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Liquid-state paramagnetic relaxation from first principles
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We simulate nuclear and electron spin relaxation rates in a paramagnetic system from first principles. Sampling
a molecular dynamics trajectory with quantum-chemical calculations produces a time series of the instantaneous
parameters of the relevant spin Hamiltonian. The Hamiltonians are, in turn, used to numerically solve the
Liouville–von Neumann equation for the time evolution of the spin density matrix. We demonstrate the approach
by studying the aqueous solution of the Ni2+ ion. Taking advantage of Kubo’s theory, the spin-lattice (T1) and
spin-spin (T2) relaxation rates are extracted from the simulations of the time dependence of the longitudinal and
transverse magnetization, respectively. Good agreement with the available experimental data is obtained by the
method.
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I. INTRODUCTION

Quantitative understanding of the spin relaxation properties
[1] of paramagnetic systems is fundamentally important
for paramagnetic nuclear magnetic resonance (pNMR) and
electron-spin- and electron-paramagnetic-resonance (ESR and
EPR) spectroscopies. Both spectroscopic methods are very
important in biomolecular and materials research [2–5].
Paramagnetic relaxation enhancement (PRE) in NMR has
significant applications, for example, in the development of
contrast agents for magnetic resonance imaging [6] and in
studies of molecular structure [7]. Redfield relaxation theory
[5,8–10], often used in magnetic resonance, is rarely applicable
for paramagnetic systems. The stochastic Liouville equation
[11,12] (SLE) is the state-of-the-art method to simulate spin
relaxation in paramagnetic systems. The most frequently used
approach to solve SLE assumes that microscopic dynamics
can be approximated in operator form, such as using diffusion
operators and in the form of the Fokker-Planck SLE [11,12].
For paramagnetic systems, the operator form was developed
in Ref. [13]. Application of SLE and its special cases, such
as Swedish slow-motion theory [14,15], typically require
empirical parameters either for the magnetic interaction
Hamiltonian or for models of molecular motion. Parameter-
free computations of the paramagnetic systems have so far
been largely absent. Modern computational resources allow
such first-principles approaches to be used in many areas of
science to justify empirical models and fix their parameters.

In this paper, we take a nonempirical approach to solve the
SLE in the Langevin form [16–19] and present first-principles
computations in which the time evolution of the spin density
matrix is governed by quantum-chemically calculated spin
Hamiltonian. A time series of such Hamiltonians is sampled,
in turn, from a molecular dynamics (MD) simulation trajectory.
We simulate the EPR and pNMR relaxation rates of the
aqueous solution of Ni2+ at room temperature. Earlier, the
empirical parameters of the SLE were fitted to experimental
results [20,21] for the example system, in Ref. [22]. Presently,
we extend from our previous parameter-free study [23], where
we simulated the EPR relaxation in this system, to PRE of the
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1H and 17O nuclei of the water molecules. To overcome the
problem, in a simulation of finite length, posed by the much
longer time scale of the nuclear spin relaxation as compared
to that of the unpaired electrons, we employ the fact that the
relaxation processes reach an asymptotic limit. We outline
the argument behind Kubo’s method [24,25] and apply it in
the case of the Ni2+(aq) system in this paper. The dynamical
behavior of the 1H and 17O magnetization becomes asymptotic
in the time scale of the simulation, whereas the magnetization
of the effective unpaired electron spin (S = 1) of the Ni2+ ion
decays all the way to the equilibrium within a time scale close
to the correlation time of the relevant fluctuations. The length
of the presently simulated spin dynamics (SD) trajectories
is hundreds of ps, the correlation functions of the molecular
fluctuations decay in the ps time scale, whereas the protons and
17O nuclei relax in the ms and μs time scales, respectively.

Characteristic to the present method is that the time series
of the Hamiltonians is sampled with quantum-chemical (QC)
calculations, which constitute by far the most expensive part of
our simulation. For the present investigation, we chose the sim-
ple aqueous solution of Ni2+ ion as a well-studied prototypic
system, which we have used also previously [23,26], and for
which the time series of Hamiltonians were, therefore, avail-
able. More efficient quantum-chemical sampling techniques
are being developed [27], based on preparametrized magnetic
property hypersurfaces. Such sampling techniques will in the
future allow the current first-principles spin relaxation method
to be used to simulate also more complicated systems, with
manageable computational cost.

II. THEORY

A. Hamiltonian

We consider our example system, the aqueous solution of
the Ni2+ ion, as an ensemble of electron and nuclear spins with
the appropriate spin Hamiltonian defined as

Ĥ (t) = μB Ŝ · g(t) · B + γ � Î · [1 − σ (t)] · B

+ Ŝ · D(t) · Ŝ + Ŝ · A(t) · Î, (1)

where Ŝ stands for electron spin vector and Î for the nuclear
spin vector of an individual water proton or 17O nucleus.
In the terms of the Hamiltonian we include the g tensor
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(g) parametrizing the electronic Zeeman interaction with
the external magnetic field B, the nuclear shielding tensor
σ modifying the corresponding nuclear Zeeman interaction,
the zero-field splitting (ZFS) tensor D, and the hyperfine
coupling (HFC) tensor A, arising from the spin-orbit coupling
and magnetic interaction between the unpaired electron and
the nuclear spin, respectively. In the Hamiltonian (1), μB is
the Bohr magneton and γ is the nuclear gyromagnetic ratio.
We assume that both direct and indirect spin-spin couplings
between the nuclei are insignificant for PRE, and we also
ignore the quadrupole coupling of the spin- 5

2
17O nucleus,

whose fluctuations dominate 17O relaxation in diamagnetic
systems (see, e.g., [28] and references therein). The ensemble
and, assuming ergodicity, time average of the Hamiltonian
〈Ĥ (t)〉 equals the sum of the Zeeman terms Ĥz spanned
by the components of the electron and nuclear spin vectors
along B. Ĥz is time independent and we define the interaction
Hamiltonian as ĤI (t) = Ĥ (t) − Ĥz.

B. Spin dynamics

The density operator for an individual member of the
ensemble, i.e., a pure state, is defined as ρ̂ = |�〉〈�|, where
|�〉 is the state of the spin system. The dynamical behavior
of ρ̂ is determined by the Liouville–von Neumann equation
[29,30]

dρ̂(t)

dt
= ˆ̂L(t)ρ̂(t), (2)

where the Liouvillian ˆ̂L(t) is a superoperator defined as
(operating on the operator ĉ)

ˆ̂L(t)ĉ = − i

�
[Ĥ (t),ĉ]. (3)

Using δi to denote the ith discrete time step, and defining
tj = ∑j

i=1 δi ∀ j , we can approximate

ρ̂(t) ≈ e
ˆ̂L(tn)δn . . . e

ˆ̂L(t1)δ1 ρ̂(0) ≡ ρ̂n(t). (4)

Letting δ → 0, and, thus, the number of time steps n → ∞,
ρ̂n(t) becomes the exact solution of Eq. (2).

Assuming that all the spins in the ensemble are initially
in the same state ρ̂(0), the ensemble average of the density
operator at time t can be expressed as

〈ρ̂(t)〉 = lim
max(δi )→0

〈e ˆ̂L(tn)δn . . . e
ˆ̂L(t1)δ1〉ρ̂(0). (5)

We define

ˆ̂L (t) = lim
max(δi )→0

ln[〈e ˆ̂L(tn)δn . . . e
ˆ̂L(t1)δ1〉] (6)

to yield exponential propagator e
ˆ̂L (t) for the ensemble-

averaged density operator.
The operators and superoperators can be cast into the

rotating frame, respectively, as

Ôr (t) = e− ˆ̂Lzt Ô(t); ˆ̂Or (t) = e− ˆ̂Lzt ˆ̂O(t)e
ˆ̂Lzt , (7)

where ˆ̂Lz is the Liouvillian form [as in Eq. (3)] of Ĥz. The
Liouville–von Neumann equation (2) for the density operator

in the rotating frame (interaction picture) reads as then

dρ̂r (t)

dt
= ˆ̂Lr

I (t)ρ̂r (t), (8)

where ˆ̂Lr
I (t), the Liouvillian form of ĤI (t) in the rotating

frame, is the Liouvillian in the interaction picture [31]. One

can show that ˆ̂LI (t) = ˆ̂L(t) − ˆ̂Lz and ˆ̂Lr
I (t) = ˆ̂Lr (t) − ˆ̂Lz.

Thus, the superpropagator for the ensemble-averaged density

operator in the rotating frame equals e
ˆ̂L r
I (t), where

ˆ̂L r
I (t) = lim

max(δi )→0
ln

[〈
e

ˆ̂Lr
I (tn)δn . . . e

ˆ̂Lr
I (t1)δ1

〉]
. (9)

Hence, 〈ρ̂r (t)〉 = e
ˆ̂L r
I (t)ρ̂(0), and from the simple connection

〈ρ̂r (t)〉 = e− ˆ̂Lzt 〈ρ̂(t)〉, we have the equality

e
ˆ̂L r
I (t) = e− ˆ̂Lzt e

ˆ̂L (t). (10)

The operators of the spin system can be represented in the
bra-ket vector notation in the so-called shift and z-operator
basis (SZOB), which consists of the normalized shift, z, and
unit operators [32]

Ŝz,Ŝ+,Ŝ−,Îz,Î+,Î−, and 1̂, (11)

as well as certain normalized linear combinations of the
products of these operators (the shift operators are defined as,
e.g., Ŝ+ = Ŝx + iŜy , Ŝ− = Ŝx − iŜy). The diagonal and off-

diagonal elements of e
ˆ̂L (t) are comprised of the autocorrelation

and cross-correlation functions, respectively, of the operators
of the basis.

With the definition |Ô(t)〉 = e
ˆ̂L (t)|Ô(0)〉, the ensemble-

averaged bra-ket operator products can be expressed as

〈Ô(0)|Ô(t)〉 = Tr〈Ô(0)Ô(t)〉
Tr〈Ô(0)Ô(0)〉 , (12)

where 〈. . . 〉 denotes the ensemble average.

C. Asymptotic limit

In the definition of ˆ̂L r
I (t) [Eq. (9)], we may expand the

natural logarithm as a Taylor series in terms of the variables
δi , around 0. Then, it follows from Kubo’s theorem [24] that
taking the limit max(δi) → 0 leads to the so-called generalized
cumulant expansion (GCE). The GCE is the series

ˆ̂L r
I (t) =

∞∑
i=1

ˆ̂Kr
i (t), (13)

where

ˆ̂Kr
i (t) =

∫ t

0
dti

∫ ti

0
dti−1 . . .

×
∫ t2

0
dt1

〈 ˆ̂Lr
I (ti)

ˆ̂Lr
I (ti−1) . . . ˆ̂Lr

I (t1)
〉
c
. (14)

In the definition, 〈. . . 〉c is the cumulant average [24,31] over
the ensemble, defined via the generating function [33]〈 ˆ̂Lr

I (tk) . . . ˆ̂Lr
I (t1)

〉
c

= ∂k

∂δ1 . . . ∂δk

[
ln

〈
e

ˆ̂Lr
I (tk )δk . . . e

ˆ̂Lr
I (t1)δ1

〉]∣∣
δi=0 ∀ i

. (15)

043413-2



LIQUID-STATE PARAMAGNETIC RELAXATION FROM . . . PHYSICAL REVIEW A 94, 043413 (2016)

In the interaction picture, the cumulant average has the
property

〈 ˆ̂Lr
I (t1)

〉
c
= 〈 ˆ̂Lr

I (t1)
〉 = 0. (16)

Thus, the first term of the GCE vanishes. We define τ as the
smallest time for which 〈 ˆ̂Lr

I (0)| ˆ̂Lr
I (t)〉 ≈ 0 for t > τ , where

the inner product of the superoperators is defined analogous to

Eq. (12). This means that, for t > τ , ˆ̂Lr
I (t) does not correlate

significantly with ˆ̂Lr
I (0). Now,

∫ τ

0

〈 ˆ̂Lr
I (0)

∣∣ ˆ̂Lr
I (t)

〉
dt ≈

∫ ∞

0

〈 ˆ̂Lr
I (0)

∣∣ ˆ̂Lr
I (t)

〉
dt = τc, (17)

where τc is the correlation time. Because of the chronological
time ordering in the definition (14), ti � tj if and only if i > j ,
we see that, in case ti − ti−1 > τ ,

ln
〈
e

ˆ̂Lr
I (tn)δn . . . e

ˆ̂Lr
I (ti )δi e

ˆ̂Lr
I (ti−1)δi−1 . . . e

ˆ̂Lr
I (t1)δ1

〉
= ln

〈
e

ˆ̂Lr
I (tn)δn . . . e

ˆ̂Lr
I (ti )δi

〉 + ln
〈
e

ˆ̂Lr
I (ti−1)δi−1 . . . e

ˆ̂Lr
I (t1)δ1

〉
. (18)

Hence, the cumulant average vanishes in this case. As shown

by Kubo [11,24], ˆ̂Kr
i (t) starts to behave asymptotically at

t > τi , where τi = (i − 1)τ . We assume that the GCE con-
verges and, consequently, as shown in the Appendix A,

provided that ˆ̂Kr
j (t) is the highest significant term in the GCE,

ˆ̂L r
I (t)|t>τj

= ˆ̂A t + ˆ̂B (19)

with

ˆ̂A = e− ˆ̂Lz(t−τj ) ˙̂̂
L r

I (τj )e
ˆ̂Lz(t−τj ),

ˆ̂B = [ ˆ̂L r
I (τj ) − e− ˆ̂Lz(t−τj ) ˙̂̂

L r
I (τj )e

ˆ̂Lz(t−τj )τj

]
, (20)

where the dot over ˆ̂L r
I is used to express the explicit time

derivative ∂
∂t

. ˆ̂A and ˆ̂B are independent of time in the explicit
sense. However, the implicit time dependence due to the rotat-
ing frame is shown in Eq. (20) for convenience. In relaxation
processes where τj is small as compared to the anticipated

relaxation time, the effect of the ˆ̂B term is insignificant. In this
case, the effective superpropagator for the ensemble-averaged

density operator is e− ˆ̂Lz(t−τj )e
˙̂̂

L r
I (τj )t e

ˆ̂Lz(t−τj ). The double-sided
rotation has no effect on relaxation, which, consequently, is

described simply by e
˙̂̂

L r
I (τj )t .

In the GCE, we may choose to include in ˆ̂Kr
i (t) terms

only up to the second one ˆ̂Kr
2 (t) to yield the second-order

approximation for e
ˆ̂L r
I (t). Because of Eq. (16) and the

stationarity of the ensemble, we see that

ˆ̂Kr
2 (t) =

∫ t

0
dt2

∫ t2

0
dt1

〈 ˆ̂Lr
I (t2) ˆ̂Lr

I (t1)
〉

=
∫ t

0
dt2

∫ 2t2

t2

dt1
〈 ˆ̂Lr

I (t2) ˆ̂Lr
I (t1)

〉
, (21)

where the last expression of Eq. (21) is used in the practical
simulation. In the regime where the Redfield theory is valid,

the second-order term is the only significant term (j = 2):

˙̂̂
L r

I (τ2) = ˙̂̂
Kr

2 (τ2) =
∫ τ2

0
dt1

〈 ˆ̂Lr
I (τ2) ˆ̂Lr

I (t1)
〉

=
∫ τ2

0
dt1

〈 ˆ̂Lr
I (0) ˆ̂Lr

I (t1)
〉
, (22)

and the ˆ̂B term is insignificant. The last expression of Eq. (22)
is the typical form of the Redfield relaxation matrix.

D. Spin dynamics simulations

We extract a time series of instantaneous Hamiltonians
{Ĥi}li=1, with the adjacent configurations separated by time
step δ = 48 fs, from a 750-ps-long production part of MD
simulation trajectory of Ni2+(aq), with the snapshots sampled
using quantum-chemical electronic structure calculations [23]
of the parameters of the spin Hamiltonian (1). The series
consists of l = 15 625 time steps, and determines the time
dependence of a single spin system in the ensemble. By
assuming ergodicity and calculating the ensemble average as a
time average over the series of Hamiltonians, we approximate

e
ˆ̂L (nδ) ≈ 1

N

N−1∑
i=0

e
ˆ̂L[(i+n)δ]δ . . . e

ˆ̂L[(i+1)δ]δe
ˆ̂L(iδ)δ, (23)

where N is the normalization factor. At each point in time nδ,
we average over as many subseries Ĥi, . . . ,Ĥi+n as can be
extracted from the series {Ĥi}li=1. Thus, N depends on n as

well as l. For each value of n at which we calculate e
ˆ̂L (nδ),

(1/N )
∑N

i=1 Ĥi should ideally provide a good approximation
of Ĥz. In practice, the statistical quality of the simulated
magnetization decreases for larger n values. Ideally, δ should
be small enough to capture all the significant fluctuations.
By setting δ to be 48 fs we yield sampling frequency
corresponding to the electron Zeeman frequency at 708.1 T
external magnetic field. In a 1-T external field, the Zeeman
frequency of the electron is 29.4207 GHz, that of the protons
42.5802 MHz and, for oxygen, 5.87229 MHz.

We obtain ˆ̂L r
I (nδ) by applying rotation operator e− ˆ̂Lznδ ,

from the left-hand side, to the numerical approximation (23)
[see Eq. (10)], and finally taking the natural logarithm. We
calculate the normalized spin-lattice (longitudinal, z axis) and
spin-spin (transverse, x or y axis) magnetization decay as

σ r
ε (t)

σ r
ε (0)

= 〈σ̂ε(0)|σ̂ r
ε (t)〉 = 〈σ̂ε(0)|e ˆ̂L r

I (nδ)|σ̂ε(0)〉, (24)

where σε stands for the Cartesian ε component (ε = x,y,z)
of the electron, proton, or oxygen spin. With the available

statistics, the off-diagonal elements of the calculated ˆ̂L r
I (nδ)

are unfortunately rather noisy in the SZOB operator basis. To

work around this, we assume that ˆ̂L r
I (nδ) is diagonal after

the asymptotic limit is reached, i.e., the magnetization decay
assumes a single-exponential form (the normalized σz and σ±
operators belong to SZOB).

We also study the effect of the second-order [Eq. (21)]

contribution to the diagonal of ˆ̂L r
I (t), by straightforwardly
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calculating

ˆ̂Kr
2 (nδ) ≈ δ2

N

N−1∑
i=0

n∑
m2=1

2m2−1∑
m1=m2

ˆ̂Lr
I (iδ) ˆ̂Lr

I [(m1 − m2 + i)δ]

− δ

2N

N−1∑
i=0

ˆ̂Lr
I (iδ)2 nδ, (25)

where N is the normalization factor explained above. For the
approximation to remain valid, we must assume ergodicity of
the ensemble in the rotating frame. The first term on the the
right-hand side of Eq. (25) is a practical approximate form of
the last expression in Eq. (21), whereas the second term of
Eq. (25) is a correction that arises due to the finite length
of the time step, as explained in Appendix B.

In the calculations of the instantaneous spin Hamiltonian
parameters we take only into account the first coordination
sphere of the ion, consisting of six water molecules. The
Ni(H2O)2+

6 entity has an isotropic rotational distribution in
the liquid phase. Also, the dynamic behavior of the g and
ZFS tensors is independent of the direction of B with respect
to the molecular system. Thus, similarly as in our previous
work [23], we gain threefold improved statistics by rotating
the molecular property tensors so that the magnetic field is,
in turn, along each of the Cartesian x, y, and z axes of the
MD simulation box. The spin dynamics trajectories of the
longitudinal and transverse components of magnetization M,
obtained with the different choices of the direction of B, are
averaged over. In the cases of the 1H and 17O simulations, we
average over all the corresponding nuclei in the first solvation
shell of the ion. The g, ZFS, and hyperfine coupling tensors
were calculated in the same way and at the same level of theory
as described in Ref. [26].

We used the SPINDYNAMICA [32] software package for
Mathematica [34] as a platform for the spin dynamics
simulations.

III. RESULTS AND DISCUSSION

Both the spin-lattice and spin-spin magnetization decays
assume the single-exponential form

σ r
z (t)

σ r
z (0)

= e−a1t+b1 ;
σ r

x,y(t)

σ r
x,y(0)

= e−a2t+b2 (26)

after reaching the asymptotic limit since ˆ̂L r
I (nδ) is approx-

imated to be diagonal. We extracted the spin-lattice (a1 =
1/T1) and spin-spin (a2 = 1/T2) relaxation rates and the
corresponding constants b1 and b2, by least-square fitting with
the FINDFIT routine of Mathematica.

In analogy to the case of the full simulation, the second-
order contribution to relaxation rates a1,2 (and constants b1,2)
assume the form

− a
(2)
1 t + b

(2)
1 = 〈σ̂z(0)| ˆ̂Kr

2 (t)|σ̂z(0)〉,
−a

(2)
2 t + b

(2)
2 = 〈σ̂x,y(0)| ˆ̂Kr

2 (t)|σ̂x,y(0)〉 (27)

after the second-order part has reached the asymptotic
limit. The spin-lattice a

(2)
1 and spin-spin a

(2)
2 relaxation rates

FIG. 1. Simulated proton magnetization decays Hr
z (t)/Hr

z (0)
(solid lines) and Hr

x (t)/Hr
x (0) (dashed lines) defined by Eq. (24)

at 0 T (blue), 3 T (red), and 10 T (green) external magnetic-field
strengths, in Ni+2(aq) at 300 K.

and the constants b
(2)
1 and b

(2)
2 were again extracted by

fitting.

A. Relaxation of the water protons

Figure 1 shows the longitudinal and transverse magne-
tization decay of the proton at 0, 3, and 10 T external
magnetic-field strengths. The time scale of the simulation is
more than sufficient for the proton magnetization decay to
assume the linear form 1 + b1,2 − a1,2t , which happens after
circa 40 ps. The relaxation rate increases with B and at these
finite field values the longitudinal relaxation occurs slower
than the transverse relaxation.

Figure 2 shows the extracted 1H spin-lattice and spin-spin
relaxation rates a1 and a2, respectively. It also includes a
comparison with experimental results [20,21] for the first-shell
contribution to a1 at temperatures of 324 and 344 K. The
simulated data show a flat region at small values of B,
where the relaxation rates do not significantly depend on the
magnetic-field strength. At higher field values, beyond 1 T,
a1 turns to a rapid increase. Both qualitative observations

FIG. 2. Simulated a1 (spin-lattice, blue open circles) and a2 (spin-
spin, red open squares) relaxation rate of the first-shell proton spins
in Ni2+(aq) as a function of the external magnetic-field strength, at
300 K. The triangles represent experimental a1 results [20,21], black
(arrow up) at 344 K and brown (arrow down) at 324 K.
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are in agreement with experimental findings [20,21]. It is
noteworthy that we reach a semiquantitative agreement with
experiment from first principles. The order of magnitude of the
pNMR relaxation rates is reproduced here without adjustable
parameters either in the motional model or in the magnetic
interactions.

In the detailed behavior of the a1 relaxation rate at
intermediate field strengths, our simulated data differ from the
experiments. The measurements, albeit performed at slightly
higher temperatures than the 300 K of the simulation, feature
a region of minimum in the spin-lattice relaxation rate at
B around a couple of Teslas. Such a clear minimum at
that field strength is not reproduced in our results based on
the magnetization decay curves obtained from our limited
statistical sample. Our data, however, feature a somewhat
less distinct minimum above 1 T. The statistics used in our
SD simulation were extracted from a MD simulation of a
single Ni2+ ion surrounded by water molecules. Such a limited
sample size is dictated by the fact that the QC calculation of the
spin Hamiltonian parameters of the instantaneous simulation
snapshots is very time consuming. In the long term, such
simulations may be performed using accurate preparametrized
magnetic property hypersurfaces, which no longer require
brute-force QC sampling of instantaneous configurations [27].
This will enable both using a smaller time step δ and a longer
total SD simulation length, which improve reproduction of
the physical fluctuations contributing to relaxation as well as
statistical averaging.

We include in the Supplemental Material [35] figures of
the B dependence of the relaxation rates of the individual
protons in the first solvation shell of the Ni2+ ion. These
relaxation rates differ clearly from each other, with many of
them showing minimum features akin to the experimental
behavior, at the intermediate field strengths. This and the
fact that the simulated a2 does not always exceed a1 in
magnitude imply that the present statistical sample remains
insufficient for drawing detailed quantitative conclusions about
the magnetic-field dependence, despite the remarkable success
in reproducing the order of magnitude of the relaxation rates,
as well as the qualitative features described above.

ZFS (the D tensor) and the electronic Zeeman (g tensor)
interactions give only off-diagonal contributions to the nuclear
spin relaxation through the second-order term of the gener-
alized cumulant expansion. From the diagonal assumption
(i.e., that the relaxation is assumed single exponential) it,
thus, follows that the second-order nuclear spin relaxation
rates are only contributed to by the HFC (the A tensor) and
nuclear Zeeman (the σ tensor) interactions. Figure 3 shows
the simulated second-order proton spin-lattice and spin-spin
relaxation rates a

(2)
1 and a

(2)
2 , respectively, as functions of

B at 300 K. In contrast to both the full simulation and
experiment, the second-order rates decrease monotonically
as functions of B. At intermediate values of B, a

(2)
2 < a

(2)
1 ,

which is one indicator of the insufficiency of the second-order
contribution. It is, however, noteworthy that the second-order
rates approach those of the full simulation at the largest
simulated field strengths, indicating that the second-order
term in the GCE becomes increasingly dominant, as B grows.
Related to that, Fig. 3 shows the indispensable role of the
higher- than second-order terms of the GCE for 1H relaxation

FIG. 3. Simulated second-order first-shell proton relaxation rates
a

(2)
1 (blue closed circles, dashed line) and a

(2)
2 (red closed squares,

dashed line) in Ni2+(aq), compared to the results of the full
simulation: a1 (blue open circles, solid line) and a2 (red open squares,
solid line), at 300 K.

at the experimentally relevant, smaller magnetic fields. The
correction term (latter term) in Eq. (25) is insignificantly
small in the second-order nuclear relaxation rates.

The second-order theory is insufficient for describing the
relaxation of the proton spin because the HFC interaction
correlates significantly with the dynamics of the electron
spin, driven mainly by the ZFS Hamiltonian [23]. The
autocorrelation rates of both the fluctuating HFC and nuclear
Zeeman (shielding) interaction Hamiltonians are small as
compared to their magnitudes (in s−1). Consequently, nuclear
spin relaxation would be in the Redfield regime [see Eq. (4.24)
of Ref. [8]] if electron spin dynamics could be omitted (as in
diamagnetic relaxation). This holds also in case of the oxygen
spin relaxation, discussed below.

B. Electron spin relaxation in the presence of hyperfine coupling

We extracted the relaxation data of the effective S = 1
spin of the unpaired electrons of the Ni2+ ion. We already
reported related results for this system in our earlier paper
[23] using the full theory without, however, considering the
effect of the hyperfine coupling, which is done presently.
Figure 4 shows the simulated electron magnetization decay
at 0, 3, and 10 T values of the external magnetic field. Unlike
in the case of 1H relaxation, the time scale of the electronic
relaxation is sufficiently fast to allow a direct, brute-force
simulation of the entire decay curve of the magnetization.
The electron relaxation process does not necessarily reach
the asymptotic limit before the magnetization has practically
vanished. However, the single-exponential decay fits quite well
to the simulation results at B > 3 T.

We fit the single-exponential decay of the form e−R1t and
e−R2t , respectively, to the simulated spin-lattice and spin-spin
magnetization curves and extract the relaxation rates R1 and
R2 for the electron spin. The results are shown in Fig. 5 as a
function of the external magnetic-field strength. The figure also
shows the simulated second-order relaxation rates a

(2)
1 and a

(2)
2 .

According to our results (Fig. 5), the second-order relax-
ation rates are in excellent agreement with the full electron
spin relaxation simulation. The rates are contributed to only
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FIG. 4. Simulated electron magnetization decay Sz(t)/Sz(0)
(solid lines) and Sx(t)/Sx(0) (dashed lines) defined by Eq. (24) at 0 T
(blue), 3 T (red), and 10 T (green) external magnetic-field strengths,
in Ni+2(aq) at 300 K.

by ZFS interaction, due to the diagonal assumption. The
correction term [latter term in Eq. (25)] has the magnitude
of circa 0.05 × 10−12 s−1 for both a

(2)
1 and a

(2)
2 and, thus,

turns out to be significant in the case of electron spin
relaxation. As compared to the second-order rates and our
earlier results [23], where only the ZFS and electronic
Zeeman interaction were included, electron relaxation is to
a good approximation unaffected by the HFC interaction with
the proton. Reflecting the discussion of the inapplicability
of the second-order approximation to 1H relaxation (vide
supra), the HFC interaction only has an off-diagonal contribu-
tion to the electron spin relaxation through the second-order
term of the GCE. Hence, the excellent agreement that we find
with the diagonal assumption suggests that such second-order
HFC contributions are not significant. Furthermore, the higher-
order terms contributed to by HFC interaction are always
weaker as compared to the higher-order terms contributed

FIG. 5. Simulated electron spin-lattice (R1, blue open circles) and
spin-spin (R2, red open squares) relaxation rates in Ni2+(aq) based
on the full theory as compared to the second-order rates a

(2)
1 (blue

closed circles) and a
(2)
2 (red closed squares). Results as functions of

the external magnetic-field strength, at 300 K, including hyperfine
coupling to proton. Proton-uncoupled R1 and R2 results from our
earlier publication [23] are included as blue triangles pointing up
(R1) and red triangles pointing down (R2).

FIG. 6. Simulated oxygen magnetization decays Or
z (t)/Or

z (0)
(spin-lattice, solid lines) and Or

x (t)/Or
x (0) (spin-spin, dashed lines)

defined by Eq. (24) at 0 T (blue), 3 T (red), and 10 T (green) external
magnetic-field strengths, at 300 K.

solely to by the ZFS interaction. One may further surmise
that the excellent agreement found with the second-order rates
as compared to the full results [23] suggests that also the
higher-order terms containing contributions only from ZFS
are insignificant. As explained in the next section, simulations
with hyperfine coupling to 17O were done, due to reasons of
computational cost, with lower statistical quality, which has a
slight effect on the extracted electron spin relaxation rates in
this case (see Supplemental Material [35]).

The autocorrelation function of the ZFS Hamiltonian
[defined as Ŝ · D(t) · Ŝ, with the magnitude of ω = 1.4 × 1012

rad/s] decays biexponentially with integrated correlation time
τZFS
c = 0.5 ps. Thus, ωτZFS

c = 0.74 and the process does
not occur in the Redfield regime, which is characterized by
ωτZFS

c 	 1 [see Eq. (4.24) of Ref. [8]]. Nevertheless, the
(Redfield-type) second-order theory describes the electron
spin relaxation sufficiently. As discussed in Ref. [11], the
magnitude of each successive term in the GCE can be
anticipated to decrease, roughly, at least by the factor of ωτZFS

c .

FIG. 7. Simulated a1 (spin-lattice, blue open circles) and a2 (spin-
spin, red open squares) relaxation rates of 17O nuclear spin of the first
solvation-shell water molecules in Ni2+(aq). Results as functions of
the external magnetic-field strength, at 300 K. The black triangles
represent experimental a2 results interpreted from Fig. 1 of Ref. [36]
[approximately 0.143 (μs)−1 at 270 K and 0.167 (μs)−1 at 300 K].
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TABLE I. Simulated full and second-order relaxation rates of the first-shell nuclear spins in Ni2+(aq), at 300 K.

B (T) 0 0.3 0.7 1.0 1.7 3 7 10 30 100

Proton a1 ms−1 3.95 3.95 4.66 4.68 4.59 5.03 6.22 6.44 8.29 9.54

Proton a2 ms−1 3.96 3.70 4.78 4.85 4.52 5.29 6.82 7.03 8.19 11.3

Proton a
(2)
1 ms−1 46.7 18.8 17.44 16.0 13.0 8.01

Proton a
(2)
2 ms−1 46.7 15.7 14.6 13.7 12.3 10.6

Oxygen a1 μs−1 0.13 0.13 0.04 0.02 0.02 0.02

Oxygen a2 μs−1 0.12 0.16 0.13 0.34 0.49 0.59

Oxygen a
(2)
1 μs−1 0.13 0.02 0.02 0.02 0.02

Oxygen a
(2)
2 μs−1 0.09 0.02 0.02 0.02 0.02

Our results indicate that the magnitudes can decrease by a
significantly greater factor.

C. Relaxation of the water oxygens

In the case of the 17O nuclei of the first-shell water
molecules, we only used one quarter of the length of the
full series of Hamiltonians {Ĥi} for a more manageable
computational expense. According to our tests [35], the
behavior of the magnetization decay is stable against varying
the length of the used part of the series of Hamiltonians: similar
results are obtained both with the full series and one quarter of
it (see Supplemental Material [35]). In contrast, the relaxation
rates show greater dependence on the used sampling step.

Figure 6 shows the 17O magnetization decay curves
Or

z (t)/Or
z (0) and Or

x(t)/Or
x(0), at 0, 3, and 10 T external

magnetic-field strengths, using the chosen sampling interval
and length of the series of Hamiltonians. Similarly to the
case of proton, the 17O magnetization assumes the linear
form 1 + b1,2 − a1,2t well within the time scale of the
simulation. Figure 7 shows the extracted 17O spin-lattice (a1)
and spin-spin (a2) relaxation rates, as functions of B. Figure 7
also includes a comparison with the experimental first-shell
spin-spin relaxation rate, interpreted from Fig. 1 of Ref. [36].
Our first-principles results are in excellent agreement with
these data. The second-order approximations a

(2)
1,2 calculated

with the entire series of Hamiltonians {Ĥi} are included in the
Supplemental Material [35].

IV. TABULATED RELAXATION RATES

Table I contains tabulated versions of the simulated nuclear
spin relaxation rates as functions of the external magnetic-field
strength. The simulated electron spin relaxation rates (without
HFC) are tabulated in Ref. [23].

V. CONCLUSIONS

In this paper, we presented a method to extract the
propagator for the time dependence of the combined electronic
and nuclear spin density matrix. We used a time series of
Hamiltonians spanning a time scale relevant for the molec-
ular fluctuations contributing to paramagnetic relaxation.
The Hamiltonians are obtained from a molecular dynamics
simulation trajectory by quantum-chemical sampling.

We applied the method to the aqueous solution of the
nickel(II) ion (spin-1 system) and obtained from first principles
the spin-lattice (1/T1) and spin-spin (1/T2) relaxation rates for
the nuclear and effective electron spin of the system. Whereas
it is possible to simulate the entire electron magnetization
decay curve using an adequate Hamiltonian sampling rate,
the same is not feasible for the nuclear spins due to the much
longer time scale. For the nuclei, the asymptotic limit proposed
by Kubo was employed, rendering feasible the predictions
of nuclear spin relaxation rates. Despite the limited statistics,
due to which we had to assume that the nuclear relaxation is
single exponential, both the electronic and nuclear relaxation
rates are in good agreement with the available experimental
data. Comparison of the simulated relaxation rates with the
second-order (Redfield-type) approximation shows that the
latter is insufficient for describing nuclear spin relaxation
in the paramagnetic example system. However, in the case
of electron spin relaxation, the second-order rates are in an
excellent agreement with the results of the full simulation.

The simulated electron spin relaxation rates are dominated
by the ZFS interaction. The 1H spin-lattice relaxation rates
possess the same order of magnitude as the corresponding
experimental results. Furthermore, the results feature the
experimentally observed qualitative features of the low-field
plateau in the proton relaxation rates, as well as a rapid
increase when approaching 10 T. A less-pronounced minimum
at the field of a few Tesla is obtained in the simulation than
what is observed experimentally, however. It is thinkable that
this deficiency is due to limited statistical sampling. The
second-order relaxation rates are in this case of the order
of 10 times higher than the rates extracted from the full
simulation, at the experimentally relevant external magnetic
field strengths. The higher the external magnetic field is, the
better the second-order approximation becomes, and at 100-T
field the results coalesce, meaning that the second-order term in
the underlying generalized cumulant expansion is the highest
and only significant term at this field strength. A very good
agreement is found for the relaxation rates of the water oxygen
with the limited amount of available data.

Quantitative, first-principles understanding of macroscopic
properties is one of the aims of the molecular theory and
modeling. In this paper, the PRE phenomenon was simulated
from first principles, by combining spin dynamics and molecu-
lar dynamics simulations sampled through quantum-chemical
techniques. More efficient QC sampling techniques, such as
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the preparametrization of the magnetic property hypersurfaces,
are required to push forward the development of the present
type of first-principles simulation techniques, including the
understanding of the behavior of the terms in the generalized
cumulant expansion.
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APPENDIX A: ASYMPTOTIC LIMIT

We start from Eq. (14) and note that, at t > τi = (i − 1)τ ,
ˆ̂Kr
i (t) can be split in two parts:

ˆ̂Kr
i (t)|t>τi

=
∫ τi

0
dti

∫ ti

0
dti−1 . . .

∫ t2

0
dt1

〈 ˆ̂Lr
I (ti) . . . ˆ̂Lr

I (t1)
〉
c

+
∫ t

τi

dti

∫ ti

0
dti−1 . . .

∫ t2

0
dt1

〈 ˆ̂Lr
I (ti) . . . ˆ̂Lr

I (t1)
〉
c
,

(A1)

where the latter part can be expressed as (t − τi)
∂ ˆ̂Kr

i (t)
∂t

. In the
following, we express the explicit time derivative ∂

∂t
, with a

dot, i.e.,
˙̂̂

Kr
i (t) ≡ ∂ ˆ̂Kr

i (t)
∂t

. Now, at t > τi , the derivative can be
expressed as

˙̂̂
Kr

i (t)|t>τi
=

∫ t

t−τ

dti−1

∫ ti−1

ti−1−τ

dti−2

∫ ti−2

ti−2−τ

dti−3 . . .

×
∫ t2

t2−τ

dt1〈 ˆ̂Lr
I (t) ˆ̂Lr

I (ti−1) . . . ˆ̂Lr
I (t1)〉c

=
∫ t

t−τ

dti−1 . . .

∫ t2

t2−τ

dt1
〈
e− ˆ̂Lzt ˆ̂LI (t)e

ˆ̂Lzt e− ˆ̂Lzti−1

× ˆ̂LI (ti−1)e
ˆ̂Lzti−1 . . . e− ˆ̂Lzti ˆ̂LI (t1)e

ˆ̂Lzt1
〉
c
. (A2)

Due to the nature of the average, taken over the stationary

ensemble,
˙̂̂

Kr
i (t) has no explicit time dependence at t > τi .

However, there is implicit time dependence due to the rotating
frame. In the second row of Eq. (A2), this has been emphasized
by writing the rotation superoperators explicitly. The rotation
phase difference between the adjacent Hamiltonians, such as

e
ˆ̂Lztj e− ˆ̂Lztj−1 (including the first one from the left: e

ˆ̂Lzt e− ˆ̂Lzti−1 ),
are independent under the time translation t → τi . The first

and last rotation operators e− ˆ̂Lzt and e
ˆ̂Lzt1 , respectively, change

under the time translation and, thus, are the only time
dependence that can not be translated from t to τi without

influence. Thus, we see that

˙̂̂
Kr

i (t)|t>τi
= e− ˆ̂Lz(t−τi )

[∫ τi

τi−τ

dti−1

∫ ti−1

ti−1−τ

dti−2 . . .

×
∫ t2

t2−τ

dt1
〈 ˆ̂Lr

I (τi) . . . ˆ̂Lr
I (t1)

〉
c

]
e

ˆ̂Lz(t−τi )

= e− ˆ̂Lz(t−τi ) ˙̂̂
Kr

i (τi)e
ˆ̂Lz(t−τi ), (A3)

where e− ˆ̂Lz(t−τi ) and e
ˆ̂Lz(t−τi ) are explicitly written time-

dependent factors, the only time dependence remaining in
˙̂̂

Kr
i (t) when t > τi . If ˆ̂Kr

j (t) is the highest significant term
in the GCE, we see that

ˆ̂L r
I (t)|t>τj

= e− ˆ̂Lz(t−τj ) ˙̂̂
L r

I (τj )e
ˆ̂Lz(t−τj )t

+ [ ˆ̂L r
I (τj ) − e− ˆ̂Lz(t−τj ) ˙̂̂

L r
I (τj )e

ˆ̂Lz(t−τj )τj

]
≡ ˆ̂A t + ˆ̂B. (A4)

Both ˆ̂A and ˆ̂B are explicitly time independent.

APPENDIX B: LENGTH OF THE TIME STEP

The GCE of ˆ̂L r
I (t) can, alternatively to the Eq. (9), be

written as

ˆ̂L r
I (t) = lim

max(δi )→0

〈
e

ˆ̂Lr
I (tn)δn . . . (B1)

× e
ˆ̂Lr

I (t2)δ2e
ˆ̂Lr

I (t1)δ1 − ˆ̂1
〉
c
. (B2)

When max(δi) is close enough to zero, the contribution from
the second and higher orders is not significant and, thus,

ˆ̂L r
I (t) = lim

max(δi )→0

〈[ ˆ̂1 + ˆ̂Lr
I (tn)δn

]
. . .

× [ ˆ̂1 + ˆ̂Lr
I (t2)δ2

][ ˆ̂1 + ˆ̂Lr
I (t1)δ1

] − ˆ̂1
〉
c
. (B3)

In the practical simulations we choose an equal length δ for
the time steps δi , small enough to catch all the significant
fluctuations contributing to relaxation. With such a choice of δ,
the statistical quality of the simulation would not significantly
further improve by choosing an even smaller time step. Now,

the calculated ˆ̂L r
I has the form

ˆ̂L r
I (nδ) = 〈[ ˆ̂1 + ˆ̂Lr

I (nδ)δ
]
. . .

× [ ˆ̂1 + ˆ̂Lr
I (2δ)δ

][ ˆ̂1 + ˆ̂Lr
I (δ)δ

] − ˆ̂1
〉
c
, (B4)

and the terms in the GCE, ˆ̂L r
I (t) = ∑∞

i=1
ˆ̂Kr
i (t), can be

expressed as

ˆ̂Kr
i (nδ) = δi

n∑
mi=i

mi−1∑
mi−1=i−1

. . .

×
m2−1∑
m1=1

〈 ˆ̂Lr
I (miδ) ˆ̂Lr

I (mi−1δ) . . . ˆ̂Lr
I (m1δ)

〉
c
. (B5)

In paramagnetic systems, the magnitude of the interaction can,

however, be so large that the Taylor series expansion of e
ˆ̂LI (t)t
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cannot be truncated after the first-order term. For example, the inclusion of the second-order terms, as in

ˆ̂L r
I (nδ) =

〈[
ˆ̂1 + ˆ̂Lr

I (nδ)δ + 1

2!
ˆ̂Lr

I (nδ)2δ2

]
. . .

[
ˆ̂1 + ˆ̂Lr

I (δ)δ + 1

2!
ˆ̂Lr

I (δ)2δ2

]
− ˆ̂1

〉
c

, (B6)

would also introduce second-order terms (with respect to the same time step) to GCE:

δ

2!

n∑
l=1

⎡
⎣δi

n∑
mi=i

. . .

ml+1−1∑
ml=l

. . .

m2−1∑
m1=1

〈 ˆ̂Lr
I (miδ) . . . ˆ̂Lr

I (mlδ)2 . . . ˆ̂Lr
I (m1δ)

〉
c

⎤
⎦ ≡ (2) ˆ̂Kr

i (t). (B7)

The cumulant average in this case can be expressed as

〈 ˆ̂Lr
I (tn) . . . ˆ̂Lr

I (tl)
2 . . . ˆ̂Lr

I (t1)
〉
c
=

[
∂

∂δl

∂n

∂δ1 . . . ∂δn

ln
〈
e

ˆ̂Lr
I (tn)δn . . . e

ˆ̂Lr
I (t1)δ1

〉]∣∣∣∣
δi=0 ∀ i

. (B8)

(2) ˆ̂Kr
i (t) turns asymptotic at τi and may be identified as a correction term to ˆ̂Kr

i+1(t) due to the finite time step. For example, the

correction to the second term ˆ̂Kr
2 (t) of the GCE is

(2) ˆ̂Kr
1 (nδ) = δ2

2!

n∑
m1=1

〈 ˆ̂Lr
I (m1δ)2

〉
c
= δ2

2!

n∑
m1=1

〈 ˆ̂Lr
I (m1δ)2

〉 = δ

2!

〈 ˆ̂Lr
I (nδ)2

〉
nδ. (B9)

Thus, the complete second term of the GCE reads as

ˆ̂Kr
2 (nδ) = δ2

n∑
m2=2

m2−1∑
m1=1

〈 ˆ̂Lr
I (m2δ) ˆ̂Lr

I (m1δ)
〉
c
+ δ2

2!

n∑
m1=1

〈 ˆ̂Lr
I (m1δ)2

〉
c
= δ2

n∑
m2=1

m2∑
m1=1

〈 ˆ̂Lr
I (m2δ) ˆ̂Lr

I (m1δ)
〉
c
− δ2

2

n∑
m1=1

〈 ˆ̂Lr
I (m1δ)2

〉
c

= δ2
n∑

m2=1

m2∑
m1=1

〈 ˆ̂Lr
I (m2δ) ˆ̂Lr

I (m1δ)
〉 − δ

2

〈 ˆ̂Lr
I (nδ)2

〉
nδ. (B10)

More generally, higher terms in GCE also have higher-order corrections. The third term ˆ̂Kr
3 (t) has one third-order correction and

two second-order corrections:

ˆ̂Kr
3 (t) = δ3

n∑
m3=3

m3−1∑
m2=2

m2−1∑
m1=1

〈 ˆ̂Lr
I (m3δ) ˆ̂Lr

I (m2δ) ˆ̂Lr
I (m1δ)

〉
c
+ δ3

3!

n∑
m1=1

〈 ˆ̂Lr
I (miδ)3

〉
c

+ δ3

2!

n∑
m2=2

m2−1∑
m1=1

[〈 ˆ̂Lr
I (m2δ)2 ˆ̂Lr

I (m1δ)
〉
c
+ 〈 ˆ̂Lr

I (m2δ) ˆ̂Lr
I (m1δ)2

〉
c

]
, (B11)

and the fourth term with the corrections reads as
ˆ̂Kr

4 (t)

= δ4
n∑

m4=4

m4−1∑
m3=3

m3−1∑
m2=2

m2−1∑
m1=1

〈 ˆ̂Lr
I (t4) ˆ̂Lr

I (t3) ˆ̂Lr
I (t2) ˆ̂Lr

I (t1)
〉
c
+ δ4

4!

n∑
m1=1

〈 ˆ̂Lr
I (m1δ)4

〉
c
+ δ4

3!

n∑
m2=2

m2−1∑
m1=1

[〈 ˆ̂Lr
I (m2δ)3 ˆ̂Lr

I (m1δ)
〉
c

(B12)

+ 〈 ˆ̂Lr
I (m2δ) ˆ̂Lr

I (m1δ)3
〉
c

] + δ4

2!2!

n∑
m2=2

m2−1∑
m1=1

〈 ˆ̂Lr
I (m2δ)2 ˆ̂Lr

I (m1δ)2
〉
c
+ δ4

2!

n∑
m3=3

m3−1∑
m2=2

m2−1∑
m1=1

[〈 ˆ̂Lr
I (m3δ)2 ˆ̂Lr

I (m2δ) ˆ̂Lr
I (m1δ)

〉
c

+ 〈 ˆ̂Lr
I (m3δ) ˆ̂Lr

I (m2δ)2 ˆ̂Lr
I (m1δ)

〉
c
+ 〈 ˆ̂Lr

I (m3δ) ˆ̂Lr
I (m2δ) ˆ̂Lr

I (m1δ)2〉
c

]
. (B13)
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