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Without using the relativity principle, we show how the Dirac equation in three space-dimensions
emerges from the large-scale dynamics of the minimal nontrivial quantum cellular automaton sat-
isfying unitarity, locality, homogeneity, and discrete isotropy. The Dirac equation is recovered for
small wave-vector and inertial mass, whereas Lorentz covariance is distorted in the ultra-relativistic
limit. The automaton can thus be regarded as a theory unifying scales from Planck to Fermi. A
simple asymptotic approach leads to a dispersive Schrödinger equation describing the evolution of
narrow-band states at all scales.
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I. INTRODUCTION

Since the beginning of the path-integral approach [1],
discrete versions of quantum field theories have been ex-
tensively studied, giving the Dirac equation in the contin-
uum limit [2, 3], and similar models have been developed
for simulating Fermi gas on a lattice [4, 5]. A special
case of discrete theory is the quantum cellular automa-
ton (QCA), the quantum version of the classical cellular
automaton of von Neumann [6] (for a review see Ref. [7]).
The two main features of the automaton are: 1) the dy-
namics involve countable systems, 2) and the update rule
for the state of system is local, namely in the quantum
case it is described by local unitary operators, each one
involving few systems. This should be contrasted with
other discrete theories–e. g. lattice gauge theories–where
the unitary operator is the exponential of an Hamiltonian
involving all systems at a time.

QCAs concretize the Feynman and Wheeler’s
paradigm of “physics as information processing” [8–10].
However, so far only classical automata have been
contemplated in such view [11, 12]. Taking the QCA as
the microscopic mechanism for an emergent quantum
field has been recently suggested in Refs. [13–15], also
as a framework to unify an hypothetical Planck scale
with the usual Fermi scale of high-energy physics. The
additional bonus of the automaton framework is that it
also represents the canonical solution to practically all
issues in quantum field theory, such as all divergences
and the problem of particle localizability, all due to the
continuum, infinite-volume, and Hamiltonian descrip-
tion. [16–19]. Moreover the QCA is the ideal framework
for a quantum theory of gravity, being the automaton
theory quantum ab initio (the QCA is not derivable by
quantizing a classical theory), and naturally incorpo-
rates the informational foundation for the holographic
principle–a relevant feature of string theories [20, 21]
and the main ingredient of the microscopic theories of
gravity of Jacobson [22] and Verlinde [23]. Finally, a
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theory based on a QCA assumes no background, but
only interacting quantum systems, and space-time and
mechanics are emergent phenomena.

The assumption of Planck-scale discreteness has the
consequence of breaking Lorentz covariance along with
all continuous symmetries: these are recovered at the
Fermi scale in the relativistic limit, in the same way
as in the doubly-special relativity of Amelino-Camelia
[24, 25], and the deformed Lorentz symmetry of Smolin
and Magueijo [26, 27]. Such Lorentz deformations have
phenomenological consequences, and possible experimen-
tal tests have been recently proposed by several authors
[28–31]. The deformed Lorentz group of the automaton
has been preliminarily analyzed in Ref. [32].

In analogy with classical cellular automata, the QCA
consists of cells of quantum systems interacting with a fi-
nite number of other cells, but differently from the classi-
cal case, the evolution is reversible. After early stimulat-
ing ideas of R. Feynman [8], the first QCA has been intro-
duced in Ref. [33], and only a decade later entered rigor-
ous mathematical literature [34–38]. A QCA in principle
can evolve a quantum field that can obey any statistics,
however, as we will see in this paper, in the present spirit
of deriving the theory from information-theoretical prin-
ciples, the QCA is fundamentally Fermionic. In addition,
Fermionic QCA can simulate every other QCA respect-
ing the local structure of interactions (see e.g. [39–41]),
whereas the converse is not true.

The evolution defining of the QCA is determined by its
action on the whole Fock space. however, being linear in
the field, as in the present case, the single-particle sector
completely specifies the automaton.

In this paper we show how the Dirac equation in three
space-dimensions can be derived solely from fundamen-
tal principles of information processing, without appeal-
ing to special relativity. The Dirac equation emerges
from the large-scale dynamics of the minimum-dimension
QCA satisfying unitarity, locality, homogeneity, and dis-
crete isotropy of interactions. Precisely, the Dirac equa-
tion is recovered for small wave-vector and inertial mass.
In Sec. II we show the construction of space starting just
from interactions between quantum systems, by requiring
simple informational principles on the update rule repre-
senting the evolution of a QCA. The principles allow us
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to identify the set of systems of the automaton with the
Cayley graph of a group. In Sec. III we specialize our
construction to the case of automata over Cayley graphs
of Abelian groups. In Sec. IV we derive the only four
solutions to the unitarity equations for the case of the
BCC lattice, corresponding to the unique Cayley graph
of Z3 supporting a QCA satisfying our requirements. We
call these solutions Weyl automata, because they give
Weyl’s equation in the relativistic limit. In Sec. V we
show the unique possible way to couple Weyl automata
locally, in order to obtain a new automaton. We call the
resulting QCA Dirac automaton because it gives Dirac’s
equation in the relativistic limit. The inequivalent Dirac
automata are only two. In Sec. VI we show the same
result for the case of Cayley graphs of Z2 and Z, leading
to Weyl and Dirac QCAs in 2 and 1 space dimensions,
respectively. Finally, in Sec. VII we study the relativistic
limit of all the above automata, which consists in taking
small wave-vectors compared to the Planck length, which
is the scale of a lattice step. We then show the first-order
corrections to the Dirac dynamics in the d = 3 case, due
to the discreteness of space-time at the Planck scale, and
provide the range of possible experimental tests of the
corrections. In this section we also provide an analyti-
cal description of the QCA for the narrow-band states of
quantum field theory in terms of a dispersive Schrödinger
equation holding at all scales.

II. QCAS AND SYMMETRIES

In the present section we introduce the general con-
struction of space starting from QCA representing inter-
actions among identical Fermionic quantum systems. Let
the cellular automaton involve a denumerable set G of
systems, conveniently described by Fermionic field oper-
ators ψg,l satisfying the usual anti-commutation relations

{ψg,l, ψg′,l′} = 0, {ψg,l, ψ†g′,l′} = δg,g′δl,l′ (1)

In the following, we will denote by ψg the formal sg-
components column vector

ψg =


ψg,1
ψg,2

...
ψg,sg

 , (2)

where sg is the number of field components at site g.
We will now assume the following requirements for the

interactions defining the QCA evolution: 1) linearity, 2)
unitarity, 3) locality, 4) homogeneity, and 5) isotropy.

By linearity, we mean that the interaction between sys-
tems is described by sg′ × sg transition matrices Agg′
which allow us to write the evolution from step t to step
t+ 1 as

ψg(t+ 1) =
∑
g′∈G

Agg′ψg′(t). (3)

Unitarity corresponds to the reversibility constraint∑
g′ Agg′A

†
g′′g′ =

∑
g′ A

†
gg′Ag′′g′ = δgg′′Isg .

If we define the set Sg ⊆ G of sites g′ interacting with
g, as the set of sites g′ for which Agg′ 6= 0, the locality
requirement amounts to ask that the cardinality of the set
Sg is uniformly bounded overG, namely |Sg| ≤ k <∞ for
every g. In the following we will focus on those automata
for which, if the transition from g to g′ is possible, then
also that from g′ to g is possible, namely if Agg′ 6= 0 then
Ag′g 6= 0.

The homogeneity requirement means that all the sites
g ∈ G are equivalent. In other words, the evolution
must not allow one to discriminate two sites g and g′.
In mathematical terms, this requirement has three main
consequences. The first one is that the cardinality |Sg|
is independent of g. The second one is that the set of
matrices {Agg′}g′∈Sg is the same for every g, whence we
will identify the matrices Agg′ = Ah for some h ∈ S, with
|S| = |Sg|. This allows us to define gh = g′ if Agg′ = Ah.
In this case, we also formally write g = g′h−1. Since
for Agg′ 6= 0 also Ag′g 6= 0, clearly if h ∈ S then also
h−1 ∈ S. The third consequence is that, whenever a se-
quence of transitions h1h2 . . . hN with hi ∈ S connects g
to itself, i.e. gh1h2 . . . hN = g, then it must also connect
any other g′ ∈ G to itself, i.e. g′h1h2 . . . hN = g′.

We now define the graph Γ(G,S) where the vertices are
elements of G, and edges correspond to couples (g, g′)
with g′ = gh. The edges can then be colored with |S|
colors, in one-to-one correspondence with the transition
matrices {Ah}h∈S . It is now easy to verify that either
the graph Γ(G,S) is connected, or it consists of n dis-
connected copies of the same connected graph Γ(G0, S).
Since the information in G is generally redundant, con-
sisting in n identical and independent copies of the same
QCA with cells belonging to G0, from now on we will as-
sume that the graph Γ(G,S) is connected. One can now
prove that such a graph represents the Cayley graph of
a finitely presented group with generators h ∈ S and re-
lators corresponding to the set R of strings of elements
of S corresponding to closed paths. More precisely, we
define the free group F of words with letters in S, and
the free subgroup H generated by words in R, it is easy
to check that H is normal in F , thanks to homogeneity.
The group G with Cayley graph Γ(G,S) coincides with
F/N .

In the elementary case there are no self-interactions,
and the set S can then be taken as S = S+ ∪ S−, where
S− is the set of inverses of the elements of S+. In case
of self-interactions, we include the identity e in S, which
then becomes S = S+ ∪ S− ∪ {e}. The requirements of
unitarity and homogeneity correspond to assuming that
the following operator over the Hilbert space `2(G)⊗Cs
is unitary

A =
∑
h∈S

Th ⊗Ah, (4)

where T is the right-regular representation of G on `2(G)
acting as Tg|g′〉 = |g′g−1〉.
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Finally, we say that the automaton is isotropic if ev-
ery direction on Γ(G,S) is equivalent. In mathematical
terms, there must exist a faithful representation U over
Cs of a group L of graph automorphisms, transitive over
S+, such that one has the covariance condition

A =
∑
h∈S

Th ⊗Ah =
∑
h∈S

Tl(h) ⊗ UlAhU†l , ∀l ∈ L. (5)

The existence of such automorphism group implies that
the Cayley graph is symmetric.

The unitarity conditions in terms of the transition ma-
trices Ah read∑

h∈S

A†hAh =
∑
h∈S

AhA
†
h = Is,∑

h,h′∈S
h−1h′=h′′

A†hAh′ =
∑

h,h′∈S
h′h−1=h′′

Ah′A
†
h = 0 (6)

In order to have non trivial sums in the second family of
conditions, it is necessary to have generators hi1 , hi2 , hi3
and hi4 such that, e.g. h−1

i1
hi2h

−1
i4
hi3 = e. In terms of

group presentation, this means that the relevant relators
for the unitarity conditions are those of length four.

Notice that if the transition matrices {Ah}h∈S satisfy
the unitarity conditions (6), then also their complex con-
jugates {A∗h}h∈S , their transposes {ATh−1}h∈S and their

adjoints {A†h−1}h∈S do, as can be verified taking the com-
plex conjugate, the transpose or the adjoint of the condi-
tions, and considering that if h−1

i1
hi2 = h−1

i3
hi4 , then also

h−1
i2
hi1 = h−1

i4
hi3 .

The QCA in Eq. (5) corresponds to the description of a
physical law by a quantum algorithm with finite algorith-
mic complexity, with homogeneity corresponding to the
universality of the law. One can easily recognize the gen-
erality of the construction, considering that the group
G is abstractly introduced via generators and relators:
G can be a random group, have tree-shaped graph, and
many other situations. The whole physics will emerge
without requiring any metric structure, since the group is
defined only topologically. An intuitive notion of metric
on the Cayley graph is given by the word-length lw(g), de-
fined as lw(g) := min{n ∈ N| g = hi1hi2 . . . hin , hij ∈ S}.
Space then emerges through the quasi-isometric embed-
ding E : G → R of the Cayley graph (Γ, dΓ) equipped
with the word metric dΓ(g, g′) = lw(g−1g′) in a metric
space (R, dR). Quasi-isometry is defined as [42]

1

a
dΓ(g, g′)− b ≤ dR(E(g),E(g′)) ≤ adΓ(g, g′) + b, (7)

∀x ∈ R ∃g ∈ G dR(x,E(g)) ≤ c (8)

for some a, b, c ∈ R. We also want homogeneity and
isotropy to hold locally in the space R, namely we require
for all g, g′ ∈ G and h, h′ ∈ S

dR(E(g),E(gh)) = dR(E(g′),E(g′h)),

dR(E(g),E(gh)) = dR(E(g),E(gh′)). (9)

The cardinality of the group G can be finite or infinite,
depending on its relators. The most interesting case in
the present context is that of a finitely generated infinite
group. Among infinite groups G we will restrict to those
having a Cayley graph that is quasi-isometrically embed-
dable [43] in the Euclidean space Rd. Since Rd and Zd are
quasi-isometric, every group G that is quasi-isometrically
embeddable in Rd is also quasi-isometric to Zd. Finally,
by the so-called quasi-isometric rigidity of Zd every such
group G has Zd as a subgroup with finitely many cosets,
namely G is virtually Abelian of rank d [44].

Our analysis will focus on Abelian groups Zd.

III. QCAS ON ABELIAN GROUPS

The Cayley graphs of Zd satisfying our assumption of
isotropic embedding in Rd are just the Bravais lattices.
Since the groups G that we are considering are Abelian,
from now on we will denote the group elements as usual
by boldfaced vector notation as n ∈ G, generators by
h ∈ S, and we will use the sum notation for the group
composition, as well as 0 for the identity. The space
`2(G) is the span of {|n〉}n∈G and the right-regular rep-
resentation coincides with the left-regular. The unitary
operator of the automaton is then given by

A =
∑
h∈S

Th ⊗Ah, (10)

and one has [A, Th⊗Is] = 0. Being the group G Abelian,
its unitary irreps are one-dimensional, and are labelled by
the joint eigenvectors of Th

Thi |k〉 = e−iki |k〉, (11)

where we label the elements hj ∈ S+ by the label j, and

k =

3∑
j=1

kjh̃j , (12)

where h̃j · hl = δjl. Finally this implies

|k〉 =
1√
|B|

∑
n∈G

e−ik·n|n〉, |n〉 =
1√
|B|

∫
B

dkeik·n|k〉,

(13)
where B is the first Brillouin zone defined through the
following set of linear constraints

B :=
⋂

1≤i≤|S|

{k ∈ Rd| − π|h̃i|2 ≤ k · h̃i ≤ π|h̃i|2}. (14)

The invariant spaces of the translations T then corre-
spond to plane waves |k〉 on the lattice G, with ave vector
k. Notice that

〈k|k′〉 =
1

|B|
∑
n∈G

ei(k−k
′)·n = δB(k− k′). (15)
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Translation invariance of the automaton in Eq. (10) then
implies the following form for the unitary operator A

A =

∫
B

dk|k〉〈k| ⊗ Ãk, (16)

where Ãk =
∑

h∈S e
ih·kAh is unitary for every k. No-

tice that Ãk is a matrix polynomial in eih·k, as a con-
sequence of the requirement of homogeneity. The spec-

trum {eiω
(i)
k } of the operator Ãk plays a crucial role in

the analysis of the dynamics, because the speed of the
wave-front of a plane wave with wave-vector k is given

by the phase-velocity ω
(i)
k /|k|, while the speed of propaga-

tion of a narrow-band state having wave-vector k peaked
around the value k0 is given by the group velocity at k0,

namely the gradient of the function ω
(i)
k evaluated at k0.

These remarks spot the relevance of the dispersion rela-

tion, namely the expression of the phases ω
(i)
k as functions

of k.
In the h representation the unitarity conditions (6) for

A read ∑
h∈S

AhA
†
h =

∑
h∈S

A†hAh = Is∑
h−h′=h′′

AhA
†
h′ =

∑
h−h′=h′′

A†h′Ah = 0. (17)

In an Abelian group every couple of generators h,h′ is
involved at least in one length-four relator expressing
Abelianity, namely h− h′ = −h′ + h.

In the Abelian case, if {Ah}h∈S is a set of transition
matrices satisfying the unitarity conditions (17), in ad-
dition to its complex conjugate {A∗h}h∈S , its transpose

{AT−h}h∈S , and its adjoint {A†−h}h∈S , also its reflected
set {A−h}h∈S provides a solution to the conditions (17).

Given an automaton A corresponding to a set of transi-
tion matrices {Ah}h∈S satisfying the unitarity condition
(17), notice that the following identity holds(

I ⊗ Ã†k=0

)
A =

∑
h∈S

Th ⊗A′h, (18)

with
∑

h∈S A
′
h = Is, namely, modulo a uniform local

unitary we can always assume∑
h∈S

Ah = Is. (19)

As explained in Sect. II, the requirement of isotropy
for the automaton needs the existence of a group that
acts transitively over the generator set S+ with a faith-
ful representation that satisfies Eq. (5). The isotropy

requirement implies that Ãk=0 commutes with the rep-
resentation U of the isotropy group L, whence we can
classify the automata by requiring identity (19) and then
multiplying the operator A on the left by (I⊗V ), with V
commuting with the representation U . In the case that
U is irreducible, by Schur’s lemmas we have only V = Is.

Unitarity of Ãk for s = 1 amounts to the requirement
that, for every k ∈ B, |

∑
h∈S zhe

ih·k| = 1 with zh ∈ C.
This is possible only if zh = δh0h for some generator h0.
However, the only choice of h0 compatible with isotropy
is h0 = 0, thus providing the trivial automaton A = I.
From now on we will then consider the simplest nontrivial
automaton, having s = 2.

IV. THE QUANTUM AUTOMATON WITH
MINIMAL COMPLEXITY: THE WEYL

AUTOMATON

In the present section we solve the equations Eq. (17)
for unitarity, on the Abelian group Z3.

For d = 3, the only Cayley graphs are the primi-
tive cubic (PC) lattice corresponding to the presenta-
tion of Z3 as the free Abelian group on d generators, the
body centered cubic (BCC), corresponding to a presen-
tation with four generators S+ = {hi}1≤i≤4 with relator
h1 +h2 +h3 +h4 = 0, and the rhombohedral, having six
generators S+ = {hi}1≤i≤6 with relators h1 − h2 = h4,
h2 − h3 = h5 and h3 − h1 = h6. The correspond-
ing coordination numbers are 6, 8, and 12, respectively
(notice that the other Bravais lattices are topologically
equivalent to the above three ones, namely they are the
same lattice modulo stretching transformations that do
not change the graph). The unitarity conditions are very
restrictive, and allow for a solution only on one out of
three possible Cayley graphs for Z3. Moreover, the au-
tomata satisfying our principles are only four, modulo
unitary conjugation. The solutions are divided in two
pairs A± and B±. A pair of solutions is connected to
the other pair by transposition in the canonical basis,
i.e. Ã±k = (B̃±k )T .

We call these solutions Weyl automata, because in the
relativistic limit of small wave-vector |k| � 1 their evo-
lution obeys Weyl’s equation, as discussed in Sec. VII.

In Appendix A the details of the derivation are ex-
plained, along with the proof of impossibility for a QCA
on the PC and rhombohedral lattices.

Let us now describe the BCC lattice in more detail.
The corresponding presentation of Z3 involves four vec-
tors S+ = {h1,h2,h3,h4} with relator h1+h2+h3+h4 =
0. The four vectors can be chosen as follows

h1 =
1√
3

1
1
1

 , h2 =
1√
3

 1
−1
−1

 ,

h3 =
1√
3

−1
1
−1

 , h4 =
1√
3

−1
−1
1

 ,

(20)

The twelve dual vectors k̃i satisfying hi · h̃j = δij are the
following

h̃ =

√
3

2

 1
±1
0

 , (21)
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modulo permutations of the three components and an
overall sign. The Brillouin zone for the BCC lattice—
shown in Fig. 1—is defined by

B := {k| − 3π
2 ≤ k · h̃i ≤ 3π

2 , 1 ≤ i ≤ 6}, (22)

which in Cartesian coordinates, using Eq. (21), reads

−
√

3π ≤ ki ± kj ≤
√

3π, i 6= j ∈ {x, y, z} (23)

FIG. 1. (Colors online) The Brillouin zone for the BCC lat-
tice. The components of the wave-vector k are dimensionless.

Two solutions A± of the unitarity equations corre-
spond to the following transition matrices Ahi

Ah1
=

(
ζ∗ 0
ζ∗ 0

)
, A−h1

=

(
0 −ζ
0 ζ

)
,

Ah2
=

(
0 ζ∗

0 ζ∗

)
, A−h2

=

(
ζ 0
−ζ 0

)
,

Ah3 =

(
0 −ζ∗
0 ζ∗

)
, A−h3 =

(
ζ 0
ζ 0

)
,

Ah4
=

(
ζ∗ 0
−ζ∗ 0

)
, A−h4

=

(
0 ζ
0 ζ

)
. (24)

The remaining solutions are the transposes B̃±k = (Ã±k )T .

As we will see later, the solutions B̃±k are redundant.

The solutions A±k in the Fourier representation are

Ã±k =
1

4

(
z(k) −w(k)∗

w(k) z(k)∗

)
,

z(k) := ζ∗eik1 + ζe−ik2 + ζe−ik3 + ζ∗eik4 ,

w(k) := ζ∗eik1 + ζe−ik2 − ζe−ik3 − ζ∗eik4 ,

ζ =
1± i

4
, (25)

can be written as follows

Ã±k = IdA
±

k − iα± · aA
±

k , (26)

where we define

(aA
±

k )x := sxcycz ± cxsysz
(aA

±

k )y := cxsycz ∓ sxcysz
(aA

±

k )z := cxcysz ± sxsycz
dA
±

k := cxcycz ∓ sxsysz. (27)

The symbols ci and si denote cos ki√
3

and sin ki√
3
, respec-

tively, while α± is the vector of matrices

α±x := σx, α±y := ∓σy, α±z := σz. (28)

As one can see from (26), the matrices Ã±k have unit

determinant, with spectrum {e−iω
A±

k , eiω
A±

k } and the dis-
persion relation is given by

ωA
±

k = arccos(cxcycz ∓ sxsysz). (29)

The three vectors that rule the evolution are: i) the

wave-vector k; ii) the helicity direction aA
±

k ; and iii) the
group velocity v±k := ∇kω

±
k , representing the speed of

a wave-packet peaked around the central wave-vector k.
The group velocity has the following components

(vA
±

k )x =
(aA
±

k )x√
1−(dA

±
k )2

, (30)

(vA
±

k )y =
(aA
∓

k )y√
1−(dA

±
k )2

, (31)

(vA
±

k )z =
(aA
±

k )z√
1−(dA

±
k )2

, (32)

where we remark the sign mismatch for the y-component.
An alternate, convenient expression of the two automata
above is the following

Ã±k = e
−i kx√

3
σxe
∓i ky√

3
σye
−i kz√

3
σz . (33)

If we now consider the automata Ã±k and translate

their argument as k′ := k +
√

3π
2 ki along the directions

k0 := (1, 1, 1), k1 := (1,−1,−1), k2 := (−1, 1,−1), or

k3 := (−1,−1, 1), we obtain Ã±k′ = ∓B̃∓k . Similarly, if
we translate in the same way along the directions −k0,
−k1, −k2, or −k3, we obtain Ã±k′ = ±B̃∓k . Finally, if

we translate by
√

3π along the Cartesian axes we obtain
Ã±k′ = −Ã±k .

One can easily verify that the two automata Ã±k are
covariant under the group L2 of binary rotations around
the coordinate axes, with the representation of the group
L2 on C2 given by {I, iσx, iσy, iσz}.

Finally, the two automata are connected by the follow-
ing identity

Ã±k = Ã∓∗−k. (34)

Since for SU(2) matrices complex conjugation is obtained
unitarily by conjugation with σy, the essential connection
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between the two solutions Ã±k is a parity reflection P :
k 7→ −k.

Summarizing, we can say that the automata A± and
A∓∗ are connected by the P symmetry, A± and B±∗ by
the T symmetry, while A± and B∓ are connected by PT.
Charge conjugation for the Weyl automata is not defined.

FIG. 2. (Colors online) Plot of the surface ωA
+

k = π
2

within
the Brillouin zone for the BCC lattice. The components of
the wave-vector k are dimensionless.

V. COUPLING WEYL AUTOMATA: THE
DIRAC AUTOMATA

In this section we find the only two automata that can
be obtained by locally coupling Weyl automata. These
automata are called Dirac automata, because in the rel-
ativistic limit of |k| � 1 they give Dirac’s equation, a
discussed in Sec. VII.

We start from two arbitrary Weyl automata F and
D, that can be A± or B±. The coupling is obtained
by performing the direct-sum of their representatives F̃k

and D̃k, obtaining a QCA with s = 4, and introducing
off-diagonal blocks B and C in such a way that the ob-
tained matrix is unitary. Locality of the coupling requires
the off-diagonal blocks B and C to be independent of k,
namely

Ã′k :=

(
xF̃k yB

zC tD̃k

)
, (35)

where x and t are generally complex, whereas y and z
can be chosen as positive. In appendix B the derivation
is carried out, leading to the only two possible automata

Ẽ±k :=

(
nÃ±k imI

imI nÃ±†k

)
, (36)

with n2 +m2 = 1.
Notice also that the choice of B± instead of A±

would have led to a unitarily equivalent automaton, since

B̃±∗k = σyB̃
±
k σy = Ã±†k , and the exchange of the upper

left block with the lower right one can be achieved uni-
tarily.

The eigenvalues {λE±k , λE
±∗

k } of Ẽk are derived in Ap-
pendix B along with the projections on the eigen-spaces,

and their expression λE
±

k = e−iω
E±
k is given in terms of

the following dispersion relation

ωE
±

k = arccos[
√

1−m2(cxcycz ∓ sxsysz)]. (37)

The Dirac automaton can be expressed in terms of the
gamma matrices in the spinorial representation as follows

Ẽ±k = IdE±k − iγ0γ± · aE±k + imγ0, (38)

where dE± = ndA±, and aE± = naA±. The representa-
tions γ± only differ by a sign on γ2.

Notice that the two automata E+ and E− are con-
nected by a CPT symmetry, modulo the unitary trans-
formation γ0γ2, where the CPT transformations are de-
fined here by C : Ẽk 7→ −γ2Ẽ∗kγ

2, P : k 7→ −k and
T : E 7→ E†.

VI. THE DIRAC AUTOMATON IN ONE AND
TWO SPACE-DIMENSIONS

In this section we show the solution to the unitarity
conditions in Eq. (6) on Cayley graphs of Z and Z2.

A. Two-dimensional case

For d = 2, the only Cayley graphs that are topolog-
ically inequivalent are the square lattice corresponding
to the presentation of Z2 as the free Abelian group on 2
generators, and the hexagonal lattice, corresponding to a
presentation with three generators S+ = {hi}1≤i≤3 with
relator h1 + h2 + h3 = 0. The corresponding coordina-
tion numbers are 4 and 6, respectively. Analogously to
the case d = 3, also for d = 2 the unitarity conditions
allow for a solution only on one of the possible Cayley
graphs, precisely the square lattice. In this case there
are only two solutions modulo unitary conjugation, and
they are connected by transposition. In the relativistic
limit of small wave-vector |k| � 1 their evolution obeys
Weyl’s equation in d = 2, as discussed in Sec. VII.

Since the second solution is just the transpose of the
first one, only the first solution is derived in Appendix
C, and corresponds to the following expression for the
automaton

Ãk =
1

4

(
z(k) iw(k)∗

iw(k) z(k)∗

)
,

z(k) := ζ∗(eik1 + e−ik1) + ζ(eik2 + e−ik2)

w(k) := ζ(eik1 − e−ik1) + ζ∗(eik2 − e−ik2)

ζ :=
1 + i

4
. (39)
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which can be written as follows

Ãk = IdAk − iα · aAk , (40)

where αi := σi and the functions ak and dk are expressed
in terms of kx := k1+k2√

2
and ky := k1−k2√

2
as

(aAk )x := sxcy

(aAk )y := cxsy

(aAk )z := sxsy

dAk := cxcy. (41)

The symbols ci and si denote cos ki√
2

and sin ki√
2
, respec-

tively.

The dispersion relation is

ωAk = arccos(cxcy), (42)

then helicity vector is aAk , and the group velocity is then

(vAk )x =
(aAk )x√

1−(dAk )2−(aAk )2z
, (43)

(vAk )y =
(aA
∓

k )y√
1−(dAk )2−(aAk )2z

. (44)

The QCA in Eq. (39) is covariant for the cyclic transitive
group L = {e, a} generated by the transformation a that
exchanges h1 and h2, with representation given by the
rotation by π around the x-axis.

Since the isotropy group has a reducible representa-
tion, the most general automaton is actually given by

(cos θI + i sin θσx)Ãk. (45)

However, the parameter θ in this case just represents
a fixed translation of the Brillouin zone along the kx-
direction, namely a re-definition of the wave-vector. The
physics is essentially independent of θ, and it is then safe
to restrict to Ãk.

The other solution B can be simply obtained by taking
B̃k := ÃTk

The only possible automaton describing a local cou-
pling of two Weyl’s is obtained by the same procedure as
for the 3d case, described in Appendix B, and is given by

Ẽk =

(
nÃk imI

imI nÃ†k

)
(46)

with n2 +m2 = 1.

As in the 3d case, we can write the automaton Ẽk in
terms of the gamma matrices as follows

Ẽk = IdEk − iγ0γ · aEk + imγ0, (47)

where dEk = ndAk , and aEk = naAk .

B. One-dimensional case

For the sake of completeness, we consider the one-
dimensional case studied in Refs. [14, 45], rephrasing
it in in the present framework.

The unique Cayley graph satisfying our requirements
for Z is the lattice Z itself, presented as the free Abelian
group on one generator. In this case the nearest neigh-
bors are two. The unitarity conditions for a Weyl spinor
then read

A†hA−h = AhA
†
−h = 0, (48)

and consequently

Ah = VM, A−h = V (I −M), (49)

where M is a rank one projection that we identify with
the eigenspace of σz with eigenvalue -1. We then have

Ã
(1)
k =

(
e−ik 0

0 eik

)
. (50)

This matrix can be expressed as

d
(1)
k I − ia(1)

k α(1), (51)

where α(1) := σz and

d
(1)
k := cos k, a

(1)
k := sin k. (52)

The dispersion relation is simply

ωA
(1)

k = k. (53)

Modulo a permutation of the canonical basis, the cou-
pling of two conjugate Weyl spinors is obtained as in
Appendix B, and for d = 1 gives two independent s = 2
automata as follows

Ẽ
(1)
k =


ne−ik im 0 0
im neik 0 0
0 0 neik im
0 0 im ne−ik

 , (54)

both having dispersion relation

ωE
(1)

k = arccos(n cos k). (55)

In this case we can express each of the two spinor au-
tomata in terms of the Pauli matrices as

Ẽ
(1)
k = n cos kI − in sin kσz + imσx. (56)

VII. THE RELATIVISTIC LIMIT

In the present section we study the behaviour of the
automata studied in the previous sections for small wave-
vectors |k| � 1. The physical domain in which this
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limit applies is strictly related to the hypotheses that
we make on the order of magnitude of the lattice step
and of the time step of the automata. As we discussed
in the introduction, our assumption is that automata de-
scribe physics at a discrete Planck scale, which amounts
to take the time step steps equal to the Planck time tP
in dimensionful units. Moreover, as we will see in the fol-
lowing, we will recover Weyl’s and Dirac’s equations in
the mentioned limit, with the speed of light replaced by a
constant speed c = a/(

√
dtP ), where a is the length of the

lattice step. If we want c equal to the speed of light, then
we must take the lattice step a as a =

√
dlP , where lP

is the Planck length. Having set these conversion factors
between dimensionless and dimensionful units, the limit
of |k| � 1 corresponds to the limit where wave-lengths
λ = 1/|k| are much larger than the Planck length. This
clearly encompasses all the relativistic regimes tested in
most advanced experiments in high energy physics.

In order to obtain the relativistic limit of the automata
studied in the previous sections, we define an interpolat-
ing Hamiltonian HX

I (k) as follows

e−iH
X
I (k) := X̃k, (57)

for any of the automata X =

Ã±k , B̃
±
k , Ãk, B̃k, Ã

(1)
k , Ẽ±k , Ẽk, Ẽ

(1)
k studied in the

previous sections. The term interpolating refers to the
fact that the Hamiltonian HX

I (k) generates a unitary
evolution that interpolates the discrete time determined
by the automaton steps through a continuous time t as

ψ(k, t) = e−iH
X
I (k)tψ(k, 0). (58)

In the case of Weyl automata, independently of the
dimension d, for narrow-band states ψ(k, t) with |k| � 1,
expanding of HX

I (k) to the first order in k we obtain

i∂tψ(k, t) = HX
W (k)ψ(k, t), (59)

where HW (k) is the Weyl Hamiltonian, obtained by ex-
panding HX

F (k) to first order in k, namely

HX
W (k) =

1√
d
αX · k +O(|k|2). (60)

Similarly, in the case of the Dirac automata, for
narrow-band states ψ(k, t) with |k| � 1 the expansion
of HX

I (k) to the first order in k gives

i∂tψ(k, t) = HD(k)ψ(k, t), (61)

where HD(k) is the Dirac Hamiltonian, obtained by ex-
panding HE(k) at first order in k, namely

HD(k) =
n√
d
α · k +mβ +O(|k|2). (62)

Finally, for small values of m, m � 1, we have n '
1+O(m2). Neglecting terms of order O(m2) and O(|k|2),
we then get

HD(k) =
1√
d
α · k +mβ, (63)

which is the Dirac equation in the wave-vector represen-
tation. Notice that in the case of the Ẽ−k automaton in 3d
the Dirac Hamiltonian is recovered in the spinorial rep-
resentation where the complex conjugate of γ2 is taken
instead of γ2.

FIG. 3. (Colors online) Examples of evolution of for the 2d
Dirac automaton for m = .1, N = 120, corresponding to cou-
pling of two Weyl’s in Eq. (C21) for: (top) |〈x| ⊗ 〈e1|ψ(0)〉|2
and ψ(0) localized in x = 0 in state |e1〉 (|en〉, n = 1, . . . , 4
canonical basis i C4 ); (bottom) |〈x|⊗〈u1(k)|ψ(0)〉|2 for |ψ(0)〉
Gaussian spin-up particle state with k0 = (0, .1)π centered in
x = 0 with ∆2

x = 102, ∆2
y = 50, with |u1(k)〉 denoting the

spin-up component of the particle eigenvector. The color code
corresponds to the spin-component relative weight (hue) and
relative phase (saturation). Notice the colored square with
vanishing small probability, corresponding to the causal ve-
locity, which is

√
2 times larger than the propagation speed.

The coordinates x and y are dimensionless, the unit being the
lattice step.

In Fig. 3 we show two samples of the evolution of the
2d Dirac automaton are given, for a localized state and
for a particle-like state, respectively.

We now provide a quantitative study of the approx-
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FIG. 4. (Colors online) (top) Dispersion relation ωE
+

k for

the 3d Dirac automaton for m = 0, and for ωE
+

k =
0.45, 1.05, 2.09, 2.69 from left to right. (bottom) modulus of
group velocity vk = ∇kω(k) for the 2d case for m = 0. The
components of the wave-vector k are dimensionless.

imation of Dirac’s equation in three dimensions in the
relativistic limit of |k| � 1, m � 1 (O(m) = O(|k|)).
First we compare the automaton with the Dirac equation
in dimensionless units with dispersion relation ωE(k) =

(m2 + k2

6 )
1
2 , and then we recover the usual Dirac equa-

tion with dispersion ~ωD(p) := (m2c4 + c2p2)
1
2 by in-

troducing dimensions for the automaton time and lat-
tice steps. We compare the two evolutions for a particle
state in a fixed spin state, with a narrow packet around
k0 � 1, with variance σ � |k0|. The trace-norm dis-
tance between the output states from the same input
state evolved under the Dirac Hamiltonian and under
the automaton, respectively, is given by

√
1− F 2, where

F is the fidelity between the two states, which is given
by F = |〈exp [−iN∆(k)]〉|, where N is the number of
steps of the automaton (each corresponding to a Planck
time for the Dirac evolution, or equivalently to an integer
time for a Dirac equation written in dimensionless form
in Planck units), the expectation is over the input state,

and the operator ∆(k) := (m2 + k2

6 )
1
2 − ωE(k), diagonal

in the eigenbasis of the Dirac Hamiltonian to the order
O(k4 +N−1k2), is given by

∆(k) =

√
3kxkykz

(m2 + k2

3 )
1
2

− 3(kxkykz)
2

(m2 + k2

3 )
3
2

+ 1
24 (m2 + k2

3 )
3
2 ,

where the term O(N−1k2) comes from the mismatch be-
tween the eigenvectors of the automaton and the Dirac
particle states. One can see the the fidelity approaches
F = 1 in the relativistic limit, for not too large number
of steps. In the relativistic scale k ' m � 1, for a pro-
ton mass one has N ' m−3 = 2.2 ∗ 1057, corresponding
to t = 1.2 ∗ 1014s = 3.7 ∗ 106 years. The approxima-
tion is still good in the ultra-relativistic case k � m,
e.g. for k = 10−8 (as for UHECRs), where it holds for
N ' k−2 = 1016 steps, corresponding to 5 ∗ 10−28 s. We
convert dimensionless to dimensionful quantities through
the Planck units lP , mP , and tP as follows

c := lP /tP , µ := mmP , ~ := mP lP c, p = ~k/(
√

3lP ),
(64)

where c is the speed of light, µ the rest mass, p the mo-
mentum. The above choice corresponds to taking mP as
the bound for rest-mass of the particle, lP as half of the
side of the conventional BCC cell, and tP as the time
of a single automaton step. Upon substituting Eq. (64)
one can immediately check that ωE(k) = tPω

D(p). One
can also see that the speed of light c is slower than the
causal speed—i.e. one site per Planck time—by a factor√

3. Indeed, isotropy is recovered only in the relativistic
limit: at the Planck scale there is a possibility of propa-
gation at speed higher than c, however, bounded by

√
3c

and with a negligible probability, as shown in Fig. 3.
Notice that a similar analysis holds also for d = 1, 2, and
the rescaling factor in the general case is

√
d. In Fig. 4

we report the dispersion relation for the Dirac auomaton
for d = 2, 3 with m = 0. In the 3d dispersion relation,
in addition to the central ball in the rightmost figure,
corresponding to the usual particle dispersion, one can
notice four balls corresponding to the so-called Fermion-
doubling [46, 47]. The plot of the group velocity of the 2d
automaton exhibits anisotropy, however, the flat central
area incorporates huge ultrarelativistic moments with ve-
locity still perfectly isotropic.

For narrowband states around k = k0 we can approxi-
mate the automaton evolution also in the Planck regime,
by the following dispersive Schrödinger equation

i∂tψ̃(x, t) = ±[v · ∇+ 1
2D · ∇∇]ψ̃(x, t), (65)

where ψ̃(x, t) is the Fourier transform of ψ̃(k, t) :=
e−ik0·x+iω0tψ(k, t), and v and D are the drift vector v =
(∇kω) (k0) and diffusion tensor D = (∇k∇kω) (k0), re-
spectively. The Schrödinger equation is just the second-
order k-expansion around k0. This equation approxi-
mates well the evolution, also in the Planck regime for
many steps, depending on the bandwith (see Ref. [48]).
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VIII. CONCLUSION

We introduced a representation of space as emergent
from the evolution of quantum systems via a QCA, and
imposed the principles of unitarity, linearity, locality, ho-
mogeneity, and isotropy of the evolution, showing that
under these assumptions we can arrange the systems con-
stituting the QCA on the Cayley graph of a group.

We studied the case where such group can be quasi-
isometrically embedded in the Euclidean spaces Rd, with
d = 1, 2, 3, showing that the minimal non-trivial QCAs
are then essentially unique and provide Weyl’s equation
in the relativistic limit of small wave-vectors compared
to the inverse of the lattice step, which is taken of the
order of Planck’s length.

We also showed the unique way in which two Weyl au-
tomata can be locally coupled, leading to the Dirac QCA.
This QCA provides Dirac’s equation in the relativistic
limit. We studied first-order corrections to Dirac’s evo-
lution, due to the discreteness of the QCA lattice. The
correction terms lead to a diffusive Scrödinger equation,
which expresses the dynamics of the QCA at all scales,
in the approximation of narrow-band wave-packets.

In conclusion, we remark that Lorentz covariance is
obeyed only in the relativistic limit |k| � 1, whereas the

general covariance (corresponding to invariance of ωE
±

k )
is a nonlinear representation of the Lorentz group, with
additional invariants in the form of energy and distance
scales [49], as in the doubly-special relativity [24, 25] and
in the deformed Lorentz symmetry [26, 27], for which the
automaton then represents a concrete microscopic theory.
Correspondingly, also CPT symmetry of Dirac’s QCA is
broken at the ultra-relativistic scale.
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Appendix A: Derivation of the Weyl automata on
the BCC lattice

In this appendix we study the unitarity conditions of
Eq. (6) on Cayley graphs of Z3 for s = 2. We find two
solutions for the BCC lattice, and we prove the impossi-
bility of a unitary solution on the PC and on the rhom-
bohedral lattices.

Before starting the analysis of unitarity conditions on
different lattices, let us introduce some notation that will
be useful in the following. First of all, let us introduce

the polar decomposition of operators Ah as follows

Ah = Vh|Ah|, (A1)

with Vh unitary. Notice that, for Bravais lattices, the
condition of Eq. (17) with h′′ = 2h is equivalent to

h′′ = ±2hi, (A2)

equivalent to |Ah||A−h| = 0. Now, since s = 2 and by
definition the |A±h|’s are non-null, this can be satisfied
only with

Ah = αhVh|ηh〉〈ηh|, α−hA−h = Vh|η−h〉〈η−h|, (A3)

where 〈η+h|η−h〉 = 0, and we can always choose αh > 0
for every h.

1. The BCC case

In the following we take Ae = 0 and a posteriori we
check that there is no other possibility.

Let us now focus on the unitarity conditions. Here,
besides h′′ = ±2hi we have two kinds of conditions: i)
h′′ = hi−hj . In this case there are only two terms in the
sums in Eq. (17), thus leading to the same conditions as
in Eqs. (A91) and (A93), namely

A†hiAhj +A†−hjA−hi = 0, (A4)

AhiA
†
hj

+A−hjA
†
−hi = 0, (A5)

and ii) h′′ = hi + hj . In this case, the identity hi +
hj + hl + hm = 0 (ijlm a permutation of 1234) implies
h′′ = −hl−hm. Consequently, there are four terms in the
sums in Eq. (17), leading to the following new conditions

A†hiA−hj +A†hjA−hi +A†−hlAhm +A†−hmAhl = 0,

(A6)

AhjA
†
−hi +AhiA

†
−hj +A−hmA

†
hl

+A−hlA
†
hm

= 0.

(A7)

Consider now the condition in Eq. (A5). Multiplying

on the left by A†hi and on the right by Ahj we obtain

A†hiAhjA
†
hi
Ahj +A†hiA−hiA

†
−hjAhj = 0, (A8)

and using the condition in Eq. (A2) we have

A†hiAhjA
†
hi
Ahj = 0. (A9)

Since the transition matrices Ahi are rank one, the latter
condition can be fulfilled only in the following two cases

1. AhjA
†
hi

= 0. In this case one has clearly

|Ahi ||Ahj | = |Ahj ||Ahi | = 0. In turn, this implies
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that 〈ηhi |ηhj 〉 = 0, i.e. |ηhj 〉〈ηhj | = |η−hi〉〈η−hi |
and

Ahi = αhiVi|ηhi〉〈ηhi |, A−hi = α−hiVi|η−hi〉〈η−hi |,
Ahj = αhjVj |η−hi〉〈η−hi |, A−hj = α−hjVj |ηhi〉〈ηhi |,

(A10)

where Vi is a shorthand for Vhi .

2. A†hiAhj = 0. In this case a similar analysis provides
the following identities

A†hi = αhiVi|θhi〉〈θhi |, A†−hi = α−hiVi|θ−hi〉〈θ−hi |,

A†hj = αhjVj |θ−hi〉〈θ−hi |, A†−hj = α−hjVj |θhi〉〈θhi |.
(A11)

Now, if AhjA
†
hi

= AhlA
†
hi

= 0—i.e for both (i, j) and

(i, l) condition 1 is satisfied—then by by Eq. (A10) we
have

AhjA
†
hl

= αhjαhlVj |η−hi〉〈η−hi |V
†
l , (A12)

which cannot be null. Similarly, if A†hiAhj = A†hiAhl =

0—i.e for both (i, j) and (i, l) condition 2 is satisfied—
then by Eq. (A11) we have

A†hjAhl = αhjαhlVj |θ−hi〉〈θ−hi |V
†
l , (A13)

which cannot be null. Finally, this implies that the con-
ditions of item 1 or item 2 can be satisfied only with one
or two different values of j for the same fixed value of i.

Modulo relabelings of the vertices, we then have with-
out loss of generality one of the three following sets of
conditions

Ah1
A†h2

= Ah1
A†h3

= Ah2
A†h4

= 0,

A†h2
Ah3

= A†h1
Ah4

= A†h3
Ah4

= 0,
(A14)

or

Ah1
A†h2

= Ah1
A†h3

= Ah2
A†h4

= Ah3
A†h4

= 0,

A†h2
Ah3 = A†h1

Ah4 = 0,
(A15)

or

Ah2A
†
h3

= Ah1A
†
h4

= 0,

A†h1
Ah2 = A†h1

Ah3 = A†h2
Ah4 = A†h3

Ah4 = 0.
(A16)

The conditions in Eqs. (A15) and (A16) lead to the same

solutions modulo the exchange of Ahi and A†hi , or equiv-

alently modulo the PT symmetry Ãk 7→ Ã†−k. It is then
sufficient to solve Eqs. (A14) and (A15).

The number of couples (i, j) for which both conditions
1 and 2 are simultaneously satisfied is limited. Indeed,

suppose e.g. that both Ah1
A†h3

= 0 and A†h1
A†h3

= 0.

Then clearly either A†h1
Ah2 6= 0 or A†h2

Ah1 6= 0, oth-

erwise for the couple (2, 3) neither condition 1 or 2 can

be satisfied. For a similar reason, either A†h1
Ah4 6= 0 or

A†h4
Ah1

6= 0. The same argument can be applied to the

couples (2, 3) and (3, 4). Then, the only remaining couple
for which both conditions can be simultaneously satisfied
is (2, 4). Actually, one can prove that In this case, after
a little algebra, one can prove that both conditions are
satisfied for the couple (2, 4).

A necessary condition for isotropy is that

αhi = αhj =: α+, α−hi = α−hj =: α−. (A17)

Moreover, considering one couple (i, j) such that either

A†hjAhi 6= 0 or AhiA
†
hj
6= 0, by condition (A4) or by

condition (A5), respectively, one has

α2
+|η−hi〉〈η−hi |V

†
j Vi|ηhi〉〈ηhi |

+ α2
−|η−hi〉〈−ηhi |V

†
i Vj |ηhi〉〈ηhi | = 0, (A18)

which implies α2
+ = α2

−. Finally, since α± > 0 one has
α+ = α− =: α.

Let us first consider the five conditions that are com-
mon to both Eqs. (A14) and (A15), namely

Ah1
A†h2

= Ah1
A†h3

= Ah2
A†h4

= 0, (A19)

A†h2
Ah3

= A†h1
Ah4

= 0. (A20)

According to Eqs. (A10), the conditions in Eq. (A19)
then imply

Ah1
= αV1M, A−h1

= αV1(I −M),

Ah2
= αV2(I −M), A−h2

= αV2M,

Ah3
= αV3(I −M), A−h3

= αV3M,

Ah4
= αV4M, A−h4

= αV4(I −M), (A21)

where M := |ηh1〉〈ηh1 | = |ηh4〉〈ηh4 | = |η−h2〉〈η−h2 | =
|η−h3〉〈η−h3 |, with the following constraints on the uni-
taries Vi

V †2 V3 = in1 · σ, V †4 V1 = in2 · σ, (A22)

where σz = M − (I −M) = 2M − I, and the real vectors
ni lie in the xy plane. Notice that the conditions in
Eq. (A20) are now immediately satisfied.

Imposing the conditions in Eq. (A4) and (A5) gives the
following new constraints

MV †1 V2(I −M) +MV †2 V1(I −M) = 0, (A23)

MV †1 V3(I −M) +MV †3 V1(I −M) = 0, (A24)

V1MV †4 + V4(I −M)V †1 = 0, (A25)

V2(I −M)V †3 + V3MV †2 = 0, (A26)

(I −M)V †2 V4M + (I −M)V †4 V2M = 0, (A27)

(I −M)V †3 V4M + (I −M)V †4 V3M = 0. (A28)

While the two conditions of Eq. (A25) and (A26) are
easily verified, the remaining four ones are equivalent to
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the following conditions

[M, (V †1 V2 + V †2 V1)] = [M, (V †1 V3 + V †3 V1)] = 0,

[M, (V †2 V4 + V †4 V2)] = [M, (V †3 V4 + V †4 V3)] = 0.
(A29)

We can satisfy the first condition in Eq. (A29) in two

ways: either V †1 V2 = ν(cI+ isσz) with |ν| = 1, or V †1 V2 +

V †2 V1 = κI with |κ| = 1.

In the first case, since V †1 V3 = V †1 V2V
†
2 V3, we have

V †1 V3 = i νn3 · σ, (A30)

where n3 := (cn1 − se3 × n1). Clearly n3 lies in the xy
plane. In order to satisfy the conditions in Eq. (A29), ν
must then be real, namely ν = ±1. Including ν in c, s,
we then have

V †1 V2 = (cI + isσz),

V †1 V3 = in3 · σ,

V †1 V4 = −in2 · σ.

(A31)

In this case the matrix Ãk has the following form

Ãk = αV1

(
eik1 + ωe−ik2 i(eik3 − θ∗e−ik4)
i(e−ik3 − θeik4) e−ik1 + ω∗eik2

)
, (A32)

where now ω = c+ is, and we choose n3 = (1, 0, 0), while

θ = (n2)1 +i(n2)2. The unitarity condition for Ãk finally
gives the following constraint

α2

(
eik1 + ωe−ik2 i(eik3 − θ∗e−ik4)
i(e−ik3 − θeik4) e−ik1 + ω∗eik2

)
(

e−ik1 + ω∗eik2 −i(eik3 − θ∗e−ik4)
−i(e−ik3 − θeik4) eik1 + ωe−ik2

)
= I,

(A33)

namely

α2[4+(ω−θ)e−i(k1+k2) +(ω∗−θ∗)ei(k1+k2)] = 1, (A34)

for every choice of k1, k2 (we remind that k1 + k2 +
k3 + k4 = 0, and then k3 + k4 = −(k1 + k2)). Finally,
this implies that θ = ω and α = 1/2. In order to have

Ãk=0 = I (Eq. (19)), the only possibility is to have
V1 = X−1, with

X =
1

2

(
1 + ω i(1− ω∗)
i(1− ω) 1 + ω∗

)
. (A35)

Then we have

Ãk =
1

4

(
z(k) −iw(k)∗

−iw(k) z(k)∗

)
,

z(k) := ζ∗eik1 + ζe−ik2 + η∗e−ik3 + ηeik4 ,

w(k) := ηeik1 + ωηe−ik2 − ζe−ik3 + ωζeik4 ,

ζ =
1 + ω

4
, η =

1− ω
4

. (A36)

One can check that the remaining conditions of Eqs. (A6)

and (A7) are verified a posteriori, since Ãk is unitary.

In the second case we instead impose V †1 V2 + V †2 V1 =

κI without [V †1 V2,M ] = 0, and we have the following
situation

V †1 V2 = ν(cI + isn3 · σ),

V †1 V3 = ν(c′I + is′n4 · σ),
(A37)

where

c′ = −s(n1 · n3), s′n4 = cn1 − s(n3 × n1). (A38)

Now, either ν = ν∗ or s = s′ = 0. However, if s = 0
then s′ = 1. The only possibility is then ν = ν∗ =
±1. Including ν in the coefficients c, c′, s, s′. We can also

calculate V †2 V4 and V †1 V4, obtaining

V †1 V2 = cI + isn3 · σ, (A39)

V †1 V3 = c′I + is′n4 · σ, (A40)

V †1 V4 = −in2 · σ, (A41)

V †2 V3 = in1 · σ, (A42)

V †2 V4 = −s(n2 · n3)I − i(cn2 + sn3 × n2) · σ, (A43)

V †3 V4 = −s′(n2 · n4)I − i(c′n2 + s′n4 × n2) · σ. (A44)

One can easily verify that the conditions in Eq. (A29)
are all satisfied without further constraints.

Reminding now the expressions in Eq. (A21), we can
impose the conditions in Eqs. (A6) and (A7) as follows

V1MV †2 + V2(I −M)V †1 + V3MV †4 + V4(I −M)V †3 = 0,
(A45)

V1MV †3 + V3(I −M)V †1 + V2MV †4 + V4(I −M)V †2 = 0,
(A46)

MV †1 V2M + (I −M)V †2 V1(I −M)+

MV †3 V4M + (I −M)V †4 V3(I −M) = 0, (A47)

MV †1 V3M + (I −M)V †3 V1(I −M)+

MV †2 V4M + (I −M)V †4 V2(I −M) = 0, (A48)

MV †1 V4(I −M) +MV †4 V1(I −M)+

MV †2 V3(I −M) +MV †3 V2(I −M) = 0. (A49)

We omit the sixth condition which is trivially satisfied.
The last condition in Eq. (A49) is easily verified using the

form of V †1 V4 and V †2 V3. Let us now focus on the third
and fourth condition. Substituting the explicit expres-

sion for V †1 V2 and V †3 V4 in Eq. (A47), and V †1 V3 and V †2 V4

in Eq. (A48), and considering that M = 1/2(I + σz), we
obtain

cI + is{σz,n3 · σ} − s′(n2 · n4)I

− i{σz, c′n2 − s′n2 × n4 · σ} = 0,

c′I + is′{σz,n4 · σ} − s(n2 · n3)I

− i{σz, cn2 − sn2 × n3 · σ} = 0,
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namely

cI − s′(n2 · n4)I = 0,

sn3 · h + s′n2 × n4 · h = 0,

c′I − s(n2 · n3)I = 0,

s′n4 · h + sn2 × n3 · h = 0.

(A50)

Substituting the expression for s′n4 we have

c− c(n1 · n2) + sn1 · (n2 × n3) = 0, (A51)

sn3 · h− cn1 × n2 · h− s(n1 · n2)n3 · h = 0, (A52)

c′ − s(n2 · n3) = 0, (A53)

sn1 × n3 · h + sn2 × n3 · h = 0. (A54)

From Eqs. (A38), (A53) and (A54) we immediately con-
clude

s(n1 · n3) = −s(n2 · n3), sn3 × h · n1 = −sn3 × h · n2.
(A55)

For s = 0 we recover a special case of the solution as in
Eq. (A36). We then consider the case s 6= 0. Reminding
that we are assuming here n3 not parallel to h, we have
n1 = −n2. Finally, from Eq. (A51) we then conclude
that c = 0 and s = ±1. Including s in the definition of
n3, we have

V †1 V2 = in3 · σ, (A56)

V †1 V3 = −(n1 · n3)I + in1 × n3 · σ, (A57)

V †1 V4 = in1 · σ, (A58)

V †2 V3 = in1 · σ, (A59)

V †2 V4 = (n1 · n3)I − in1 × n3 · σ, (A60)

V †3 V4 = −i[2(n1 · n3)n1 − n3] · σ. (A61)

Considering now the condition in Eq. (A45), and mul-

tiplying on the left by V †1 and on the right by V2, we
obtain

M + V †1 V2(I −M)V †1 V2+

V †1 V3MV †4 V2 + V †1 V4(I −M)V †3 V2 = 0.
(A62)

Since V †1 V2 = −V †2 V1, V †2 V4 = −V †1 V3, and V †2 V3 =

V †1 V4, we obtain

2M − (I − M̃)− M̄ = 0, (A63)

where M̃ := V †1 V2MV †2 V1 and M̄ = V †1 V3MV †3 V1. Fi-

nally, this implies I − M̃ = M̄ = M . This implies that
n3 · h = 0, namely also n3 lies in the xy plane. As a
result, we have

Ãk = αV1

(
eik1 + ωe−ik3 i(eik2 + θe−ik4)

i(e−ik2 + θ∗eik4) e−ik1 + ω∗eik3

)
. (A64)

Repeating the same arguments as for Eq. (A36), we get

Ãk =
1

4

(
z′(k) −iw′(k)∗

−iw′(k) z′(k)∗

)
,

z′(k) := ζ∗eik1 + ζe−ik3 + η∗e−ik2 + ηeik4 ,

w′(k) := ηeik1 + ωηe−ik3 − ζe−ik2 + ωζeik4 ,

ζ :=
1 + ω

4
, η :=

1− ω
4

. (A65)

We will now carry out the analysis for the automaton
in Eq. (A36), since the case of Eq. (A65) can be obtained
from it by simply exchanging k2 and k3.

In the general case of arbitrary ω, we have

Ah1 =

(
ζ∗ 0
−iη 0

)
, A−h1 =

(
0 −iη∗
0 ζ

)
,

Ah2
=

(
0 iζ∗

0 η

)
, A−h2

=

(
η∗ 0
iζ 0

)
,

Ah3
=

(
0 −iω∗η∗
0 ζ∗

)
, A−h3

=

(
ζ 0
−iωη 0

)
,

Ah4 =

(
η 0
−iωζ 0

)
, A−h4 =

(
0 −iω∗ζ∗
0 η∗

)
, (A66)

with ζ = (1 + ω)/4 and η = (1− ω)/4.
The unitary Ak can be rewritten as

Ak =

4∑
j=1

(−iAj sin kj +Bj cos kj), (A67)

with

Ai = Ahi −A−hi , Bi = Ahi +A−hi . (A68)

Considering the expressions in Eq. (A66), we can con-
clude the following identities

B1 = A1σz, B4 = A4σz,

B2 = −A2σz, B3 = −A3σz. (A69)

Using now the following trigonometric identities

sin(α+ β + γ) = sinα cosβ cos γ + cosα sinβ cos γ

+ cosα cosβ sin γ − sinα sinβ sin γ,

cos(α+ β + γ) = cosα cosβ cos γ − cosα sinβ sin γ

− sinα cosβ sin γ − sinα sinβ cos γ,
(A70)

we can re-write Eq. (A36) as follows

Ãk = −iαx sxcycz − βx cxsysz
−iαy cxsycz − βy sxcysz
−iαz cxcysz − βz sxsycz
+iµ sxsysz + I cxcycz (A71)

where

sν := sin
kν√

3
, cν := cos

kν√
3
, ν = x, y, z, (A72)
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and we used the condition
∑
iBi = I, which is a conse-

quence of Eq. (19), and the definitions

αx := A1 +A2 −A3 −A4,

αy := A1 −A2 +A3 −A4,

αz := A1 −A2 −A3 +A4,

µ := A1 +A2 +A3 +A4,

βx := B1 +B2 −B3 −B4,

βy := B1 −B2 +B3 −B4,

βz := B1 −B2 −B3 +B4. (A73)

Exploiting Eq. (A69), we obtain

βx = (A1 −A2 +A3 −A4)σz = αyσz,

βy = (A1 +A2 −A3 −A4)σz = αxσz,

βz = (A1 +A2 +A3 +A4)σz = µσz. (A74)

By direct calculation we can get

αx =

(
ζ∗ − η∗ + ζ − η i(η∗ + ζ∗ + ω∗η∗ − ω∗ζ∗)

−i(η + ζ + ωη − ωζ) −ζ + η − ζ∗ + η∗

)
=

(
Reω i

2 (1− ω∗2)
− i

2 (1− ω2) −Reω

)
,

αy =

(
ζ∗ + η∗ − ζ − η i(η∗ − ζ∗ − ω∗η∗ − ω∗ζ∗)

−i(η − ζ − ωη − ωζ) −ζ − η + ζ∗ + η∗

)
=

(
0 −iω∗
iω 0

)
,

αz =

(
ζ∗ + η∗ + ζ + η i(η∗ − ζ∗ + ω∗η∗ + ω∗ζ∗)

−i(η − ζ + ωη + ωζ) −ζ − η − ζ∗ − η∗
)

=

(
1 0
0 −1

)
,

µ =

(
ζ∗ − η∗ − ζ + η i(η∗ + ζ∗ − ω∗η∗ + ω∗ζ∗)

−i(η + ζ − ωη + ωζ) −ζ + η + ζ∗ − η∗
)

=

(
−iImω i

2 (1 + ω∗2)
− i

2 (1 + ω2) −iImω

)
. (A75)

Let us now consider the point symmetries of the Bra-
vais lattice, namely the symmetries of the cubic cell.
There are two groups that are transitive over S+ and have
no trivial transitive subgroups: 1) the group L3 gener-
ated by the rotations around the four ternary axes along
the diagonals of the cube; 2) the group L2 of binary rota-
tions around the three principal axes of the cube. Using
the covariance under any of these groups, thus permuting
and/or changing the signs of the α matrices, it is easy to
see that the following identity must hold

2ReωI = {αx, αz} = 0 (A76)

namely ω = ±i. This condition selects two solutions that
can be expressed in terms of the following matrices

α±x := −σy, β±x := ±iσy,
α±y := ∓σx, β±y := −iσx,
α±z := σz, β±z := ∓iσz,
µ± := ∓iI. (A77)

By conjugating with exp(−iπσz/4) (which is a local con-
jugation on the automaton, changing only the represen-
tation), we get the following simpler representation

α±x := σx, β±x := ∓iσx,
α±y := ∓σy, β±y := −iσy,
α±z := σz, β±z := ∓iσz, (A78)

which satisfies

β±x = ∓iα±x ,
β±y = ±iα±y ,
β±z = ∓iα±z . (A79)

In this representation, the automata in Eq. (A71) with

unitary operator Ã±k corresponding to ω = ±i become

Ã±k =
1

4

(
z(k) −w(k)∗

w(k) z(k)∗

)
,

z(k) := ζ∗eik1 + ζe−ik2 + ζe−ik3 + ζ∗eik4 ,

w(k) := ζ∗eik1 + ζe−ik2 − ζe−ik3 − ζ∗eik4 ,

ζ =
1± i

4
. (A80)

and can be written as follows

Ã±k = Id±k − iα
± · a±k (A81)

where

(a±k )x := sxcycz ∓ cxsysz
(a±k )y := cxsycz ± sxcysz
(a±k )z := cxcysz ∓ sxsycz
d±k := cxcycz ± sxsysz, (A82)

while α± is the vector of matrices defined in Eq. (A78).
The dispersion relation is given by

ωA
±

k = arccos(cxcycz ± sxsysz). (A83)

In the new representation, the matrices Ahi read

Ah1 =

(
ζ∗ 0
ζ∗ 0

)
, A−h1 =

(
0 −ζ
0 ζ

)
,

Ah2
=

(
0 ζ∗

0 ζ∗

)
, A−h2

=

(
ζ 0
−ζ 0

)
,

Ah3
=

(
0 −ζ∗
0 ζ∗

)
, A−h3

=

(
ζ 0
ζ 0

)
,

Ah4 =

(
ζ∗ 0
−ζ∗ 0

)
, A−h4 =

(
0 ζ
0 ζ

)
. (A84)

As we already noticed, the isotropic automata among
the family of Eq. (A65)—more precisely the ones ob-
tained by conjugating with e−i

π
4 σz—can be obtained by
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those in Eq. (A81) simply exchanging k2 and k3, namely
kx and ky. We then have

Ã′
±
k = −iα±x (sycxcz ∓ cysxsz)

−iα±y (cysxcz ± sycxsz)
−iα±z (cxcysz ∓ sxsycz)
+I(cxcycz ± sxsysz). (A85)

It is more convenient to conjugate the two automata in
the last expression in such a way that σx is multiplied by
the coefficient in the second line and σy by that in the first
line. This can be achieved e.g. by conjugating the spatial
part of the automaton with the rotation of −π/2 around
the z-axis, thus obtaining the two following automata

Z̃±k = −iα±x (sxcycz ± cxsysz)
−iα±y (cxsycz ∓ sxcysz)
−iα±z (cxcysz ± sxsycz)
+I(cxcycz ∓ sxsysz). (A86)

These automata, however, are completely equivalent to
the ones in Eq. (A81), precisely Ã±k = Z̃∓k .

Using the expressions in Eq. (A81) and (A86), one can

easily verify that the two automata Ã±k are covariant un-
der the group L2 of binary rotations around the coordi-
nate axes. Indeed, each rotation changes the sign of two
components kν leaving the third unchanged. The coeffi-
cient of I does not change under any of these transfor-
mations, while the coefficients of the two Pauli matrices,
corresponding to the two directions changing sign, change
their sign, while the remaining one is unchanged. For ex-
ample, for the transformation (x, y, z) 7→ (−x,−y, z) we
have

sxcycz ∓ cxsysz 7→ −(sxcycz ∓ cxsysz) (A87)

cxsycz ± sxcysz 7→ −(cxsycz ± sxcysz) (A88)

cxcysz ∓ sxsycz 7→ (cxcysz ∓ sxsycz). (A89)

These changes of sign can be compensated by conjugat-
ing the automaton by iσz, which is the element of SU(2)
representing the same rotation. Being each automaton
covariant under the group L′2 which acts transitively over
S+, we conclude that both automata are isotropic, with
L = L2. Notice that, none of the automata is covariant
under L3 (one can easily see that the permutation co-
variance is broken by the difference in the relative sign
between the two terms of the x, z components and the y
component of a±k ). However, this is not required for the
automata isotropy.

We can now check that adding equations including the
term Ae gives Ae = 0. In fact we must have

AeÃ
±
k + h.c. = 0, ∀k ∈ B. (A90)

However one can immediately check that AeÃ
±
k cannot

be antihermitian for all k, by taking k = (0, 0, 0) and
k = (π/2, π/2,−π/2).

2. The PC case

We will now show that it is impossible to satisfy the
unitarity conditions in Eq. (17) on a PC lattice. The
generators h in this case are six, that can be classified
as S± = {±h1,±h2,±h3}. First, consider the directions
h′′ = hi±hj . In this case Eq. (17) provides the following
conditions

A†hiAhj +A†−hjA−hi = 0, (A91)

A†hiA−hj +A†hjA−hi = 0, (A92)

AhiA
†
hj

+A−hjA
†
−hi = 0, (A93)

A−hiA
†
hj

+A−hjA
†
hi

= 0. (A94)

Multiplying the conditions in Eq. (A93) by A†hi on the
left and by Ahj on the right

|Ahi |2|Ahj |2 +A†hiA−hjA
†
−hiAhj = 0, (A95)

and exploiting the conditions in Eqs. (A92) and (A93),
and their adjoints, the l.h.s. of Eq. (A95) can be re-
written as follows

[|Ahi |2, |Ahj |2] = 0. (A96)

This implies that the |Ahi |’s are all diagonal in the same
basis {|η+〉, |η−〉}, and we can write Ahi in the following
form

Ahi = αiVi|η+〉〈η+|, A−hi = βiVi|η−〉〈η−|, (A97)

where Vi := Vhi , and αi, βi > 0. In order to satisfy the
conditions in Eq. (A93) and (A94), however, one has to
fulfill also the following equations

αiαjVi|η+〉〈η+|V †j + βiβjVj |η−〉〈η−|V †i = 0, (A98)

and upon multiplying both sides by V †i on the left and
by Vj on the right, one has

αiαj |η+〉〈η+|+ βiβjV
†
i Vj |η−〉〈η−|V

†
i Vj = 0, (A99)

that implies V †i Vj |η−〉 ∝ |η+〉, namely

V †i Vj = nij · σ, (A100)

where σk denote the Pauli matrices in the basis η+, η−,
and where the complex vector nij is of the form nij =
(aij , bij , 0). Now, using the identity

(a · σ)(b · σ) = a · b I + i(a× b) · σ, (A101)

for consistency one must have

nij · njk = 0, inij × njk = nik, (A102)

which cannot be satisfied for all vectors nij coplanar,
namely of the form nij = (aij , bij , 0). Therefore one can-
not fulfill the unitarity requirement for the PC lattice.
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3. The rhombohedral case

The rhombohedral lattice corresponds to the presenta-
tion of Z3 involving six vectors constrained by the relators
h1 − h2 = h4, h2 − h3 = h5 and h3 − h1 = h6. Since
the relators that are useful for the unitarity condition
are those of length four, we will conveniently change the
presentation to the equivalent one

h1 − h3 = h4 + h5

h2 − h1 = h5 + h6

h3 − h2 = h6 + h4. (A103)

The unitarity conditions then involve the following con-
ditions

A†h1
A−h2

+A†h2
A−h1

= 0, A†h1
A−h4

+A†h4
A−h1

= 0,

A†h2
A−h3 +A†h3

A−h2 = 0, A†h1
Ah6 +A†−h6

A−h1 = 0,

A†h3
A−h1 +A†h1

A−h3 = 0, A†h2
Ah4 +A†−h4

A−h2 = 0,

A†h4
Ah5 +A†−h5

A−h4 = 0, A†h2
A−h5 +A†h5

A−h2 = 0,

A†h5
Ah6

+A†−h6
A−h5

= 0, A†h3
Ah5

+A†−h5
A−h3

= 0,

A†h6
Ah4

+A†−h4
A−h6

= 0, A†h3
A−h6

+A†h6
A−h3

= 0.

(A104)

As in the case of the BCC, for each condition of the

kind A†hiAhj +A†−hjA−hi , one has either a) A†hiAhj = 0

or b) AhjA
†
hi

= 0. However, no more than two couples

(i, j) with the same i or j can satisfy the same condi-
tion a or b. This implies that all the couples appearing
in Eq. (A104) must be partitioned in two subsets cor-
responding to conditions a and b, consistently with the
requirement that no more than two couples with the same
hi appear in the same set. It turns out that there are only
two ways of arranging the couples, and both of them lead
to commutation relations of the kind [|Ahi |, |Ahj |] = 0.

Then, either A†hiAhj = 0 or A†hiA−hj = 0. Now, from
the relators

h1 − h5 = h4 + h3

h2 − h6 = h5 + h1

h3 − h4 = h6 + h2, (A105)

we can write the following equations involved by the uni-
tarity conditions

A†h1
Ah5

+A†h5
Ah1

+A†h4
A−h3

+A†h3
A−h4

= 0

A†h2
Ah6 +A†h6

Ah2 +A†h5
A−h1 +A†h1

A−h5 = 0

A†h3
Ah4 +A†h4

Ah3 +A†h6
A−h2 +A†h2

A−h6 = 0.

(A106)

If e.g. A†±h1
A±h5

= 0, then A†∓h4
A±h3

= 0, and then

A†±h3
A±h4 6= 0. Continuing with this sequence of impli-

cations, one comes to the contradiction thatA†±h1
A∓h5

6=

0. A similar contradiction can be derived in the opposite

case where A†±h1
A±h5 6= 0.

This proves the impossibility of a unitary automaton
on the rhombohedral lattice.

Appendix B: Coupling of Weyl automata

In this Appendix we show the unique possible automa-
ton coupling two Weyl automata. The derivation is in-
dependent of the dimension, and can thus be applied to
all the solutions derived in the paper.

Imposing unitarity on the matrix Ã′k of Eq. (35) we
obtain the following equations

|x|2I + y2BB† = I, |x|2I + z2C†C = I,

z2CC† + |t|2I = I, y2B†B + |t|2I = I,

xzÃkC
† + yt∗BD̃†k = 0, x∗yÃ†kB + ztC†D̃k = 0,

zx∗CÃ†k + tyD̃kB
† = 0, xyB†Ãk + t∗zD̃†kC = 0,

(B1)

which imply

B†B = C†C = I,

BB† = CC† = I,

y2 = z2,

xÃk = −t∗BD̃†kC, (B2)

|x|2 + y2 = z2 + |t|2 = 1. (B3)

Specializing to k = 0 we obtain Ãk=0 = D̃k=0 = I, and
then by Eq. (B2) C = eiθB† where eiθ := −ei arg[xt]. We
can then prove that

Ã′k :=

(
xÃk yB

yeiθB† −x∗eiθB†Ã†kB

)
, (B4)

and this is equivalent to the following automaton

Ã′′k :=

(
xÃk iyI

−iyeiθI −x∗eiθÃ†k

)
, (B5)

through conjugation by

Ũ =

(
I 0
0 iB

)
, (B6)

namely Ã′′k = Ũ Ã′kŨ
†. Diagonalizing the matrix in

Eq. (B5), one can prove that it is not restrictive to take
eiθ = ±1 and x > 0 (other choices would simply lead

to a different determinant for Ã′′k). Indeed, the choice of
sign for eiθ and of the phase of x affect the spectrum of
Ã′′k only through multiplication of the eigenvalues by a

constant phase. Upon choosing Ãk as one of the Weyl
automata for d = 1, 2, 3, we then obtain the following
Dirac automata

Ẽk :=

(
nÃk imI

imI nÃ†k

)
, (B7)
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with n,m ≥ 0 and n2 +m2 = 1.

The dispersion relation for these automata is easily cal-
culated by performing the block-diagonal unitary trans-
formation Tk with blocks diagonalizing Ãk, leading to

Ẽ′′k = TkẼkT
†
k =


ne−iω

A
k 0 im 0

0 neiω
A
k 0 im

im 0 neiω
A
k 0

0 im 0 ne−iω
A
k

 ,

(B8)

and then diagonalizing the two 2× 2 blocks Ẽ′′jk , j = e, o
corresponding to the even and odd rows and columns,
respectively, thus obtaining

ωEk := arccos[
√

1−m2 cosωAk ]. (B9)

Notice that for mass m = 0 we have ωEk = ωAk . The
group velocities are the following

vEk =

√
1−m2 sinωAk√

m2 + (1−m2) sin2 ωAk

vAk , (B10)

where vAk is the group velocity of the corresponding Weyl
automaton A.

The projections Π±k on particle and anti-particle states,

corresponding to the degenerate eigenspaces of Ẽk, can
be calculated as follows. Consider the diagonal expres-
sion for the unitary Ẽ′′k in Eq. (B8)

Ẽ′′k =(|ψ+
k 〉〈ψ

+
k |e + |ψ+

k 〉〈ψ
+
k |o)e

−iωEk

+ (|ψ−k 〉〈ψ
−
k |e + |ψ+

k 〉〈ψ
+
k |0)eiω

E
k , (B11)

where |ψlk〉〈ψlk|j is the projection on an eigenvector of Ẽ′′k ,
the label j referring to the block to which the eigenvector
pertains, and the superscript sign l to the eigenvalue.
Now, since

Ẽ′′jk = n cosωAk I + i{mσx + s(j)n sinωAk σz}, (B12)

with s(o) = −1 and s(e) = 1, we have

|ψlk〉〈ψlk|j =
1

2

I + l
mσx + s(j)n sinωEk σz√

1− n2 cos2 ωEk

 . (B13)

We can thus write the following expression for TkΠ±k T
†
k

TkΠ±k T
†
k = |ψ±k 〉〈ψ

±
k |e + |ψ±k 〉〈ψ

±
k |o, (B14)

namely

TkΠ±k T
†
k =

1

2



1∓ n sinωAk√
1−n2 cos2 ωAk

0 ± im√
1−n2 cos2 ωAk

0

0 1± n sinωAk√
1−n2 cos2 ωAk

0 ± im√
1−n2 cos2 ωAk

± im√
1−n2 cos2 ωAk

0 1± n sinωAk√
1−n2 cos2 ωAk

0

0 ± im√
1−n2 cos2 ωAk

0 1∓ n sinωAk√
1−n2 cos2 ωAk


. (B15)

Finally, defining Uk such that UkÃkU
†
k = diag(e−iω

A
k , e+iωAk ) one has

Uk|±〉〈±|U†k =
1

2

{
I ± w(k)rσx + w(k)iσy + z(k)iσz√

1− z(k)2
r

}
,

(B16)

where xr,i denote the real and imaginary part of x, re-
spectively. Finally, we have

Π±k =
1

2


1∓ nz(k)i√

1−n2 cos2 ωAk
∓ nw(k)∗√

1−n2 cos2 ωAk
± im√

1−n2 cos2 ωAk
0

∓ nw(k)√
1−n2 cos2 ωAk

1∓ nz(k)i√
1−n2 cos2 ωAk

0 ± im√
1−n2 cos2 ωAk

± im√
1−n2 cos2 ωAk

0 1± nz(k)i√
1−n2 cos2 ωAk

± nw(k)∗√
1−n2 cos2 ωAk

0 ± im√
1−n2 cos2 ωAk

± nw(k)√
1−n2 cos2 ωAk

1± nz(k)i√
1−n2 cos2 ωAk

 . (B17)

Notice that the above expression is valid independently of the dimension and the particular solution of the unitarity
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equations.

Appendix C: Derivation of the Weyl automaton for
d = 1 and d = 2

In this Appendix we derive the unique solution to the
unitarity equations (17) on Z2 and Z.

It is easy to see that for d = 2 the only two Bravais
lattices that are topologically inequivalent are the simple-
square and the hexagonal. We seek a quantum cellular
automaton for minimal dimension s = 2. We remind
that Eqs. (A3) hold for any Bravais lattice in any space
dimension, whence Ah and A−h must have orthogonal
supports and orthogonal ranges.

The unitarity conditions of Eq. (17) (omitting normal-
ization) for both lattices read

A†hiA−hi = 0, AhiA
†
−hi = 0

A†hiAhj +A†−hjA−hi = 0, (C1)

A†hiA−hj +A†hjA−hi = 0, (C2)

AhiA
†
hj

+A−hjA
†
−hi = 0, (C3)

AhiA
†
−hj +AhjA

†
−hi = 0. (C4)

Multiplying Eqs. (C3) and (C4) by A†hi on the left and

by Ahj on the right, and exploiting Eq. (C2) we obtain

[|Ahi |2, |A±hj |2] = 0 ∀i, j. (C5)

By condition Eq. (C1) we see that α+ = α− =: α. We can
then label the vertices in such a way that the following
identities hold

Ahi = αViM, A−hi = αVi(I −M), (C6)

where M = |η+,i〉〈η+,i|. Notice however that the relabel-
ing may not correspond to a unitary conjugation, so we
will have to check a posteriori that the relabeled automa-
ton is equivalent to the original one. Indeed, as we will
see, the relabeled automaton is related to the original one
by transposition.

Now, the conditions Eq. (C1) are equivalent to

MV †i VjM + (I −M)V †j Vi(I −M) = 0, (C7)

namely

MV †i VjM = (I −M)V †j Vi(I −M) = 0. (C8)

Defining σz := M − (I −M), we then have

V †i Vj = νijnij · σ, (C9)

with nij lying on the plane xy. Similarly, the conditions
in Eq. (C2) read

MV †i Vj(I −M) +MV †j Vi(I −M) = 0, (C10)

namely νij = −ν∗ij = ±i.

a. Hexagonal lattice It is easy to show that the exag-
onal lattice is incompatible with unitarity. In fact, since

V †1 V3 = V †1 V2V
†
2 V3, (C11)

we have

n12 · n23 = 0, n13 = −in12 × n23, (C12)

which is impossible to satisfy with all nij ’s lying on the
xy plane. Therefore there exists no quantum cellular
automaton for the s = 2 on an hexagonal lattice.

b. Square Lattice On the other hand, for the square
lattice we have

V †1 V2 = in · σ, (C13)

and then

Ãk = Ah1
eik1+A−h1

e−ik1+Ah2
eik2+A−h2

e−ik2 , (C14)

which is equal to

Ãk =αV1{Meik1 + (I −M)e−ik1+

in · σ[Meik2 + (I −M)e−ik2 ]}, (C15)

namely

Ãk = αV1

(
eik1 −ν∗e−ik2
νeik2 e−ik1

)
, (C16)

where |ν|2 = 1. Now, if we impose the condition Eq. (19)
we simply have

V †1 = α

(
1 −ν∗
ν 1

)
, (C17)

which implies α = 1/
√

2 and

Ãk =
1

2

(
eik1 + eik2 ν∗(e−ik1 − e−ik2)

−ν(eik1 − eik2) e−ik1 + e−ik2

)
. (C18)

Notice also that the automaton in Eq. (C18) for a given
ν = r + ij can be obtained form the automaton with
ν = −i just by a fixed rotation around σz, and then we
will now refer to the choice ω = −i. We can express such
automaton as

Ãk =
1

2
{(c1+c2)I−i[(c1−c2)σx+(s1−s2)σy−(s1+s2)σz]},

(C19)
where ci = cos ki and si = sin ki. However, in order to
obtain in the relativistic limit the canonical form of the
Weyl equation, we change the representation so that

Ãk =
1

2
{(c1+c2)I−i[(s1+s2)σx+(s1−s2)σy+(c1−c2)σz]}.

(C20)
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corresponding to the unitary mapping (σx, σy, σz) 7→
(σz, σy,−σx). In this representation, the solution cor-
responds to the following expression for the automaton

Ãk =
1

4

(
z(k) iw(k)∗

iw(k) z(k)∗

)
,

z(k) := ζ∗(eik1 + e−ik1) + ζ(eik2 + e−ik2)

w(k) := ζ(eik1 − e−ik1) + ζ∗(eik2 − e−ik2)

ζ :=
1 + i

4
. (C21)

which can be written as follows

Ã±k = Idk − iσ · ak (C22)

where

(ak)x := sxcy

(ak)y := cxsy

(ak)z := sxsy

dk := cxcy, (C23)

where we introduced the representation

kx :=
k1 + k2√

2
, ky :=

k1 − k2√
2

. (C24)

The symbols ci and si denote cos ki√
2

and sin ki√
2
, respec-

tively. The dispersion relation is

ωAk = arccos(cxcy). (C25)

Notice, however, that the form (C20) is manifestly co-
variant for the cyclic transitive group L = {e, a} gener-
ated by the transformation a that exchanges h1 and h2,
with representation given by the rotation by π around
the x-axis.

If we now consider the possible relabeling h2 7→ −h2,
using Eq. (C20) we can easily verify that it corresponds
to the transformation (σx, σy, σz) 7→ (σy, σx, σz), which
modulo unitary conjugation amounts to transposition.

The only possible local coupling of two Weyl automata
is obtained, as for the 3d case, as follows

Ẽk =

(
nÃk imI

imI nÃ†k

)
(C26)

with n2 +m2 = 1.

As in the 3d case, we can write the automaton Ẽk in
terms of the gamma matrices as follows

Ẽk = Idk − iγ0γ · ak + imγ0, (C27)

where dEk = ndAk , and aEk = naAk .

We also define the Cartesian components of k as fol-
lows

kx :=
1√
2

(k1 + k2), ky :=
1√
2

(k1 − k2), (C28)
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