0

|H0=Hc2
= 1/4πβA(2κ

2
2 − 1) one can

obtain that κ2 = 3.3, where βA = 1.16. The temperature
dependence of Hc2 is shown in the inset of Fig. 3. The
London penetration depth at T=0, λL(0), can be esti-
mated by using Hc2(T ) near Tc, dHc2/dT ≈ −560 Oe/K,

1/λL(0) =
√

πTc

φ0κ
2
1

|Hc2

dT
| [29], and λL(0) ≈ 1.4× 10−5 cm.

Fourier analysis of the magnetization, M(t), un-
der applied ac and DC fields, H(t) = H0 +
h0 cos(ωt), yields an expression: M(t) = M0(H0, h0) +∑

n
1
2χn(H0, h0)h0 exp(−inωt). In this paper we discuss

the results for χ1 and χ3 susceptibilities. The field de-
pendence of χ1(H0) at T = 4.5 K and h0 = 0.05 Oe for
some frequencies is shown at Fig. 4. One can readily see
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FIG. 2: (Color online) Temperature dependence of magnetic
moment after ZFC.
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FIG. 3: (Color online) Magnetization curve at T = 4.5 K
after ZFC. Inset: temperature dependence of Hc2.

that the curves shift toward higher DC fields with fre-
quency. Decreasing the ac amplitude produces a similar
effect. The curves shift to the higher field when h0 −→ 0
( Fig. 5). Similar effects were reported for a Pb-2%In
sample in Ref. [9].

The typical magnetic field dependence of the nonlinear
response, χ3, is presented at Fig. 6 for h0 = 0.05 Oe and
various frequencies. When the frequency increases the
maximum in χ3 moves toward larger DC fields as was
observed for χ′′

1 . The frequency dispersion is illustrated
on the Cole-Cole plot, Fig. 7. One can see χ′′

1 (panel a)
and χ3 (panel b) as a function of χ′

1 when the frequency
increases from 15 to 1465 Hz while the DC field was kept
constant. Each disconnected curve of this figure corre-
sponds to different DC fields, the values of which are
indicated in panel (b). The arrow in panel (b) shows the
direction of increasing frequency along the curves and

1.0 1.2 1.4 1.6

-0.08

-0.06

-0.04

-0.02

0.00

0.02

 

 

h0 = 0.05 Oe

' 1   
   

   
   

   
   

   
   

   
   

   
  

'' 1

H0/Hc2

 15 Hz
 565 Hz
 1065 Hz
 1465 Hz

T = 4.5 K

FIG. 4: (Color online) Magnetic field dependencies of χ
′

1 and

χ
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1 at T = 4.5 K at different frequencies ω.
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FIG. 5: (Color online) Magnetic field dependencies of χ
′

1 and

χ
′′

1 at T = 4.5 K at different amplitudes of excitation, h0.

shielding, as well as |χ′
1|. Below Hc2 4πχ′

1 = −1 (see Fig.
4). For H0 > Hc2 both χ′′

1 and χ3 decrease as the fre-
quency increases while for H0 close to Hc3 they increase.

Fig. 8 shows the field dependence of χ3 at ω/2π = 1465
Hz and various amplitudes of excitation, h0. The third
harmonic cannot be adequately described in the frame of
the perturbation theory which predicts that χ3 ∝ h2

0. For
example, at H0/Hc2 = 1.3, χ3 depends on h0 strongly,
while at H0/Hc2 = 1.45, χ3 is almost constant (see
Fig. 8). We can discuss only the dependence of χ3m (de-
fined as the maximum value of the χ3(H0) curve for any
given frequency) on the ac amplitude h0. Fig. 9 demon-
strates that χ3m ≈ h0.2

0 in contrast to what the pertur-
bation theory predictions.

Below we consider the experimental results obtained
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FIG. 8: (Color online) Third order susceptibility, χ3, versus
reduced magnetic field, H0/Hc2, at different amplitude of ex-
citation.
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FIG. 9: (Color online) Amplitude dependence of the third
order susceptibility at maximum, χ3m, at different frequencies
(see text).

at higher temperatures. Fig. 10 demonstrates the field
dependence of χ1 at frequency ω/2π = 1065 Hz and
h0 = 0.05 Oe at various temperatures. The peak in χ′′

1

shifts toward Hc2 with temperature and at 7 K this peak
is located already below Hc2. One can see in the Fig. 10
that for T < 7 K full shielding (χ′

1 = −1/4π) is observed
at low H0, whereas at 7 K only partial shielding is ob-
served at low DC field. Also Fig. 11 shows that in the
vicinity of Tc χ3m lies below Hc2. Because we did not ob-
served any absorption peak and harmonic signal in the
mixed state we consider that SSS are responsible for the
experimental observations at T = 7 K too. Existence of
the SSS below Hc2 was predicted by H. Fink in 1965 [30].
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Increasing the DC field we can reach the field at which
χ1 or χ3 becomes zero. This field can be considered as
the third critical magnetic field Hc3. Both conditions ac-
tually give the same value of Hc3. The experiment shows
that the Hc3/Hc2 ratio decreases with temperature.

IV. THEORETICAL MODEL

Let us consider a superconducting slab of thickness 2L
in the parallel to its surface external DC and ac mag-
netic fields. Due to the considerably short relaxation
time of the order parameter [27, 28] one can use the sta-
tionary GL equations. We choose the coordinate sys-
tem in which the x-axis is perpendicular to the slab sur-

face, the plane x = 0 is in the center of the slab, and
the external magnetic field is directed along the z-axis.
Looking at the dimensionless order parameter in the form
Ψ(x, y, t) = φ(x, t) exp(iky) the GL equation can be writ-
ten as:

ln(Tc/T ){−φ+ |φ|2φ} − d2φ

dx2
+ (a− k)2φ = 0, Eq2 (2)

d2a

dx2
=

ln(Tc/T )

κ2
|φ|2(a− k). (3)

Here a is a y-component of the dimensionless vector po-
tential. The order parameter is normalized with respect
to the absolute value of the order parameter in zero field,
the distances with respect to the coherence length at
zero temperature, ξ0, (x −→ x/ξ0, y −→ y/ξ0, l =
L/ξ0) and the vector potential with respect to ~c/2eξ0
(a = A/(~c/2eξ0)). The boundary conditions for calcu-
lation of surface states are φ(0, t) = dφ(±l, t)/dx = 0
and a(0, t) = 0, da(±l, t)/dx = h(t), where h(t) is the
dimensionless applied magnetic field.
These nonlinear equations can be solved by numeri-

cal methods. We add the time derivative ∂φ/∂t into
the right side of Eq. (2) and seek the stationary solu-
tions of the Eqs. (2, 3). Replacing the space derivatives
by finite differences on the grid with step dx = l/N
Eq. (2) transforms into N first order differential equa-
tions. The solution of the obtained linear algebraic sys-
tem can be found by regular method. The grid with
N=1000 points was used. In the surface state the order
parameter differs from zero only near the surface, at a
scale of several coherence lengths, ξ(T ). Actually, the
choice L = 5ξ(T ) ≡ D provides good accuracy for calcu-
lating φ. The real dimensions of the investigated samples,
L, considerably exceed this scale by 3-5 orders of magni-
tude. Parameter k is not a gauge invariant quantity and
we choose it using conditions a = 0 at x = 0. In SSS the
magnetic field in the bulk is constant. So we can obtain
k for a thick slab with L ≫ 5ξ(T ) from the solution of
the problem for a thin slab with D ≥ 5ξ(T ) by gauge
transformation

k = ks + hzs × (l − d) (4)

and vector potential in the surface layer

a(l − d+ x) = as(x) + hzs × (l − d). (5)

Here d ≡ D/ξ0, index s corresponds to the problem for
a thin slab, and hzs is the z-component of magnetic field
in the center of the thin slab. This note is important for
numerical calculations.

V. DISCUSSION

It is well known (see, for example, [16]) that for a given
external magnetic field there is a whole band of k for
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which surface solutions exist. These solutions describe
the nonequilibrium states and only one solution corre-
sponds to the equilibrium state, for which the magnetic
field inside the bulk equals its external value and the total
surface current, Js, equals zero. Parameter k is an inte-
gral constant of the nonstationary GL equations. That is,
k is time independent, in contrast to φ, in the frame of the
GL model. The relaxation time of the order parameter φ
is considerably shorter than any ac period in our exper-
iment. So when the external magnetic field is changing
during the ac cycle, one may expect that φ follows the in-
stantaneous value of the magnetic field and k remains ap-
proximately constant. Let assume that starting from an
equilibrium state in some DC field, H0, we increase the
external magnetic field but simultaneously hold k con-
stant. In this case the surface current Js becomes differ-
ent from zero. It is possible to consider two definitions of
the surface critical current Js1 and Js2 [19, 34]. The first
definition of such a critical current is Js1 = (c/4π)dhs1,
where dhs1 = H1 −H0 and H1 is the field for which the
energy of the surface superconducting state equals the
energy of the normal state [19]. The second definition is
Js2 = (c/4π)dhs2, where dhs2 = H2 −H0 and H2 is the
field for which SSS disappears. The quantities dhs1 and
dhs2 have different values and different dependencies on
the thickness of the sample, L. While dhs1 dramatically
depends on L, dhs2 for L > 1000ξ actually does not. The
value of dhs2 is considerably larger than dhs1 for large L.
This difference is due to the large contribution of the
magnetic field to the system energy, if the magnetic field
in the bulk differs from the external field. These fea-
tures are shown in Figs. 12a, 12b, where dhs1 and dhs2

are presented as a function of the DC magnetic field for
different L’s at T/Tc = 0.9. In the reduced variables
dhs1/Hc2 , dhs2/Hc2, H0/Hc2 the curves form is actually
temperature independent. The assumption of slow relax-
ing k, permits one to understand qualitatively the effect
of complete screening of a weak ac field with amplitude
h0 ≪ H0 in SSS. Ac surface current Js(k,H) is a function
of the instantaneous values of the external magnetic field
and k. This function can be calculated for a thin slab
of several coherence length thickness and then using the
gauge transformation, Eqs.(4 and 5), to get a solution for
a thick slab. As a function of ks and H , the Js(ks, H) is a
slow function of H . For example, at T = 0.9Tc numerical

calculation gives ∂hzs(ks,H)
∂H

= 0.88 + 0.19(Hzs/Hc2 − 1).
Where Hzs is magnetic field in the center of the slab.
So for a thin slab, an almost complete penetration of
the ac field inside the bulk takes place and the value
of the surface current is very small. For a thick slab
k 6= ks and the requirement of constant k during the
ac cycle, implicitly means that ks also changed accord-
ing to Eqs. (4 and 5). This leads to considerably large
surface currents and to screening of the ac field. In real-
ity, we have large dimensionless parameter L/ξ(T ) that
increases ac field screening. Fig. 13 demonstrates the cal-
culated (in the assumption of constant k) χ′ = ∆M/dhs1,
as a function of the DC field when the external field was
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FIG. 12: (Color online) Field dependence of the surface criti-
cal magnetic field (a) - dhs1(H0/Hc2) and (b) - dhs2(H0/Hc2)
for different slab thickness, L, at T/Tc = 0.9 (see text).

increased by dhs1. It is evident that for any macroscop-
ically large sample, L ≥ 5000ξ, the complete screening,
χ′ = −1/4π, should be obtained for DC fields excluding
fields close to Hc3. However our experiments (Fig. 4)
do not confirm this conclusion. We see that χ′

1 in the
field H0 ≈ (Hc2 +Hc3)/2 already differs from −1/4π. It
means that slow relaxation of k takes place which leads
to the losses and incomplete screening.

For a given ac amplitude, χ′′
1 has a maximum at some

values of the DC field defined asHm (see Fig. 5). Hm was
considered in Ref. [31] as the DC field at which the ampli-
tude of the ac surface current J0s = (c/4π)h0 equals ap-
proximately to the critical value Js1. In order to test this
in Fig. 14 we show J0s as a function of H0 and calculate
a critical current Js1 for a slab of thickness L = 5×105ξ.
Theoretical data of the Js1 were arbitrarily normalized in
order obtain the intersection with the experimental curve
at H0/Hc2 = 1.25. While the theoretical dependence of
Js1 is almost a linear function of H0, the experimental
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FIG. 13: (Color online) Field dependence of χ′ for different
slab thickness, L, at T/Tc = 0.9 (see text).
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FIG. 14: (Color online) Surface critical current Js, found with
assumption of Ref. [31], experimental values and calculated
Js1 as a function of reduced DC field H0/Hc2 (see text).

curve starts from H0/Hc2 = 1.45 and is a nonlinear func-
tion of H0. One can conclude that losses observed in our
experiment are not connected to the condition h0 ≈ dhs1

for H0 > Hc2.

The maximal losses, χ′′
m, at Hm, as a function of h0

is shown at Fig. 15. Inset to Fig. 15 shows that in the
limit h0 → 0 the losses do not disappear. In a linear
system χ′′

1 should be amplitude independent. While our
experiments show a linear dependence χ′′

m on the ac am-
plitude (Fig. 15). It does not permit us to consider the
response as a linear one even at very low amplitudes of
excitation. Therefore more experimental measurements
at low ac fields are needed.

In general, the magnetic moment can be presented by

1E-3 0.01 0.1

0.010

0.015

0.020

0.025

0.0 2.0x10-3 4.0x10-3
0.000

0.005

0.010

0.015
 

  

 

h0 (Oe)

"m

T = 4.5 K

 

 

 = 1465 Hz

" m

Amplitude of excitation, h0, (Oe)

FIG. 15: (Color online) Out-of-phase susceptibility at max-
imum, χ′′

m
, as function of an excitation amplitude,h0. Inset

shows the expanded view for weak h0 in linear scale.

following expression:

M(t) =

∫ t

−∞

K(t− t′, h(t′))h(t′)dt′. (6)

For h0 ≃ 0.02 Oe the susceptibilities at higher harmonics
are small and we can rewrite Eq. (6) as

M(t) =

∫ t

−∞

K(t− t′, h0)h(t
′)dt′ (7)

considering only the response at the fundamental fre-
quency. Under this approximation, the response at fun-
damental frequency, matches the Kramers-Kronig rela-
tions (KKR):

χ′

1 = χ∞ +

∫ ∞

0

2ζχ′′
1(ζ)

π(ζ2 − ω2)
dζ (8)

and then

I(ω) ≡ χ′
1(ω)−

∫ ωm

ω0

2ζχ′′

1 (ζ)
π(ζ2−ω2)dζ =

χ′′(̟)
∫ ω0

0
2ζdζ

π(ζ2−ω2) + χ∞+
∑

n

∫∞

ωm

2ω2nχ′′

1 (ζ)
πζ2n+1 dζ,

(9)

where ω0 and ωm are the minimal and maximal avail-
able frequencies in our experiment, respectively, and
0 < ̟ < ω0. I(ω) can be calculated from the available
experimental data and be presented in the form

I(ω) = a+ b ln |1− ω2
0/ω

2|+
nmax∑

n=1

cnω
2n. (10)

With cn > 0 we obtain χ′′
1(̟) = πb. Coefficients a, b and

cn could be found by least square fit. For ω2/ω2
m << 1
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FIG. 16: (Color online) Field dependencies of χ′′(̟) and pa-
rameter a of Eq. (10) at T = 4.5 K and h0 = 0.02 Oe (see
text).

it is sufficient to take into account only a few terms
in Eq. (10). Results of this approach are presented at
Fig. 16, where χ′′

1(̟) and a as a function of the DC field
are shown. The measured data in the frequency range
15-1460 Hz χ1 at T = 4.5 K, was used for the calculation
of I(ω) for 25 < ω/2π < 200 Hz with ω0/2π = 17.5 Hz
and ωm/2π = 1455 Hz. The approximation of I(ω) by
using expression Eq.(10) with nmax = 1 produces χ′′

1 (̟)
curve shown in Fig. 16. Because cn ≈ ω2cn−1/ωm with
ω2/ω2

m ≈ 0.02 one could expect that expression (7) with
nmax = 1 gives the correct result. Taking into consider-
ation the term c2 gives unphysical result, because c2 is
very small and negative. It is due to the scattering of
the experimental data and ignores in Eq. (10) the depen-
dence of ̟ on ω. Fig. 16 shows that the calculated loss
peak is approximately 3 times larger than the measured
losses at ω/2π > 20 Hz, Fig. 4. Qualitatively this be-
havior can be explained as follows. Because χ′′

1 exhibits
a weak frequency dispersion we can estimate integral in
the left side of Eq. (9) by

R =
∫ ωm

ω0

2ζχ′′

1 (ζ)
π(ζ2−ω2)dζ

∼= χ′′
1(ωm + ω0/2) ln(

ω2
m
−ω2

ω2
0
−ω2 )/π.

(11)

In Fig. 17 we showed the correspondence between the
estimated R by Eq. (11) and the result of the numerical
calculation of the integral in Eq. (11) at H0 = 2000 Oe).
It is important that R has a positive sign for ω/2π < 1000
Hz and in the left side of Eq. (9) one has the sum of two
negative values. So we should expect a large contribution
into the integral in Eq. (8) from frequencies outside the
(ω0, ωm) region and the presentation of this contribution
in the form of Eq. (9) gives a large value for the term b
in Eq. (10).

0 500 1000 1500

-0.02

0.00

0.02

0.04

0.06

 

 

R

Frequency (Hz)

 Numerical result
 Approximation by Eq. (11)

FIG. 17: (Color online) Frequency dependence of R, numeri-
cal calculation and approximation by Eq. (11) (see text).

We believe that the observed in SSS losses are the re-
sult of the relaxation k to its equilibrium value. This
model can ascribe both the partial screening and losses
for H0 > Hc2. The other model assumes that the motion
of the of 2D-vortices in the surface sheath [32] is responsi-
ble for the losses [33]. These vortices with surface density
ns = H0 sin(θ)/φ0 appear if the applied field has a nor-
mal component to the sample surface Hn = H0 sin(θ),
due to misalignment, or alternatively if the surface is
not sufficiently smooth. One can estimate the conduc-
tivity of the surface layer σ = σnHc2/H0 sin(θ) where σn

is the conductivity in the normal state. In our sample,
σn ≈ 1017 CGS and the skin depth in the surface layer
at frequency ω/2π = 10 Hz is considerably larger for any
real angle( ≃ 10−2 rad) to provide sufficient screening of
the ac field by a layer with thickness 10−5 ÷ 10−6 cm.
The ac response of SSS resembles that of the spin-glass

systems. Real and imaginary parts of χ1 can be well
represented by a polynomial of ln(ω) shown in Fig. 18 for
H0 = 2 kOe and T=4.5 K. In this figure, presentation of
χ1′ and χ1′′ by polynomial

a0 + a1 ln(ω) + a2 ln
2(ω) (12)

are shown for a considerably wide frequency region 15 <
ω/2π < 1465 Hz. For some DC fields the coefficient a2 is
small and one can get the spin-glass like χ′

1. But χ
′′
1 also

exhibits the frequency dispersion that is not typical for

spin-glass systems. The ”π/2” rule [35], χ′′
1 = −π

2
dχ′

1(ω)
d ln(ω) ,

is not fulfilled in our data, Fig 19.
The simple relaxation models of ac response is appli-

cable only for a DC field near Hc2 [16]. If in analogy
with a spin-glass system we assume that the magnetiza-
tion moment of the sample, M(t), can be found from the
relaxation equation:

dM/dt = −νM − dh/dt, (13)
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FIG. 18: Frequency dependence of χ′′
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1(ω) (panel (b)) for H0 = 2 kOe (H0 = 1.25Hc2 )at 4.5
K. Continuous lines present the fit to the second order poly-
nomial of ln(ω) (Eq.(11)).
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FIG. 19: (Color online) The test of the ”π/2” rule for the
experimental data at T = 4.5 K and H0 = 2 kOe.

with subsequent averaging over the relaxation rates, then

χ1 =

∫ ∞

0

P̃ (ν)
iω

ν − iω
dν, (14)

where P̃ (ν) is the distribution function of the relaxation
rates. Using 1/(ν−iω) =

∫∞

0
exp(−(ν−iω)t)dt we trans-

form Eq.(14) to

iχ1(ω)/ω =

∫ ∞

0

P (ν) exp(−νt)dν, (15)

where P (t) =
∫∞

0 P̃ (ν) exp(−νt)dν. So, if Eq.(14)
describes adequately the experimental data with some

-6 -5 -4 -3 -2 -1
0.0

0.5

1.0

 

 

P

ln(2 t)

  cos-transformation
  sin-transformation

FIG. 20: The test of the Eq. (16) on the experimental data
at T = 4.5 K and H0 = 2 kOe.

P (ν), then these two integrals should be equal each other

P (t) = 2
∫∞

0
χ′′
1(ω) cos(ωt)dω/πω =

−2
∫∞

0
χ′
1(ω) sin(ωt)dω/πω.

(16)

Experimental data are available only for a finite fre-
quency region 15 Hz < ω/2π < 1465 Hz, while inte-
grals in Eq.(16) are expanded for all frequencies and we
have to extrapolate our data to the entire frequency axis.
This was done assuming that for ω/2π < 15 Hz and
ω/2π > 1465 Hz χ1′′ is a power function of frequency ωp.
As a result, the sin- and cos-Fourier transformations in

Eq.(16) give different values for P̃ (t) as shown at Fig. 20
where the ac response in H0 = 1.25Hc2 was used.
It is readily seen that the experimental data exclude

the possibility consider the SSS as an analog of a spin-
glass system. Equation (7) shows that in the quasilinear
approximation the magnetization of the samples satisfied
an integral equation

∫ t

−∞

G(t− t′, h0)M(t′)dt′ = h(t). (17)

It is interesting to notice that the nuclear G(t, h0) can
be extracted by the Fourier transformation of 1/χ1(ω).
Performing the same procedure as above, we obtained
that sin- and cos-Fourier transformations in Eq.(11) yield
different values for G(t, h0) which is certainly due to
the lack of experimental data for whole frequency axis.
The extrapolation of the imaginary part of 1/χ1(ω) gives
more accurate results and we consider only the G(t, h0)
that is obtained by the sin-Fourier transformation of
1/χ′′

1(ω). Good approximation of G(t, h0) provides the
expression G(t, h0) = A(t)/tq with slow function A(t)
for t > π/1465 = tc. For t < tc function G(t, h0) is

singular, but integral
∫ tc

0 G(t, h0)dt has a finite value.
The parameters q and A(t), depend on the DC field.
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FIG. 21: Time dependence of nuclear of Eq. (17) for several
DC fields near the absorption maximum at T = 4.5 K.

For example, in field H0 = 1.25Hc2 q = 0.876 and
A(t) = − exp(1.285 − 0.00842 ln2(2πt)). In Fig. 21 we
show G(t, h0) for some values of the DC magnetic field
and the inset presents q versus H0. So, the dynamics
of SSS is governed by an integral equation with retarda-
tion. This feature distinguishes SSS from other known
systems.

VI. CONCLUSION

In this paper we have studied the low frequency lin-
ear and nonlinear dynamics of the SSS of a single crys-
tal of yttrium hexaboride. The tunneling spectra were

studied as well. Tunnel measurements allow us to make
the assumption, that in this single crystal, unlike ZrB12,
near the surface the electron-phonon interaction is sup-
pressed and the situation of weak coupling is realized.
We showed that the surface superconducting states de-
fine the peculiarities of the low frequency response. In
spite of different behavior under magnetic fields (ZrB12

is a type-I superconductor and YB6 is that of type-II)
and different surface properties the two materials exhibit
very similar and universal ac characteristics reflecting the
nature of the SSS. In both cases we observed a nonlin-
ear response for very weak ac amplitudes (in experiments
with YB6 h0 was as small as 0.005 Oe) and the ques-
tion about the existence of a linear response is open. An
extrapolation of the low-amplitude data did not reveal
a linear regime. Similar to spin-glass systems (where
finite losses at considerably low frequencies exist), the
real part of the susceptibility exhibits a logarithmic fre-
quency dependence at some DC magnetic field. But the
out-of-phase component has a frequency dispersion. The
frequency dispersion in SSS is different from that of the
spin-glass systems. The slow relaxation of the phase of an
order parameter leads to a frequency dispersion of the ac
susceptibility. The analysis of the experimental data by
means of Kramers-Kronig relations allow us to make the
assumption of the presence of the loss peak at frequencies
below 5 Hz.
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