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Comment on “Solitary waves in optical fibers governed by higher-order dispersion”
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Mainly with respect to the mathematical part of the article by Kruglov and Harvey [Phys. Rev. A 98, 063811
(2018)] some (supplementary) remarks on the solution method, on the conditions of existence, and on the
parameter dependence are presented. For elucidation, numerical examples are included.
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In a recent article by Kruglov and Harvey [1], an ex-
act stationary solitonlike solution of the generalized nonlin-
ear Schrödinger equation (NLSE) with second-, third-, and
fourth-order dispersion terms was presented (without deriving
it). We note in advance that solution (2) in Ref. [1] is correct.

Some years ago, we proposed the famous Weierstrass
solution [2] of the ordinary nonlinear differential equation
(“basic equation”)

[ f ′(z)]2 = α f 4(z) + 4β f 3(z) + 6γ f 2(z) + 4δ f (z) + ε

≡ R( f ) (1)

(α, β, γ , δ, ε real) to construct solutions of various nonlinear
partial differential equations [3–5]. As a background to the
following remarks, it seems suitable to shortly outline this
approach and its connection with Ref. [1].

The general solution of (1) is given by [2,6] (the prime
denotes the derivative with respect to f )

f (z) = f0 + R′( f0)

4
[
℘(z; g2, g3) − 1

24 R′′( f0)
] (2)

if a simple (real) root f0 of R( f ) exists (it turns out that this
is sufficient for the present comment). The invariants g2, g3 of
the Weierstrass elliptic function ℘(z; g2, g3) are related to the
coefficients of R( f ) by [6]

g2 = αε − 4βδ + 3γ 2,

g3 = αγ ε + 2βγ δ − αδ2 − γ 3 − εβ2. (3)

The discriminant [of ℘and R( f ) [6]] is given by

� = g3
2 − 27g2

3. (4)

The behavior of f (z) can be classified by (3) and (4): If � �= 0
or � = 0 and g2 > 0, g3 > 0, f (z) is periodic (oscillatory),
and if

� = 0, g2 � 0, g3 � 0, (5)

*hwschuer@uos.de
†vserov@cc.oulu.fi

f (z) is solitonlike. Subject to (5), due to the limit of ℘ for
� = 0 [7], Eq. (2) reads

f (z) = f0 + R′( f0)

4
[
e1 + 3e1 csch2(z

√
3e1) − 1

24 R′′( f0)
] , (6)

with e1 = 1
2

3
√−g3. Obviously, f (z) according to (6) is not

real and bounded in general. To specify the real and bounded
(“physical”) solutions it is suitable to consider the graph
{[ f ′(z)]2, f (z)}, denoted as the phase diagram. Physical so-
lutions are related to the existence of a finite interval [ f1, f2],
where R( f ) is non-negative and bounded with real roots f1, f2

of R( f ). This condition has been denoted as the phase diagram
condition (PDC) [6].

Returning now to Eq. (1) in Ref. [1], a traveling-wave
ansatz (k, c, r, λ real)


(x, t ) = f (kx − ct )ei(rx−λt ) (7)

inserted in Eq. (1) in Ref. [1], and changing the notation of
coefficients (α → a, ε → m, γ → g, assuming f is real and
μ = 0), the real and imaginary parts lead to a system of two
equations,

m4c4 f (4)(z) =
(

m3ac2 − 3

8
m2c2σ 2

)
f ′′(z)

+
(

m3r − maσ 2

16
+ 3σ 4

256

)
f (z) − m3gf 3(z),

(σc3 + 4mλc3) f (3)(z) + (k − 2λca − 4mcλ3

− 3σλ2) f ′(z) = 0, (8)

with z = kx − ct and with

λ = − σ

4m
, k = cσ 3 − 4camσ

8m2
, m �= 0, c �= 0. (9)

Taking now into account the basic equation (1) and inserting
the derivatives

f ′′(z) = 2α f 3(z) + 6β f 2(z) + 6γ f (z) + 2δ,

f (4)(z) = (12α + 12β )[ f ′(z)]2

+ [6α f 2(z) + 12β f (z) + 6γ ] f ′′(z)
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FIG. 1. Field pattern ψ (x, t ) according to Eqs. (11) and
(19). Parameters a = −0.1, g = 0.01, σ = 0.14, m = −0.6, c =
− 1

4

√
8am−3σ 2

10m2 , and r = 0.0017 (corresponding to w and κ in Ref. [1],
respectively).

into the first Eq. (8), we obtain

α = 0, β2 = − g

120mc4
, γ = 8am − 3σ 2

240m2c2
,

δ = B

72βmc4
+ A2

450βm2c8
, ε = 2Aδ

15βmc4
,

A = ac2 − 3c2σ 2

8m
, B = r − aσ 2

16m2
+ 3σ 4

256m3
. (10)

The condition g
m < 0 must hold otherwise no solution exists.

Thus, the basic equation (1), with coefficients according to
(10), defines a class of solutions f (z) (having been denoted
as Weierstrass solutions [8]) and hence by (7) a class of
solutions 
(x, t ). The solution ψ (z, τ ) presented in Ref. [1]
is a particular element of this class: Since r corresponds to κ

[given by Eq. (5) in Ref. [1]], setting r = κ , it turns out that
δ = 0, ε = 0. Hence � = 0, g3 = −γ 3, and an evaluation of
Eq. (6) yields

f (z) = − 3γ

2β cosh2
(
z
√

3
2γ

) ,

and thus

f (z) = ∓ 8am − 3σ 2

8
√

− 10
3 gm3

1

cosh2
(

z
4

√
8am−3σ 2

10m2c2

) , (11)

where ∓ corresponds to different roots for β = ±
√

−g
120mc4 [see

(10)]. The PDC (γ = 8am−3σ 2

240m2c2 > 0) in this case is consistent
with g3 < 0 so that solution (11) is physical (see Fig. 1, with
all quantities dimensionless). Obviously, comparing the am-
plitudes of ψ (z, τ ) and 
(x, t ), using (10), there is agreement:
The arguments of ψ and 
 are wτ − w

v
z (disregarding the

constants η and φ) and kx − ct , respectively. If we specify c
according to Eq. (3) in Ref. [1], we obtain agreement between
k and w

v
. Hence, ψ and 
 are identical for the particular values

of r and c given by w and κ in Eqs. (3) and (5) in Ref. [1].

For coefficients (10) the discriminant � and the invariant
g3 are [see (3)]

� = (−4βδ + 3γ 2)3 − 27(2βγ δ − γ 3 − εβ2)2,

g3 = 2βγ δ − γ 3 − εβ2. (12)

Obviously, there are various possibilities to satisfy � =
0, g3 < 0 in order to find solitonlike solutions. Solving � = 0
with respect to ε we get

ε± = −9γ 3 + 18βγ δ ±
√

3(3γ 2 − 4βδ)3

9β2
. (13)

In this case, choosing ε+, the solution (6) reads

f (z) =
√

γ 2 − 4
3βδ − γ

2β
−

√
9γ 2 − 12βδ

2β cosh2
(
z 4

√
9
4γ 2 − 3βδ

) . (14)

Using β, γ , δ, ε+ according to (10), f (z) can be written as

f (z) = 1√
−gm3

[√
d

48
− 8am − 3σ 2

8
√

30

−
√

d

16
sech2

(
z

4
4

√
d

120m4c4

)]
, (15)

with d = −128m2(a2 + 10mr) + 176amσ 2 − 33σ 4. The
PDC

β �= 0, 4βδ < 3γ 2

reads

128m2(a2 + 10mr) + 33σ 4 < 176amσ 2, g �= 0, (16)

equivalent to d > 0, g �= 0.
Equation (15) represents a generalization of Eq. (11) [if

c and r are specified according to w and κ in Ref. [1],
respectively, Eqs. (15) and (11) are identical]. The asymptotic
behavior of solutions (11) and (15) is different (see Figs. 1
and 2). The limit of (11) is zero, when |z| → ∞, and for

(15) it is ω = 1
48

√
d

−gm3 − 8am−3σ 2

8
√

−30gm3
. Remarkably, ω is zero

if r is chosen equal to κ in Ref. [1]. As mentioned above, it

FIG. 2. Field pattern ψ (x, t ) according to Eqs. (15) and (19).
Parameters as for Fig. 1, but r = 0.0086 and c �= 0 arbitrary.
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FIG. 3. Parameter region for allowed {σ, a, m} according to
PDC: γ = 8am−3σ 2

240m2c2 > 0. Parameters c, r, g as for Fig. 1.

follows δ = ε = 0 in this case, and hence solutions (11) and
(15) are identical. If r is selected arbitrarily [but subject to
the PDC (16)], the condition ω = 0 can be satisfied, e.g., by
selecting parameter a appropriately related to m, σ, r. In this
case, solutions (11) and (15) are different. Another difference
should be noted. In PDC γ > 0, the ansatz parameter c (w in
Ref. [1]) is irrelevant. Due to Eq. (3) in Ref. [1], c is related
to the problem’s parameters and thus enters the solution (2) in
Ref. [1]. Though PDC β �= 0, 4βδ < 3γ 2 formally depends
on it, parameter c drops out [see (16)]. The same holds, with k
according to (9), for solutions (11) and (15). Thus, parameter
c is irrelevant for solutions and associated PDCs.

In general, the PDC is suitable to study the dependence
of f on the parameters. In particular, for solution (15), the
PDC (16) implies restrictions of the problem’s parameters
a, σ, m, g and the ansatz parameter r [k and λ are related to the
problem’s parameters by Eq. (9)]. For practical applications
it is important to know the parameter range where solution
(15) is real and bounded. Region plots of the PDC, depicted in
Figs. 3 and 4, represent the corresponding ranges in parameter
space.

The foregoing statements can be summarized as follows.
The generalized NLSE

i
′
x(x, t ) = a
′′

t (x, t ) − iσ

(3)
t (x, t )

− m

(4)
t (x, t ) − g|
(x, t )|2
(x, t ) (17)

has (Weierstrass) solutions


(x, t ) = f (kx − ct )ei(rx−λt ), (18)

where f is a solution of the basic equation (1) with coefficients
α = 0, β, γ , δ, ε defined by Eqs. (10), subject to the necessary
condition g

m < 0. The amplitude f is real and bounded (phys-
ical) if the coefficients of the basic equation satisfy the phase

FIG. 4. Parameter regions for allowed {σ, a, m} according to
PDC: 128m2(a2 + 10mr) + 176amσ 2 − 33σ 4 > 0. Parameters g =
0.01, r = 0.0086 [consistent with the PDC for σ ∈ (−6, 6), a ∈
(−3, 0), m ∈ (−3, 0)], c �= 0 arbitrary.

diagram condition (PDC). If the PDC is valid,

ψ (x, t ) = Re[
(x, t )] = f (kx − ct ) cos(rx − λt ) (19)

is a solution of Eq. (17). Solution (2) in Ref. [1] is a
Weierstrass solution. The solution (11) of the associated basic
equation

[ f ′(z)]2 = 4β f 3(z) + 6γ f 2(z)

is equal to the corresponding factor u of solution (2) in Ref. [1]
if c and r are chosen as in (3) and (5) in Ref. [1], respectively,
leading to δ = ε = 0. The PDC reads 8am − 3σ 2 > 0, and
parameter r is a free parameter restricted by (16). Solution
f (kx − ct ) according to Eq. (15) is another Weierstrass solu-
tion (not in the literature, to the best of our knowledge). The
associated basic equation is Eq. (1), with α = 0, ε = ε+ [see
Eq. (13)].

Solution (11) is not physical if 8am − 3σ 2 < 0. If d > 0,
solution (15) is physical in this case. If d < 0, irrespective of
the sign of 8am − 3σ 2, solution (15) is not physical.

To sum up: The class of traveling-wave solitonlike
(Weierstrass) solutions of the NLSE (17) [(1) in Ref. [1]] is
defined by (7), where f is a solution of the basic equation (1)
with coefficients α, β, γ , δ, ε given by (10) and subject to (5).
The ansatz parameters λ and k are related to the problem’s
parameters by Eqs. (9). Ansatz parameter c is irrelevant.
Restricted by (16), ansatz parameter r is free. In general,
the subclass of real and bounded (“physical”) solutions is
specified by the phase diagram condition (PDC). The solution
ψ (z, τ ) in Ref. [1] is a particular element of this subclass.

Our criticism refers to the following points:
(1) The authors do not justify (neither mathematically nor

physically) the unnecessarily restrictive choice of w and κ in
Ref. [1]. As mentioned above, only if c and r are specified as
in Ref. [1], the solution is given by (2) in Ref. [1].
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(2) In addition, the conditions α < 0, ε < 0, 8αε > 3σ 2,
γ > 0 presented in Ref. [1] are consistent with (2) in Ref. [1],
but are not necessary in general for physical Weierstrass
solutions (gm < 0 is necessary in general).

(3) Since the authors do not derive solution (2), not only
w and κ [see point (1) above] but also u, v, δ must appear to
the readers as being selected ad hoc. It would be interesting
to know “the regular method” [leading to (2)], in order to
compare with the approach above.
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