Comment on "Solitary waves in optical fibers governed by higher-order dispersion"

Hans Werner Schürmann*
Department of Physics, University of Osnabrück, Osnabrück, Germany
Valery Serov ${ }^{\dagger}$
Department of Mathematical Sciences, University of Oulu, Oulu, Finland

(Received 28 February 2019; published 25 November 2019)

Abstract

Mainly with respect to the mathematical part of the article by Kruglov and Harvey [Phys. Rev. A 98, 063811 (2018)] some (supplementary) remarks on the solution method, on the conditions of existence, and on the parameter dependence are presented. For elucidation, numerical examples are included.

DOI: 10.1103/PhysRevA.100.057801

In a recent article by Kruglov and Harvey [1], an exact stationary solitonlike solution of the generalized nonlinear Schrödinger equation (NLSE) with second-, third-, and fourth-order dispersion terms was presented (without deriving it). We note in advance that solution (2) in Ref. [1] is correct.

Some years ago, we proposed the famous Weierstrass solution [2] of the ordinary nonlinear differential equation ("basic equation")

$$
\begin{align*}
{\left[f^{\prime}(z)\right]^{2} } & =\alpha f^{4}(z)+4 \beta f^{3}(z)+6 \gamma f^{2}(z)+4 \delta f(z)+\epsilon \\
& \equiv R(f) \tag{1}
\end{align*}
$$

($\alpha, \beta, \gamma, \delta, \epsilon$ real) to construct solutions of various nonlinear partial differential equations [3-5]. As a background to the following remarks, it seems suitable to shortly outline this approach and its connection with Ref. [1].

The general solution of (1) is given by [2,6] (the prime denotes the derivative with respect to f)

$$
\begin{equation*}
f(z)=f_{0}+\frac{R^{\prime}\left(f_{0}\right)}{4\left[\wp\left(z ; g_{2}, g_{3}\right)-\frac{1}{24} R^{\prime \prime}\left(f_{0}\right)\right]} \tag{2}
\end{equation*}
$$

if a simple (real) root f_{0} of $R(f)$ exists (it turns out that this is sufficient for the present comment). The invariants g_{2}, g_{3} of the Weierstrass elliptic function $\wp\left(z ; g_{2}, g_{3}\right)$ are related to the coefficients of $R(f)$ by [6]

$$
\begin{align*}
& g_{2}=\alpha \epsilon-4 \beta \delta+3 \gamma^{2} \\
& g_{3}=\alpha \gamma \epsilon+2 \beta \gamma \delta-\alpha \delta^{2}-\gamma^{3}-\epsilon \beta^{2} \tag{3}
\end{align*}
$$

The discriminant [of \wp and $R(f)$ [6]] is given by

$$
\begin{equation*}
\Delta=g_{2}^{3}-27 g_{3}^{2} \tag{4}
\end{equation*}
$$

The behavior of $f(z)$ can be classified by (3) and (4): If $\Delta \neq 0$ or $\Delta=0$ and $g_{2}>0, g_{3}>0, f(z)$ is periodic (oscillatory), and if

$$
\begin{equation*}
\Delta=0, \quad g_{2} \geqslant 0, \quad g_{3} \leqslant 0 \tag{5}
\end{equation*}
$$

[^0]$f(z)$ is solitonlike. Subject to (5), due to the limit of \wp for $\Delta=0$ [7], Eq. (2) reads
\[

$$
\begin{equation*}
f(z)=f_{0}+\frac{R^{\prime}\left(f_{0}\right)}{4\left[e_{1}+3 e_{1} \operatorname{csch}^{2}\left(z \sqrt{3 e_{1}}\right)-\frac{1}{24} R^{\prime \prime}\left(f_{0}\right)\right]} \tag{6}
\end{equation*}
$$

\]

with $e_{1}=\frac{1}{2} \sqrt[3]{-g_{3}}$. Obviously, $f(z)$ according to (6) is not real and bounded in general. To specify the real and bounded ("physical") solutions it is suitable to consider the graph $\left\{\left[f^{\prime}(z)\right]^{2}, f(z)\right\}$, denoted as the phase diagram. Physical solutions are related to the existence of a finite interval $\left[f_{1}, f_{2}\right]$, where $R(f)$ is non-negative and bounded with real roots f_{1}, f_{2} of $R(f)$. This condition has been denoted as the phase diagram condition (PDC) [6].

Returning now to Eq. (1) in Ref. [1], a traveling-wave ansatz (k, c, r, λ real)

$$
\begin{equation*}
\Phi(x, t)=f(k x-c t) e^{i(r x-\lambda t)} \tag{7}
\end{equation*}
$$

inserted in Eq. (1) in Ref. [1], and changing the notation of coefficients ($\alpha \rightarrow a, \epsilon \rightarrow m, \gamma \rightarrow g$, assuming f is real and $\mu=0$), the real and imaginary parts lead to a system of two equations,

$$
\begin{align*}
m^{4} c^{4} f^{(4)}(z)= & \left(m^{3} a c^{2}-\frac{3}{8} m^{2} c^{2} \sigma^{2}\right) f^{\prime \prime}(z) \\
& +\left(m^{3} r-\frac{m a \sigma^{2}}{16}+\frac{3 \sigma^{4}}{256}\right) f(z)-m^{3} g f^{3}(z) \\
& \left(\sigma c^{3}+4 m \lambda c^{3}\right) f^{(3)}(z)+\left(k-2 \lambda c a-4 m c \lambda^{3}\right. \\
& \left.-3 \sigma \lambda^{2}\right) f^{\prime}(z)=0 \tag{8}
\end{align*}
$$

with $z=k x-c t$ and with

$$
\begin{equation*}
\lambda=-\frac{\sigma}{4 m}, \quad k=\frac{c \sigma^{3}-4 c a m \sigma}{8 m^{2}}, \quad m \neq 0, \quad c \neq 0 \tag{9}
\end{equation*}
$$

Taking now into account the basic equation (1) and inserting the derivatives

$$
\begin{aligned}
f^{\prime \prime}(z)= & 2 \alpha f^{3}(z)+6 \beta f^{2}(z)+6 \gamma f(z)+2 \delta, \\
f^{(4)}(z)= & (12 \alpha+12 \beta)\left[f^{\prime}(z)\right]^{2} \\
& +\left[6 \alpha f^{2}(z)+12 \beta f(z)+6 \gamma\right] f^{\prime \prime}(z)
\end{aligned}
$$

FIG. 1. Field pattern $\psi(x, t)$ according to Eqs. (11) and (19). Parameters $a=-0.1, g=0.01, \sigma=0.14, m=-0.6, c=$ $-\frac{1}{4} \sqrt{\frac{8 a m-3 \sigma^{2}}{10 m^{2}}}$, and $r=0.0017$ (corresponding to w and κ in Ref. [1], respectively).
into the first Eq. (8), we obtain

$$
\begin{align*}
& \alpha=0, \quad \beta^{2}=-\frac{g}{120 m c^{4}}, \quad \gamma=\frac{8 a m-3 \sigma^{2}}{240 m^{2} c^{2}} \\
& \delta=\frac{B}{72 \beta m c^{4}}+\frac{A^{2}}{450 \beta m^{2} c^{8}}, \quad \epsilon=\frac{2 A \delta}{15 \beta m c^{4}} \\
& A=a c^{2}-\frac{3 c^{2} \sigma^{2}}{8 m}, \quad B=r-\frac{a \sigma^{2}}{16 m^{2}}+\frac{3 \sigma^{4}}{256 m^{3}} \tag{10}
\end{align*}
$$

The condition $\frac{g}{m}<0$ must hold otherwise no solution exists.
Thus, the basic equation (1), with coefficients according to (10), defines a class of solutions $f(z)$ (having been denoted as Weierstrass solutions [8]) and hence by (7) a class of solutions $\Phi(x, t)$. The solution $\psi(z, \tau)$ presented in Ref. [1] is a particular element of this class: Since r corresponds to κ [given by Eq. (5) in Ref. [1]], setting $r=\kappa$, it turns out that $\delta=0, \epsilon=0$. Hence $\Delta=0, g_{3}=-\gamma^{3}$, and an evaluation of Eq. (6) yields

$$
f(z)=-\frac{3 \gamma}{2 \beta \cosh ^{2}\left(z \sqrt{\frac{3}{2} \gamma}\right)}
$$

and thus

$$
\begin{equation*}
f(z)=\mp \frac{8 a m-3 \sigma^{2}}{8 \sqrt{-\frac{10}{3} g m^{3}}} \frac{1}{\cosh ^{2}\left(\frac{z}{4} \sqrt{\frac{8 a m-3 \sigma^{2}}{10 m^{2} c^{2}}}\right)} \tag{11}
\end{equation*}
$$

where \mp corresponds to different roots for $\beta= \pm \sqrt{\frac{-g}{120 c^{4}}}$ [see (10)]. The PDC $\left(\gamma=\frac{8 a m-3 \sigma^{2}}{240 m^{2} c^{2}}>0\right)$ in this case is consistent with $g_{3}<0$ so that solution (11) is physical (see Fig. 1, with all quantities dimensionless). Obviously, comparing the amplitudes of $\psi(z, \tau)$ and $\Phi(x, t)$, using (10), there is agreement: The arguments of ψ and Φ are $w \tau-\frac{w}{v} z$ (disregarding the constants η and ϕ) and $k x-c t$, respectively. If we specify c according to Eq. (3) in Ref. [1], we obtain agreement between k and $\frac{w}{v}$. Hence, ψ and Φ are identical for the particular values of r and c given by w and κ in Eqs. (3) and (5) in Ref. [1].

For coefficients (10) the discriminant Δ and the invariant g_{3} are [see (3)]

$$
\begin{align*}
\Delta & =\left(-4 \beta \delta+3 \gamma^{2}\right)^{3}-27\left(2 \beta \gamma \delta-\gamma^{3}-\epsilon \beta^{2}\right)^{2} \\
g_{3} & =2 \beta \gamma \delta-\gamma^{3}-\epsilon \beta^{2} \tag{12}
\end{align*}
$$

Obviously, there are various possibilities to satisfy $\Delta=$ $0, g_{3}<0$ in order to find solitonlike solutions. Solving $\Delta=0$ with respect to ϵ we get

$$
\begin{equation*}
\epsilon_{ \pm}=\frac{-9 \gamma^{3}+18 \beta \gamma \delta \pm \sqrt{3\left(3 \gamma^{2}-4 \beta \delta\right)^{3}}}{9 \beta^{2}} \tag{13}
\end{equation*}
$$

In this case, choosing ϵ_{+}, the solution (6) reads
$f(z)=\frac{\sqrt{\gamma^{2}-\frac{4}{3} \beta \delta}-\gamma}{2 \beta}-\frac{\sqrt{9 \gamma^{2}-12 \beta \delta}}{2 \beta \cosh ^{2}\left(z \sqrt[4]{\frac{9}{4} \gamma^{2}-3 \beta \delta}\right)}$.
Using $\beta, \gamma, \delta, \epsilon_{+}$according to (10), $f(z)$ can be written as

$$
\begin{align*}
f(z)= & \frac{1}{\sqrt{-g m^{3}}}\left[\frac{\sqrt{d}}{48}-\frac{8 a m-3 \sigma^{2}}{8 \sqrt{30}}\right. \\
& \left.-\frac{\sqrt{d}}{16} \operatorname{sech}^{2}\left(\frac{z}{4} \sqrt[4]{\frac{d}{120 m^{4} c^{4}}}\right)\right] \tag{15}
\end{align*}
$$

with $d=-128 m^{2}\left(a^{2}+10 m r\right)+176 a m \sigma^{2}-33 \sigma^{4}$. The PDC

$$
\beta \neq 0, \quad 4 \beta \delta<3 \gamma^{2}
$$

reads

$$
\begin{equation*}
128 m^{2}\left(a^{2}+10 m r\right)+33 \sigma^{4}<176 a m \sigma^{2}, \quad g \neq 0 \tag{16}
\end{equation*}
$$

equivalent to $d>0, g \neq 0$.
Equation (15) represents a generalization of Eq. (11) [if c and r are specified according to w and κ in Ref. [1], respectively, Eqs. (15) and (11) are identical]. The asymptotic behavior of solutions (11) and (15) is different (see Figs. 1 and 2). The limit of (11) is zero, when $|z| \rightarrow \infty$, and for (15) it is $\omega=\frac{1}{48} \sqrt{\frac{d}{-g m^{3}}}-\frac{8 a m-3 \sigma^{2}}{8 \sqrt{-30 g m^{3}}}$. Remarkably, ω is zero if r is chosen equal to κ in Ref. [1]. As mentioned above, it

FIG. 2. Field pattern $\psi(x, t)$ according to Eqs. (15) and (19). Parameters as for Fig. 1, but $r=0.0086$ and $c \neq 0$ arbitrary.

FIG. 3. Parameter region for allowed $\{\sigma, a, m\}$ according to PDC: $\gamma=\frac{8 a m-3 \sigma^{2}}{240 m^{2} c^{2}}>0$. Parameters c, r, g as for Fig. 1 .
follows $\delta=\epsilon=0$ in this case, and hence solutions (11) and (15) are identical. If r is selected arbitrarily [but subject to the PDC (16)], the condition $\omega=0$ can be satisfied, e.g., by selecting parameter a appropriately related to m, σ, r. In this case, solutions (11) and (15) are different. Another difference should be noted. In PDC $\gamma>0$, the ansatz parameter $c(w$ in Ref. [1]) is irrelevant. Due to Eq. (3) in Ref. [1], c is related to the problem's parameters and thus enters the solution (2) in Ref. [1]. Though PDC $\beta \neq 0,4 \beta \delta<3 \gamma^{2}$ formally depends on it, parameter c drops out [see (16)]. The same holds, with k according to (9), for solutions (11) and (15). Thus, parameter c is irrelevant for solutions and associated PDCs.

In general, the PDC is suitable to study the dependence of f on the parameters. In particular, for solution (15), the PDC (16) implies restrictions of the problem's parameters a, σ, m, g and the ansatz parameter $r[k$ and λ are related to the problem's parameters by Eq. (9)]. For practical applications it is important to know the parameter range where solution (15) is real and bounded. Region plots of the PDC, depicted in Figs. 3 and 4, represent the corresponding ranges in parameter space.

The foregoing statements can be summarized as follows. The generalized NLSE

$$
\begin{align*}
i \Phi_{x}^{\prime}(x, t)= & a \Phi_{t}^{\prime \prime}(x, t)-i \sigma \Phi_{t}^{(3)}(x, t) \\
& -m \Phi_{t}^{(4)}(x, t)-g|\Phi(x, t)|^{2} \Phi(x, t) \tag{17}
\end{align*}
$$

has (Weierstrass) solutions

$$
\begin{equation*}
\Phi(x, t)=f(k x-c t) e^{i(r x-\lambda t)} \tag{18}
\end{equation*}
$$

where f is a solution of the basic equation (1) with coefficients $\alpha=0, \beta, \gamma, \delta, \epsilon$ defined by Eqs. (10), subject to the necessary condition $\frac{g}{m}<0$. The amplitude f is real and bounded (physical) if the coefficients of the basic equation satisfy the phase

FIG. 4. Parameter regions for allowed $\{\sigma, a, m\}$ according to PDC: $128 m^{2}\left(a^{2}+10 m r\right)+176 a m \sigma^{2}-33 \sigma^{4}>0$. Parameters $g=$ $0.01, r=0.0086$ [consistent with the PDC for $\sigma \in(-6,6), a \in$ $(-3,0), m \in(-3,0)], c \neq 0$ arbitrary.
diagram condition (PDC). If the PDC is valid,

$$
\begin{equation*}
\psi(x, t)=\operatorname{Re}[\Phi(x, t)]=f(k x-c t) \cos (r x-\lambda t) \tag{19}
\end{equation*}
$$

is a solution of Eq. (17). Solution (2) in Ref. [1] is a Weierstrass solution. The solution (11) of the associated basic equation

$$
\left[f^{\prime}(z)\right]^{2}=4 \beta f^{3}(z)+6 \gamma f^{2}(z)
$$

is equal to the corresponding factor u of solution (2) in Ref. [1] if c and r are chosen as in (3) and (5) in Ref. [1], respectively, leading to $\delta=\epsilon=0$. The PDC reads $8 a m-3 \sigma^{2}>0$, and parameter r is a free parameter restricted by (16). Solution $f(k x-c t)$ according to Eq. (15) is another Weierstrass solution (not in the literature, to the best of our knowledge). The associated basic equation is Eq. (1), with $\alpha=0, \epsilon=\epsilon_{+}$[see Eq. (13)].

Solution (11) is not physical if $8 a m-3 \sigma^{2}<0$. If $d>0$, solution (15) is physical in this case. If $d<0$, irrespective of the sign of $8 a m-3 \sigma^{2}$, solution (15) is not physical.

To sum up: The class of traveling-wave solitonlike (Weierstrass) solutions of the NLSE (17) [(1) in Ref. [1]] is defined by (7), where f is a solution of the basic equation (1) with coefficients $\alpha, \beta, \gamma, \delta, \epsilon$ given by (10) and subject to (5). The ansatz parameters λ and k are related to the problem's parameters by Eqs. (9). Ansatz parameter c is irrelevant. Restricted by (16), ansatz parameter r is free. In general, the subclass of real and bounded ("physical") solutions is specified by the phase diagram condition (PDC). The solution $\psi(z, \tau)$ in Ref. [1] is a particular element of this subclass.

Our criticism refers to the following points:
(1) The authors do not justify (neither mathematically nor physically) the unnecessarily restrictive choice of w and κ in Ref. [1]. As mentioned above, only if c and r are specified as in Ref. [1], the solution is given by (2) in Ref. [1].
(2) In addition, the conditions $\alpha<0, \epsilon<0,8 \alpha \epsilon>3 \sigma^{2}$, $\gamma>0$ presented in Ref. [1] are consistent with (2) in Ref. [1], but are not necessary in general for physical Weierstrass solutions ($g m<0$ is necessary in general).
(3) Since the authors do not derive solution (2), not only w and κ [see point (1) above] but also u, v, δ must appear to the readers as being selected $a d h o c$. It would be interesting to know "the regular method" [leading to (2)], in order to compare with the approach above.
[6] H. W. Schürmann, Phys. Rev. E 54, 4312 (1996).
[7] Handbook of Mathematical Functions, edited by M. Abramowitz and I. A. Stegun (Dover, New York, 1968), p. 651.
[8] H. W. Schürmann and V. S. Serov, Progress in Electromagnetic Research Symposium 2004, Pisa, Italy, March 28 31, Session 26a, http://www.piers.org/piers2k4Pisa/Session_26a/ 26a_06.pdf.

[^0]: *hwschuer@uos.de
 †vserov@cc.oulu.fi

