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We have used a polarized microluminescence technique to investigate photocarrier charge and
spin transport in n-type depleted GaAs nanowires (≈ 1017 cm−3 doping level). At 6K, a long-
distance tail appears in the luminescence spatial profile, indicative of charge and spin transport,
only limited by the length of the NW. This tail is independent on excitation power and temperature.
Using a self-consistent calculation based on the drift-diffusion and Poisson equations as well as on
photocarrier statistics (Van Roosbroeck model), it is found that this tail is due to photocarrier drift
in an internal electric field nearly two orders of magnitude larger than electric fields predicted by
the usual ambipolar model. This large electric field appears because of two effects. Firstly, for
transport in the spatial fluctuations of the conduction band minimum and valence band maximum,
the electron mobility is activated by the internal electric field. This implies, in a counter intuitive
way, that the spatial fluctuations favor long distance transport. Secondly, the range of carrier
transport is further increased because of the finite NW length, an effect which plays a key role in
one-dimensional systems.

I. INTRODUCTION

In the past few years, investigations of transport in
semiconductor nanowires (NW’s) have gained interest be-
cause of potential applications to solar cells [1], lasers [2]
and quantum computing [3]. For GaAs, it has been re-
ported recently that GaAs NW’s grown on Si substrates
have strong potentialities for charge and spin transport
[4]. These NW’s are n-doped in the low 1017 cm−3 range,
and are therefore on the metallic side of the Mott transi-
tion [5]. They are well-adapted for spin transport, since
the donor concentration nearly corresponds with that of
the maximum of the spin relaxation time [6], thus ensur-
ing conservation of spin polarization over large distances.

It may be thought that, in such NW’s, transport of
photocarriers should be difficult because of the presence
of spatial fluctuations of the energy of the top of the
valence band, induced by statistical spatial fluctuations
of the donor concentration [7, 8]. However, it has been
shown that carrier transport in this disordered system
can occur over distances as large as 25 µm [4]. Several
phases in the spatial profiles have been observed, due
to i) the buildup of internal electric fields which modify
the photocarrier mobilities and ii) to the subsequent spa-
tial redistribution of the Fermi sea for undepleted NW’s.
However, no interpretation for these results has been pro-
posed.

The present work is an experimental and theoretical
analysis of charge and spin transport in NW’s grown on
Si substrates. We have chosen depleted NW so that the
charge spatial profiles merely reveal the buildup of the
internal electric field since there is no Fermi sea. The
spatial charge profile exhibits a relatively fast decrease
followed by a slow tail, which weakly depends on excita-
tion power and temperature. As found by numerical res-
olution of conservation equations, this tail is caused by

drift transport in an internal electric field E of a fraction
of a V/µm. These results are at variance with the predic-
tions of the usual ambipolar model [9–14] which predicts
internal electric fields smaller by two orders of magnitude.
Such large internal field is shown to build up for two rea-
sons. Firstly, as expected for such doping level, the mo-
bility of photoelectrons depends on the internal electric
field [15]. This implies that, for charge and spin trans-
port, metallic NW’s appear as better candidates than
NW’s on the insulating side of the insulator/metal tran-
sition. Secondly, the electric field is further amplified by
the finite size of the NW. It is anticipated that such large
electric fields are specific to one-dimensional systems.

II. EXPERIMENTAL

II.1. Principles

Here we study NW’s HVPE-grown on Si(111) sub-
strates using gold-catalysis at 715 ◦C [16]. In order to
reduce the surface recombination velocity, the NW’s were
chemically treated by a low alkaline (pH ≈ 8.5) hydrazine
sulfide solution. This produced a negligible NW etching
by the solution and covered the surface by a nitride layer
so that surface recombination was equivalent to that of
the nearly ideal Ga1−xAlxAs/GaAs interface [17]. After
passivation, the NW’s, standing on the substrate, were
scraped and deposited horizontally on a grid of lattice
spacing 15 µm. The results presented here were obtained
on a depleted NW of length 20 µm and of diameter 100
nm that is smaller than the limit of 180 nm for NW de-
pletion [4].

The NW was excited at 6K by a tightly-focused,
continuous-wave, laser beam (Gaussian radius σ ≈
0.6 µm, energy 1.59 eV). Spatially-resolved spectral anal-
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FIG. 1. Curve a shows the NW intensity spectrum at the
excitation spot for a small excitation power of 45 µW. Also
shown is a Gaussian fit of the main line (Curve b) which re-
veals a low-energy tail which extends down to 1.48 eV . Curve
c shows the corresponding polarization spectrum and reveals
a large photoelectron spin polarization of nearly 50%. Shown
in the inset is an illustration of the spatial fluctuations of the
conduction and valence band, illustrating the mechanisms for
recombination of the main line (M) and of the tail.

ysis of the intensity and circular polarization of the lu-
minescence was performed using a setup described else-
where [4, 18]. Using liquid crystal modulators, the sam-
ple was excited with σ±-polarized light and the intensity
I(σ±) of the luminescence components with σ± helicity
was selectively monitored. The luminescence intensity is
the sum of these two components and given by

I = K(n+ n0)p (1)

where n is the photoelectron concentration, p is the hole
concentration and K is the bimolecular recombination
coefficient. Here, quite generally, we take a nonzero
electron concentration in the dark n0. This value will
be zero for the experimental depleted NW’s but will
have a weak nonzero value for computations. The dif-
ference signal ID = I (σ+)−I (σ−) is equal to KpPis,
where Pi = ∓0.5 for σ±- polarized excitation. Here
s = n+−n−, where n± are the concentrations of electrons
with spin ±1/2, choosing the excitation light direction as
the quantization axis, is the spin density.

II.2. Results

The nearbandgap luminescence and polarization spec-
tra, taken at the excitation spot, are shown in Fig. 1.
The lattice temperature is 6K and a very small excita-
tion power of 45 µW is chosen. More details are shown in
the supplementary material. The luminescence spectrum
peaks near the bandgap energy. It can be decomposed
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FIG. 2. Curves a and a’ show the intensity (solid line) and
difference (dotted line) spatial profiles at 6K and for an energy
of 1.512 eV, for an excitation power of 45 µW. Shown in
curves b and b’ are the corresponding results for an excitation
power of 1 mW. Curve c shows the intensity spatial profile at
a temperature of 30K. The right panel shows corresponding
profiles calculated using the model of Sec. III, corresponding
respectively to an excitation power of 45 µW (Curve d), 1mW
(Curve e), a temperature of 60K(Curve f). Curve g shows the
profile calculated for an excitation power of 45 µW (same as
Curve d), but without a dependence of the electron mobility
on electric field (Ee = 0)

into a main line, approximated by a gaussian lineshape
of half-width 6.5 meV (curve b), and a low-energy tail
which extends down to 1.48 eV. As shown in the inset of
Fig. 1, this tail is attributed to spatially indirect tran-
sitions, where the transition energy is lowered by local
electric fields in the fluctuations.

Curve c of Fig. 1 shows the corresponding polariza-
tion spectrum. For energies larger than 1.51 eV, the po-
larization has a very large value above 20 %, implying
a photoelectron spin polarization close to the maximum
value of |Pi| = 50%. This suggests a very large spin
relaxation time, as predicted for this sample where the
Bir-Aronov-Pikus (BAP) process is weak because of the
weak hole concentration [6, 19]. Note that the polariza-
tion increases near 1.504 eV, which coincides with the
onset of the gaussian component of the intensity spec-
trum. This is because the electron quasi Fermi level lies
above the minimum of the conduction band fluctuations
so that electrons below this level are degenerate.

Shown in curve a of Fig. 2 is the intensity spatial pro-
file, taken in the same conditions as curve a of Fig. 1.
Curve a’ shows the profile of the difference signal ID.
The two spatial profiles are quite similar. This shows
that the photoelectron spin polarization ID/(I Pi) is
constant over the profile. This is expected in our case
where the spin relaxation time is large, as suggested by
the large photoelectron spin polarization. The spatial
profile is composed of a rapid decrease up to 2 µm, with
a slower decrease for larger distances, superimposed on
fluctuations which are reproducible from one curve to
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the other. These fluctuations may be caused by inho-
mogeneities of the surface recombination or by uncom-
plete spatial averaging of the microscopic potential fluc-
tuations described in the inset of Fig. 1.

Such shape is very different from a single exponential,
which is the predicted profile for one dimensional unipo-
lar transport (see supplementary information of Ref. [4]).
The observation of the long distance tail implies that,
although most carriers recombine near the place of ex-
citation, a significant fraction escape from the potential
fluctuations at the place of excitation and can be trans-
ported over large distances. Since hopping processes are
easier for electrons than for holes because of their weaker
effective mass, there builds up an outwards internal elec-
tric field which in turn drives photoholes out of the exci-
tation spot provided its magnitude is comparable to that
of the electric field of the fluctuations (of the order of
the unscreened effective field near a donor ED/a

∗
0 ≈ 0.6

V/µm, where ED is the donor binding energy and a∗0 is
the effective Bohr radius).

Shown in curves b and b’ of Fig. 2 are the intensity and
difference spatial profiles obtained for a larger excitation
power of 1 mW. In the same way as for a smaller excita-
tion power, the two curves are similar, revealing that the
photoelectron spin polarization does not decrease during
transport. Comparison between Curves a and b reveals
that, unlike observed earlier for ambipolar transport in
3D samples [9–14], the excitation power has little effect
on the spatial profiles.

Curve c was taken in the same conditions as Curve b
but at a higher lattice temperature of 30K, leading to a
decrease of luminescence intensity by about one order of
magnitude. This curve is quite similar to Curve a and
Curve b, implying that temperature has a weak effect
on the spatial profile. Such result may appear surpris-
ing, in view of the strong temperature dependence of the
conductivity reported for metallic systems [5].

III. INTERPRETATION

The results of the preceding section show that depleted
NW’s on the metallic side of the insulator/metal transi-
tion appear as ideal candidates for charge and spin trans-
port. Transport exhibits a long distance tail up to 15
µm, mostly limited by the NW end. The photoelectron
polarization at the excitation spot is close to its max-
imum value determined by the transition probabilities
and weakly decreases during transport.

In order to interpret these results, calculation of the
spatial distributions of electrons and holes was performed
using the Van Roosbroeck model [20]. For holes, the
drift-diffusion equation is

g −I − p

τhnr
− ~∇ · [ ~Jp/q] = 0. (2)

Here g is the rate of creation of electron-hole pairs, q
is the absolute value of the electron charge, τhnr is the

hole nonradiative recombination time and ~Jp is the hole
current. The corresponding spin-unresolved equation for
electrons is

g −I − n

τenr
+ ~∇ · [ ~Jn/q] = 0. (3)

where τenr is the electron nonradiative recombina-
tion time. The quadratic dependence of the spatially-
integrated luminescence intensity on excitation power
(see Supplementary Material) shows that nonradiative
recombination is dominant over radiative recombination.
Since the two recombination terms must be equal after
spatial integration which removes the effect of transport,
and within the hypothesis of charge neutrality (i. e. that
the total photoelectron and photohole charges are equal)
one can assume that τenr = τhnr = τ . The electron and
hole currrents are given by

~Jn = qµn(n+ n0)~∇EFn = qµe(n+ n0) ~E + qDe
~∇n (4)

and

~Jp = qµpp~∇EFp = qµep ~E − qDh
~∇p (5)

where µe(h) are the electron (hole) mobilities and De(h)

are the corresponding diffusion constants. Here EFn (
EFh) is the energy of the electron (hole) Fermi level with
respect to its value at equilibrium. The electronic con-
centration can be expressed by Boltzmann statistics

n = Nc exp
EFn − qV − Ec

kBTe
(6)

where kB is Boltzmann’s constant, Te is the photocar-
rier temperature and Ec is the energy of the bottom of
the conduction band. As discussed in the supplementary
material, the hole energy distribution for a depleted NW
is closer to a Boltzmann one than for an undepleted one.
This distribution will be approximated by

p = Nv exp
−EFp + qV + Ev

kBTe
(7)

where Ev is the energy of the top of the valence band.
Here Nc (Nv) is the effective density of states of the con-
duction (valence) band, and Ec is the energy of the bot-
tom of the conduction band. Here V is the spatially-
dependent potential, given by Poisson’s equation, which
can be written, for a spatially homogeneous doping

εs
d2V

dz2
= q(Nd + p− n− n0) (8)

where εs is the static permittivity.
For NW’s on the metallic side of the insulator/metal

transition, transport occurs through hopping processes
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FIG. 3. Panel A shows the calculated spatial profiles of the
hole concentration for increasing values of Ee. Panel B shows
the corresponding spatial profiles of the internal electric field.
For a very small value of Ee the decay is rapid, corresponding
to the usual ambipolar case as described by Eq. 12. Upon
increase of Ee, a tail appears in the charge profile, while a
large internal electric field builds up at large distance. Panel
C shows the spatial profiles of electron diffusive (Curve b) and
drift (Curve c) currents, as well as of the hole diffusive ( Curve
d ) and drift (Curve c) currents, calculated with Ee = 10−3

V/µm. Panel D shows the electric field value at 5 µm from
the excitation spot, as a function of the NW length. The
strong reduction of electric field for a length larger than 170
µm demonstrates the length-dependent transport.

assisted by the electric field. This results in a dependence
of the mobility on the electric field [15, 21, 22], given by

µe(E) = µ∗
e exp

[
−

(
Ee√

E2 + E2
T

)]
≈ µ∗

e exp

[
−
(
Ee
|E|

)]
,

(9)
where µ∗

e is the mobility at large electric fields. The
electric field Ee is given by

Ee =
∆e

qδ
, (10)

where ∆e is a characteristic energy, δ is the length of an
elementary hopping process, and ET = kBTe/(qδ). Here,
one will use the approximate expression in Eq. 9 since,
as shown by the weak effect of temperature on the pro-
file, one probably has Ee >> ET . One may think that
the hole mobility also depends on electric field. How-
ever, such dependence has no effect on the spatial pro-
files, since hole diffusive and drift currents are negligible
with respect to their electronic counterparts and will not
be included here [23].

The coupled equations 2, 3 , 6, 7 and 8 must be solved
self-consistently. The calculations give the spatial distri-
bution of V , EFp and EFn and subsequently the spatial
profiles of n, p and E. Finally, the spatial profile of the
luminescence intensity is given by Eq. 1.

Independently, the expression of the internal electric
field is obtained by comparing Eq. 2 and Eq. 3. This
gives

~∇ · [ ~Je + ~Jh] =
q(n− p)

τ
(11)

where ~Je and ~Jh, given by Eq. 4 and Eq. 5, respec-
tively, depend on electric field via the contribution of
drift currents. Within what will be called below the usual
ambipolar model, one assumes a spatially-infinite sample
with negligible charge concentrations and electric field
at its end [9–11]. One also assumes charge neutrality
(n = p). Thus, the sum of electron and hole currents
which is zero at infinity, is also zero at all points in the
NW, so that

~E [µe(n+ n0) + µhp] = Dh
~∇p−De

~∇n (12)

Although, as seen in Sec. IV below, Eq. 12 must be
modified to correctly interpret the long distance tail, it
allows us to understand the weak dependence of the lumi-
nescence intensity profiles on excitation power. Indeed,
provided n >> n0, multiplication of electron and hole
concentrations by a common factor will not affect the
electric field and therefore the shape of the spatial profile.
The weak dependence of the spatial profile on tempera-
ture is in agreement with the observed weak temperature
dependence of the photoconductivity of disordered sys-
tems [15, 21]. Such effect can be understood if, in Eq. 9,
ET << E. In this case, the electron mobility nonlinearly
depends on electric field according to the approximate
Eq. 9 and weakly depends on temperature.

For solving the above coupled equations, we applied a
Newton-Raphson algorithm, as described in Ref. [24], to
a NW of length 20 µm with an excitation spot at 5 µm
from the end. For the boundary conditions, one imposed
a zero potential at the NW ends and a zero recombina-
tion current at the lateral surfaces. In order to avoid
divergence, a nonzero value of n0 and a zero value of Ee
were used as a starting point for the calculations. The
quantity n0 was subsequently decreased to 5×1013 cm−3



5

and Ee was progressively increased to above 10−2 V/µm.
The high-field mobility values were µ∗

e = 104 cm2/V s and
µ∗
h = 3× 103 cm2/V s that is, slightly larger than mobil-

ities for a degenerate doping level [25]. This is probably
because the absence of intrinsic electrons increases the
electron and hole collision time. The values of the other
parameters were found to have a negligible effect on the
profile. The electron and hole lifetimes were τ = 1ns.
The temperature Te was taken to 30 K.

We first consider the case of a doping level slightly
smaller than the insulator/metal transition. Since the
spatial fluctuations of the conduction band minimum and
valence band maximum are negligible [26], one can take
Ee = 0. The calculated luminescence spatial profile is
shown in Curve g of Fig. 2. The excitation power was
≈ 20 µW i. e. close to that used in Curve a. The pro-
file exhibits a rapid, approximately exponential, decrease,
nearly independent on excitation power and does not in-
terpret the experimental results. At the excitation spot,
the electric field is zero for symmetry reasons. Away from
the excitation spot, the electric field is estimated using
Eq. 12, to ≈ De/(µeLd) where Ld is the exponential
slope of the decrease. Using Ld ≈ 0.8µm and the Ein-
stein relation De = E µe/q, where E is an energy of the
order of the band fluctuation amplitude [15] and assum-
ing charge neutrality, we obtain E = 3 × 10−3 V/µm.
This relatively weak value implies that diffusive currents
are larger than drift currents and explains the absence
of a long-distance tail. It is concluded that NW’s of a
doping level on the insulating side of the Mott transition
are not expected to be good candidates for charge and
spin transport.

For increasing values of Ee, the calculated photohole
concentration profiles for an excitation power of 150 µW
are shown in Panel A of Fig. 3. Panel B shows the
corresponding spatial profiles of the electric field. In
agreement with the experimental results, and provided
Ee > 10−5 V/µm, the calculated concentration profiles
exhibit a long distance tail at a distance larger than 5
µm . In this regime, the profile weakly depends on Ee.
An estimate of Ee can be obtained, using Eq. 10 tak-
ing ∆e = 1 meV, corresponding to the amplitude of the
fluctuations [26] and δe = 50 nm. One finds Ee = 0.2
V/µm. This is a high estimate of Ee since the electron
hopping process may occur over larger distances. How-
ever, Ee is in all cases larger than 10−5 V/µm so that a
long distance tail should appear.

The internal electric field at a distance from the ex-
citation spot larger than 2 µm is of several 10−2 V/µm
i. e. nearly two orders of magnitude larger than for the
ambipolar case. This suggests that the tail in the hole
concentration profile is caused by outward hole and elec-
tron drift in the electric field.

In order to confirm this hypothesis, we have calculated
the spatial profiles of the electron and hole currents, using
Ee = 10−3 V/µm. As seen in Fig. 4, two spatial phases
are visible. Up to a distance of 1.5 µm, because of the
large concentration gradient, diffusive currents are larger
than drift currents. For larger distances, drift currents

indeed predominate, because of the large electric field.
These currents explain the presence of charge and spin
transport over record distances. Note that the electron
drift (Curve a) and diffusive (Curve b) currents are, as
expected, dominant over their hole counterparts (Curves
c and d respectively). This justifies the hypothesis taken
above of a negligible field dependence of the hole mobility
[23].

Curve d of Fig. 2 shows the calculated intensity spa-
tial profile, taking for specificity Ee = 10−2 V/µm. This
profile is similar to the experimental one, shown in Curve
a. Curve e of Fig. 2 shows the calculated spatial inten-
sity profile for an effective increased excitation power of 1
mW. Again, this curve is similar to both the experimen-
tal Curve b, taken for an equivalent excitation power,
and Curve d, implying that the calculated profile weakly
depends on excitation power. Finally, Curve f shows the
intensity profile calculated using Te = 60K. This curve is
similar to Curve e showing, in agreement with the exper-
imental results and with Eq. 10, that the temperature
increase has little effect on the profile.

IV. ORIGIN OF THE LARGE VALUE OF THE
INTERNAL ELECTRIC FIELD

It is firs shown that the tail in the luminescence spatial
profile cannot be explained by the usual ambipolar model
[Eq. 12], even if a field-activated electron mobility is
included. In order to evaluate the electric field in this
case, one uses ∇n/n ≈ −(µeEτ)−1, as found from Eq.
3 assuming that drift currents are larger than diffusive
currents. Further using Einstein’s relation, one obtains

E2 exp[−Ee/|E|)] = F 2.
1− µh

µe
exp[Ee/|E|)]

1 + µh

µe
exp[Ee/|E|)]

≈ F 2

(13)
The electric field F , given by F 2 = E /qµ∗

eτ , is 10−3

V/µm, with the parameter values used in Sec. III, and
taking E = 3meV . Numerical resolution of this equation
shows that the fraction in the right hand is close to unity
and can be approximated as shown in Eq. 13. Up to
Ee = 10−2 V/µm, Eq. 13 has a solution close to F .
This value is comparable with usual ambipolar fields. It
does not interpret the results and is in contradiction with
the starting hypothesis of large drift currents.

This failure is not caused by a possible breaking of the
hypothesis of charge neutrality, since numerical simula-
tions confirm its validity for calculating the electric field
[27], except in a short stretch near the NW end. We
propose that the reason why Eq. 13 cannot explain the
large electric field is that, because of the slow tail, the
photocarrier concentrations and currents near the NW
end cannot be neglected. Integration of Eq. 11 between
coordinates z and z0 shows that it is necessary to replace
Eq. 12 by

~J (z)− ~J (z0) = Dh
~∇p−De

~∇n (14)
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FIG. 4. Spatial profiles of electron diffusive (Curve b) and
drift (Curve a) currents, as well as of the hole diffusive (Curve
d) and drift (Curve c) currents, calculated with Ee = 10−3

V/µm. The inset shows the electric field value at 10 µm from
the excitation spot, as a function of the NW length. The
strong reduction of electric field for a length larger than 150
µm demonstrates the length-dependent transport.

where ~J (z) = ~E [µe(n+ n0) + µhp] is the sum of drift
currents at position z in the slow tail. Here, z0 is chosen
to be sufficiently large so that, as shown in Fig. 4, the
diffusive current at z0 is negligible. Inclusion of the nega-
tive term −J (z0) in Eq. 14 should result in an increase
of the electric field. In order to verify this hypothesis,
we have calculated the spatial profiles for increasingly
large values of the NW length. The inset of Fig. 4 shows
the electric field values at a distance of 10 µm from the
excitation spot. Up to a NW length of 170 µm, the elec-
tric field weakly depends on distance and is of ≈ 5×10−2

V/µm. For a further increase of NW length, one observes
a strong decrease of electric field down to 3×10−3 V/µm
that is, to a value comparable with the usual ambipolar
regime. It is concluded that, at least for the parameter
values chosen here, the anomalous ambipolar transport
is amplified by NW finite size effects, provided the NW
length is smaller than 170 µm. This length is smaller
than the maximum length of usual NW’s.

The inset of Fig. 4 shows that the transition between
the two regimes occurs over a narrow range of 30 µm
of NW length, while the electric field is nearly constant
before and after the transition. In the same way, Fig.
3 shows that the transition as a function of Ee occurs
over only a factor of 3 of variation of Ee with profiles
nearly independent on Ee before and after the transition.
These features reveal that the transition between the two
regimes occurs through a critical process. This can be
understood qualitatively, assuming that E(z) ≈ E(z0)
and that the photocarrier concentrations at z0 are frac-

tions of their values at position z [n(z0) = ξn(z) and
p(z0) = ξp(z)]. The approximate equation Eq. 13 is
still valid, provided F is divided by

√
1− ξ. This in-

duces an increase of F and therefore of the electric
field. This will in turn induce an increase of ξ since
this quantity also depends on electric field, according to
ξ ≈ exp (z − z0)/(qEµeτ)]. The quantity ξ is then closer
to unity, which will induce a further increase of electric
field.

V. CONCLUSION

it is shown that depleted NW’s on the metallic side
of the insulator/metal transition (low 1017 cm−3 range)
appear as ideal candidates for charge and spin transport
: i) The spatial profiles of the luminescence intensity ex-
hibit a long distance tail, weakly dependent on excita-
tion power and temperature, concerning about 10% of
the photocarriers and characterized by a decay length
larger than 15 µm. ii) The spin polarization also weakly
decreases with distance.

A self-consistent coupled resolution of the drift-
diffusion equations, using the Poisson equation and
Boltzmann statistics (Van Roosbroeck model) shows that
the tail occurs because of photocarrier drifting in an in-
ternal electric field as large as 10−2 V/µm. Two ingredi-
ents are crucial for building up such a large electric field
: i) the dependence of the photoelectron mobility on in-
ternal electric field which strongly increases the elecron
mobility and results in a field-assisted transport. ii) Crit-
ical amplification of these effects caused by the NW finite
size..

Note finally that the above reasoning are only valid
for one dimensional systems i. e. if the lateral dimen-
sion is smaller than the typical decay length. Indeed,
calculations on 2D systems, with increasing Ee, have not
revealed any transition to a slow tail. Since only a lim-
ited number of parameter values was chosen, these results
need to be confirmed by further experimental and theo-
retical investigations, which are out of the scope of the
present work. However, this suggests that the one di-
mensional nature of the NW’s plays a key role and that
NW’s are better candidates for charge and spin transport
than 2D or 3D systems.
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