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A novel method for detecting uniparental disomy
from trio genotypes identifies a significant excess
in children with developmental disorders
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Exome sequencing of parent-offspring trios is a popular strategy for identifying causative genetic variants in children with
rare diseases. This method owes its strength to the leveraging of inheritance information, which facilitates de novo variant
calling, inference of compound heterozygosity, and the identification of inheritance anomalies. Uniparental disomy
describes the inheritance of a homologous chromosome pair from only one parent. This aberration is important to detect
in genetic disease studies because it can result in imprinting disorders and recessive diseases. We have developed a software
tool to detect uniparental disomy from child–mother–father genotype data that uses a binomial test to identify chro-
mosomes with a significant burden of uniparentally inherited genotypes. This tool is the first to read VCF-formatted
genotypes, to perform integrated copy number filtering, and to use a statistical test inherently robust for use in platforms
of varying genotyping density and noise characteristics. Simulations demonstrated superior accuracy compared with
previously developed approaches. We implemented the method on 1057 trios from the Deciphering Developmental
Disorders project, a trio-based rare disease study, and detected six validated events, a significant enrichment compared
with the population prevalence of UPD (1 in 3500), suggesting that most of these events are pathogenic. One of these
events represents a known imprinting disorder, and exome analyses have identified rare homozygous candidate variants,
mainly in the isodisomic regions of UPD chromosomes, which, among other variants, provide targets for further genetic
and functional evaluation.

[Supplemental material is available for this article.]

Uniparental disomy (UPD) is a defect of inheritance in which

both chromosomal homologs, or segments of homologs, in an

individual’s genome originate from a single parent. Initially hy-

pothesized by Engel (Engel 1980), and subsequently implicated

in disease (Spence et al. 1988), instances of all but three of the 44

possible uniparental autosomal pairs have been reported (http://

upd-tl.com/upd.html), with a population prevalence estimated to

be approximately one in 3500 live births (Robinson 2000). The

UPD chromosome can be characterized in four ways: (1) extent:

affecting the whole chromosome (complete) or a portion of the

chromosome (segmental); (2) zygosity: affecting all cells (consti-

tutive) or a proportion of cells (mosaic); (3) by homolog segrega-

tion: whether the centromeric regions are identical (isodisomy) or

represent both grandparental homologs (heterodisomy); and (4)

by parental-origin: maternal or paternal. The origin of UPD often

entails meiotic nondisjunction followed by a mitotic rescue event,

but the possibility of crossing-over of homologs and mis-

segregation of translocated chromosomes and other complex

events are possible (Kotzot 2008).

UPD has three important disease associations: first, by dis-

rupting the inheritance of essential parent-specific epigenetic

modifications, causing imprinting disorders (Yamazawa et al.

2010); second, by converting deleterious alleles bequeathed from

a heterozygous parent to a homozygous state, causing recessive

disease (Zlotogora 2004); and third, by its relationship to in-

complete trisomy rescue, resulting in residual trisomy mosaicism

(Kotzot 2008). UPD is known to be a contributor to rare genetic

diseases and its identification is an important part of the search for

disease-causing variations. Recent clinical research involving high-

throughput genome-wide SNP genotyping analysis of probands
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with intellectual disability has identified long regions of homo-

zygosity (ROH) that were resolved into UPD events (Bruno et al.

2011; Papenhausen et al. 2011; Wiszniewska et al. 2013). In ad-

dition, SNP data facilitates the detection of mosaic events by

detecting minor allele fractions (B-allele frequencies) with sys-

tematic departures from diploid genotypes that are not associ-

ated with apparent copy number changes (Pique-Regi et al. 2010;

Van Loo et al. 2010; Jacobs et al. 2012). However, there are two

drawbacks to using probands alone in UPD detection: First, UPD

cannot be detected directly, but requires either experimental

(microsatellite) validation or inference based on homozygosity

contained to only a single chromosome; and second, this ap-

proach is blind to constitutive heterodisomic regions, as they

do not produce homozygous genotypes or split in the B allele

pattern.

Alternatively, UPD can be detected directly from genotypes

in a proband and his or her parents, a parent–offspring trio, by

searching for an enrichment of genotypes that are only compatible

with uniparental inheritance. Important advantages of this ap-

proach include the discrimination of inherited ROH regions from

isodisomic regions, greater resolution of UPD detection, and de-

tection of heterodisomy. There are two previously described soft-

ware tools available for detecting UPD from trio data: SNPtrio,

a webtool published in 2007 that accepts as input Illumina Bead-

Studio or Affymetrix CNAT SNP data and uses a test to identify

statistically unlikely runs of contiguous UPD-informative geno-

types (Ting et al. 2007); and UPDtool, which detects groupings of

non-Mendelian errors from tab-separated-value (TSV) custom ge-

notype files and uses absolute cutoffs to select putative UPD re-

gions and classify into UPD types (Schroeder et al. 2013). However,

these tools share similar drawbacks, in that they do not avoid

copy number deleted regions in the proband (a frequent source of

false segmental isodisomy), require inputs limited to SNP geno-

typing software outputs or custom TSV files, and use statistical

approaches inherently sensitive to platform genotyping density

and quality. In addition, no previous tool has, to our knowledge,

been systematically tested using whole-exome or whole-genome

sequencing data.

The method described here, UPDio, accepts variant call for-

mat (VCF) (Danecek et al. 2011) formatted trio genotypes and

compares the allelic composition of proband genotypes with pa-

rental genotypes. Unlike the previously developed methods that

identify contiguous runs or groups of UPD-genotypes, this method

aggregates UPD signatures on a whole-chromosomal basis, with

subsequent inspection to refine the extent of the UPD. The per-

chromosome binomial test can detect UPD events accurately from

genotyping platforms of variable density, such as whole-exome

data, SNP data, and whole-genome sequence data, without ex-

tensive platform-specific parameter manipulation. This method

avoids copy number regions via the filtering of common and

sample-specific copy number variable regions, regions that often

result in false-positive UPD calls, thus increasing statistical power.

Simulations of SNP and exome data at the default P-value thresh-

old demonstrated high accuracy at detecting whole-chromosomal

UPD and segmental UPD above 1 Mb for SNP data and 10 Mb for

exome data. We applied this method for UPD detection on 1057

unique trios in a rare disease study, the Deciphering Develop-

mental Disorders (Firth and Wright 2011) (DDD) project. We iden-

tified six individuals with a uniparentally inherited chromosome—of

which one is associated with a known imprinting disorder—and

carried out candidate variant selection from the exome data for

these individuals.

Results
We developed an approach to identify pathogenic UPD events that

is comprised of three steps: (1) genotype preparation, (2) UPD

detection, and (3) candidate variant selection (Fig. 1). Genotype

preparation begins with preprocessing the genotype data from SNP

chip or exome sequencing data. Data preprocessing is critical and

includes two steps: (1) removal of low-quality genotypes, (2) re-

moval of genotyped sites within CNVs, since heterozygous de-

letions can masquerade as uniparental isodisomy. For exome data

in which only nonreference genotypes are recorded (e.g., from

single sample calling), an additional preprocessing step was used to

introduce homozygous reference genotypes for common SNPs

that are well covered and for which a nonreference genotype was

not detected (Methods). Note that for multi-sample VCFs gener-

ated by multi-sample calling, this homozygous reference imputa-

tion step is not required.

After preprocessing, the proband genotypes diagnostic for

uniparental or biparental inheritance are counted on each chro-

mosome. Uniparental genotypes can be quantitatively distin-

guished from one another by the relative proportions of the two

different classes of genotype configurations that are diagnostic for

uniparental inheritance (Table 1), or qualitatively by visualization.

One class of uniparental genotype configuration is specifically

informative for isodisomy (UI [uniparental–isodisomic]), and the

other class does not distinguish heterodisomy from isodisomy (UA

[uniparental–ambiguous]). Heterodisomic events contain only UA

genotypes and lack UI genotypes, while isodisomic events contain

mixtures of UA and UI genotypes.

Simulations

We performed simulations to assess the accuracy of UPD calling in

UPDio (see Methods). The sensitivity of UPD detection was mea-

sured at a range of sizes (1, 2, 5, 10, and 20 Mb) to test detection

rates of segmental UPD and chromosome-wide, to test detection

of complete UPD. Simulations were performed for heterodisomy

and isodisomy from data generated by exome and SNP genotyping

platforms.

Figure 1. Study workflow. The study consisted of three main steps: data
preparation, UPD detection, and candidate variant analysis. In the data
preparation stage, we collected informative genotypes seen in all mem-
bers of each trio. Either a multi-sample trio VCF or three single-sample
VCFs can be used as input; the latter requires the annotation of homo-
zygous reference genotypes, not usually encoded in single-sample VCF
files. In the UPD detection stage, we selected trios containing a proband
chromosome with an enrichment of UPD-informative genotypes. Exomes
(five) available for samples with a detected UPD event were selected for
the candidate workup analysis, in which we attempted to find rare pro-
tein-altering variants that may manifest in the proband’s phenotypes.
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The method is more sensitive for detecting isodisomy than

heterodisomy, as expected given the greater number of in-

formative sites for the former. Also, the method is more sensitive at

a given size using SNP chip data than using exome data (Fig. 2),

primarily due to both the greater density of genotyped sites, with

a possible minor contribution from the likely higher genotype

accuracy in SNP chips. At Bonferroni-adjusted significance

threshold (light-blue line, P = 0.000568), we observed in SNP chip

data nearly perfect sensitivity for detecting either class of UPD

event (heterodisomy or isodisomy) at 5 Mb. At 2 Mb, 98% of iso-

disomy and 91% of heterodisomy could be detected. Sensitivity of

isodisomy detection from exome data was 99% for isodisomy and

75% for heterodisomy at 10 Mb.

We defined specificity as the proportion of tested non-UPD

trios that lacked maternal UPD calls. At the Bonferroni-adjusted

P-value of 0.000568, specificity was 99% for exome data and 100%

for SNP data. The cause of the single false-positive UPD event was

found to be due to a slight excess of genotype errors resulting in an

event called with a marginally significant P-value (0.00044).

Given that a size threshold for suspecting UPD in clinical

molecular diagnostics is typically near 10 Mb (Conlin et al. 2010),

the successful detection of UPD of this size is of practical utility.

Indeed, even 2-Mb isodisomic events were detected accurately from

SNP-chip data, a result likely due to low genotyping error rates and

relatively uniform genotyping density; although at this size, the ac-

curacy of detection of heterodisomy from SNP-chip data, and iso-

disomy and heterodisomy from exome data, was appreciably lower.

Comparing UPD detection software tools

We assessed the strengths and limitations of three trio-based UPD

detection tools: SNPtrio, UPDtool, and UPDio (Table 2). There are

Table 1. Informative genotypes for UPD analyses

Parent 1 Parent 2 Child

Informative genotype

SymbolInheritance type

AA BB AB Biparental BPI
AA BB AA or BB Uniparental–ambiguous UA
AA AB BB Uniparental–isodisomic UI

Informative genotype combinations. Sites at which parents are opposing
homozygotes and the child is heterozygous are diagnostic of biparental
inheritance. Uniparental inheritance combinations include those that
obligately result from isodisomy (UI) and those that may result from either
heterodisomy or isodisomy (UA), as the proband alleles may have arisen
from a duplication of one parental homolog or may present both homo-
logs. True isodisomy events will have mixtures of both of these informative
types, whereas true heterodisomy events will be void of UI types.

Figure 2. Sensitivity of UPD detection simulations. Simulations to assess sensitivity of UPD detections at different sizes, from different data sources.
(iUPD) Isodisomy; (hUPD) heterodisomy.

UPD detection in trios
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substantial differences in the interface, statistical methods, cali-

brations, and outputs of these three tools. One notable difference is

the input format requirements. UPDtool requires the construction

of custom tab-separated-value genotype files, while SNPtrio pro-

cesses SNP-genotyping software output files, and UPDio reads VCF

files, which is a platform-independent standard file format for

genotype data. The underlying statistical methods vary as well.

UPDio is the only tool that integrates CNV filtering during geno-

type parsing, which occurs before statistical analysis. In terms of

calling confidence, UPDio and SNPtrio provide a P-value output

measurement, while UPDtool does not provide a confidence

score for its UPD detections. For threshold calibration, the webtool

SNPtrio accepts a parameter ‘‘minimum number of SNPs in an

event region’’; UPDtool has a list of seven adjustable parameters

(min_mes, window size, min_mes_fraction, min_hetero, min_iso,

min_mes_paternal and max_mes_paternal); and lastly, UPDio al-

lows for user control of the P-value threshold as a single parameter.

Neither SNPtrio nor UPDtool parameters are recalibrated dynam-

ically based on input data; instead, they are tuned for platforms

resembling the density and noise characteristics of high-density

SNP trios. In contrast, UPDio calculates a per-chromosome pro-

portion-based statistic, which is innately normalized for input data

of different global density and noise characteristics.

Simulations assessed the comparative accuracy of three trio-

based UPD detection tools: SNPtrio, UPDtool, and UPDio. All three

platforms were run using default parameters (Methods: Simulation

Comparison), on the same simulated data sets (reformatted to ac-

commodate each tool’s input requirements). Sensitivity results

were tabulated as the proportion of tested samples with maternal

UPD detection on the chromosome containing the simulated

event (Fig. 3). Specificity was calculated as the proportion of samples

not containing maternal UPD events in samples without obvious

UPD events (Fig. 4).

Simulation results demonstrated that SNPtrio was the least

specific algorithm (31% for SNP data and ;0% for exome data),

and UPDtool was the least sensitive tool, only capable of detecting

the very largest UPD events. Unsurprisingly, specificity and sensi-

tivity were inversely related. UPDtool was 100% specific, and made

no false UPD assignments in normal samples from either SNP or

exome data. UPDio was nearly as specific as UPDtool. SNPtrio was

the most sensitive, which was most evident in the detection of

smaller heterodisomic events from exome data. UPDio was only

very slightly less sensitive than SNPtrio

for events 10 Mb and greater in size in

exome data and for events 1 Mb and

greater in size in SNP data.

We produced receiver operator char-

acteristic (ROC) curves to evaluate the

calling performance of UPDio at various

P-value thresholds (Fig. 5). The UPDio

(‘‘dio’’) curves demonstrate excellent

classification of UPD events from SNP

platform at 5 Mb and 10 Mb. The classi-

fication of UPD events from exome data is

noticeably weaker, especially for detec-

tion of heterodisomy at a size of 5 Mb.

The Bonferroni corrected P-value of

0.000568 represents a good balance of

sensitivity and specificity for both data

types and both classes of UPD event. Thus,

we decided to use this P-value as a default

parameter for UPD calling in UPDio.

For the two ROC curves we plotted the classification perfor-

mance of UPDtool (‘‘tool’’) and SNPtrio (‘‘trio’’) for the calculated

sensitivity and specificity of these programs at their default pa-

rameter settings. While most SNPtrio classifications demonstrated

high true-positive rates, these came at the expense of very high

false-positive rates that would require substantial additional

downstream manual filtering such that large-scale application is

inherently limited. On the other hand, UPDtool performance was

characterized by low true-positive rates, near zero for most event

types and platforms, with the notable exception of isodisomy from

SNP data at a size of 10 Mb. In contrast, UPDio, using the default

P-value threshold, detected a substantially higher ratio of true to

false events compared with the other programs under all condi-

tions. These differences are likely to be accentuated when imple-

menting these tools for whole-genome sequence data sets. While

SNPtrio and UPDtool are tuned for SNP data and to our knowledge

not tested on whole-genome data, we obtained HapMap child–

mother–father trio (NA12878, NA12891, NA12892) and CNV data

(Mills et al. 2011) and implemented UPDio using a default

Bonferroni-corrected P-value threshold. Whole-genome analy-

sis counted an average of 278 informative genotypes per Mb,

203 greater density than our SNP platform, required 9 min and

27 Mb of memory and detected no UPD events beyond marginal

significance.

UPD detections in the Deciphering Developmental Disorders
(DDD) project

We performed UPD detection on 1057 unique parent-offspring

trios in the DDD project. The majority (915) of these trios were

analyzed by both SNP and exome data, with slightly more trios

available from SNP data (1035) compared with exome data (937).

We applied a P-value of 0.000568 as a statistical threshold (see

section ‘‘Genotype Segregation and Statistical Analysis’’ in Methods)

for identifying putative UPD events for further investigation.

We observed that the putative UPD events had calculated

P-values that were clearly bimodal in distribution (Fig. 6), and this

finding was consistent in results from both SNP and exome trio

data. We observed that the extremely significant events were, in all

cases, authentic UPD detections and these were selected for further

analysis. The marginally significant events were consistently spu-

rious UPD detections.

Table 2. Software comparisons

SNPtrio UPDtool UPDio

Platform source SNP only Cross platform Cross platform
Genotype input format TSV from

SNP software
Custom TSV VCF

Integrated CNV filtering No No Yes
Statistical method Binomial test

per block
Sliding window

over blocks of
Mendelian errors

Binomial test per
chromosome

Statistical confidence measure P-value Fractions of event types P-value
Dynamic platform No No Yes
Independent calibration

visualization
UPD and CNVs Event fractions Yes, UPD and

zygosity
Accepts compressed files No No Yes
Language Perl, R C# Perl, R
Run environment Webtool Windows and Linux Linux
Performance 51 sec/265 Mb 15 sec/65 Mb 151 seca/21 Mb

Comparison of three trio-based UPD software tools. (TSV) Tab-separated value.
aTotal run time including parsing of input files, CNV filtering, and UPD detection.
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We investigated the less-significant group of detections and

observed differences between the two platforms regarding the

number and underlying cause of these spurious events. The SNP

data had 133 such events while the exome data had 70 such events.

The underlying cause of these false detections in the SNP data

usually (;80% of the time) was due to misattribution of un-

detected (and thus unfiltered) CNV regions as isodisomy. This was

especially true for the most significant events of this category; for

example, a 1-Mb deletion (which escaped detection by aCGH due

to low-quality array data) resulted in false signals of high signifi-

cance (UI_P at 1 3 10�31 and UA_P of 1 3 10�22). In contrast, the

underlying cause in the exome data in most (;85%) cases was due

to stochastic fluctuations of genotyping errors. The different un-

derlying causes and number of the marginally significant events

likely reflect underlying platform differences, namely that the SNP

platform has far greater genotyping density, especially in non-

coding regions, thus is more prone to detecting hemizygous ge-

notypes within small deletions than the exome data, while the

exome data (from single sample calling) has a slightly higher

genotyping error rate, and is therefore more susceptible to the

random aggregation of genotyping errors.

Large UPD events have substantial numbers of both UI and

UA events. Consequently, binomial tests assessing the enrichment

of both event types often redundantly detect these large UPD

events by both signatures. We developed a visualization tool to

illustrate the distribution of informative sites along each chro-

mosome in a trio to clarify the type and extent of these events,

which may include both isodisomy and heterodisomic regions

(Fig. 7). In addition, the method provides additional output files

to specify all informative genotype events comprising the UPD

region.

There were 10 extremely significant event types in SNP data

and also in exome data, which reflected the redundant detection of

five UI and UA events in both cases. Of the five UPD events, four of

five in both sets were the identical event seen by both platforms.

One UPD event was detected solely from SNP data, and a different

event detected solely from exome data. In these two latter cases,

data were not initially available from both platforms, but sub-

sequent genotyping led to successful detection in both cases. Thus,

in total, there were six unique probands with UPD events, and all

events were detected using SNP data and exome sequence data.

The six events comprised a variety of UPD events. Most (five of six)

were maternal, most (five of six) involved the entire chromosome,

and most (five of six) reflected isodisomy (Table 3).

Investigating UPD frequency

Compared with the widely quoted birth prevalence of UPD

(1/3500) (Robinson 2000) the proportion of UPD events detected

in the trio analyses (6/1057) described above is significantly higher

(binomial test P-value 8.036 3 10�7). The UPD rate at birth in the

general population has been estimated on extrapolation from

Figure 3. Sensitivity comparisons. Simulations were performed to measure the sensitivity of detecting introduced UPD events from SNP and exome
data, ranging in size from 1 Mb to chromosomal.
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clinically relevant UPD events at a single locus, and thus is po-

tentially susceptible to variation among chromosomes in UPD

rate. To generate an empirical estimate of the population preva-

lence of all classes of UPD would require dense genome-wide ge-

notypes for tens of thousands of parent–offspring trios sampled

randomly from the population; such data are not currently avail-

able. However, it is possible to estimate the rate of uniparental

isodisomy from dense genome-wide genotypes on unrelated in-

dividuals since isodisomy manifests with an easily detectable sig-

nature: a long region of homozygosity. Other processes, such as

consanguinity (Li et al. 2006) or cryptic relatedness (Astle and

Balding 2009) similarly generate long regions of homozygosity, but

are distinguishable from isodisomy because these other processes

often involve multiple chromosomes and are rarely longer than

20 Mb (Li et al. 2006).

We used 16,881 samples from the Wellcome Trust Case

Control Consortium (WTCCC) data set to develop an empirical

estimate of the rate of complete uniparental isodisomy by ob-

serving the number of samples containing a single chromosome

burden of large regions of homozygosity. First, we used PLINK

(Purcell et al. 2007) to identify large (>10 Mb) tracts of homozy-

gosity for each sample, and retained samples with a large homo-

zygous region or regions confined to a single chromosome. There

were many samples (N = 103), which satisfied this criterion. Of

these, only a single sample appeared to have whole-chromosomal

isodisomy, but a further five samples had significant homozygosity

that extended over at least half of the chromosome (Supplemental

Figs. 1–6). These five samples comprised four telomeric events on

chromosomes 4, 21, 22, 22, and one on chromosome 4 with two

large interstitial regions of homozygosity. As the homozygosity of

these events covered the majority of the chromosome, and repre-

sent the only major tract of homozygosity in these genomes, we

believe these events likely reflect mixtures of isodisomy and het-

erodisomy and are unlikely to reflect inherited homozygosity. Under

the conservative assumption that all these chromosomes reflect

complete uniparental disomy of a chromosome in these in-

dividuals, this represents a frequency of six uniparental disomy

events in 16,881 individuals, which is not significantly different

from the reported frequency of one in 3500 (binomial test P-value

0.4934). Notably, by enforcing the same criteria to define a UPD

event (the majority of the chromosome homozygous and large

homozygosity confined to a single chromosome), the five UPD

detections in the DDD project (removing the one 10 Mb segmental

event from the six in total) is still a significant enrichment com-

pared with the population estimate (binomial test, P-value 1.751 3

10�5) and also a significant enrichment compared with the

WTCCC data (Fisher exact test, P-value 0.0002598).

We also attempted to use the WTCCC data to investigate the

prevalence of segmental UPD, however, despite stringent filtering

of subchromosomal segments of homozygosity, we could not re-

capitulate the expected pattern of terminal segmental UPD events

(http://upd-tl.com/upd.html; Supplemental Fig. 7). Therefore, we

believed that most of the regions of segmental homozygosity in

the WTCCC were not reflective of segmental UPD events and we

considered that estimating population of prevalence of segmental

UPD events from this data set would not be appropriate. Analyses

of segmental UPD, which are typically mosaic (Rodriguez-Santiago

et al. 2010), are better suited to algorithms that interrogate the B

allele frequency, rather than genotype data.

Identifying plausibly pathogenic genetic variation
in the DDD trios with UPD events

The segmental UPD on chromosome 1 is associated with a flanking

de novo 12-Mb duplication/triplication event that is the likely

pathogenic variant. Only one of the other five UPD events de-

tected in the DDD trios is associated with a known imprinting

disorder—the maternal UPD of chr14 known to cause Temple

Syndrome (OMIM *605636 and #176270)—however, not all of the

clinical features of this individual have a reported association with

this syndrome. Thus, for this patient and the remaining four pa-

tients with UPD, it is of interest to identify other genetic variations

that might account for the observed clinical features; so the exome

data for these patients were examined to identify genetic variants

potentially underlying the observed developmental disorders (see

section ‘‘Identifying Candidate Variants’’ in Methods; Supple-

mental Table 1). We found that the UPD chromosome accounts for

the vast majority of the rare homozygous variants predicted to

impact upon protein function in each of the studied exomes (Table

3), however, we also broadened the search to other genetic models

compatible with sporadic presentation in these families. Although

each patient harbored rare, functional variants in known Mende-

lian disease genes, none of the specific variants we observed had

previously been classified as being pathogenic. Therefore, experi-

mental follow-up would be required to definitively implicate these

novel variants with disease causation. Nevertheless, the exome

analysis provided a rich source of plausible candidate variants for

a follow-up investigation.

The patient with maternal UPD of chromosome 14 is a 15-yr-

old girl. Temple Syndrome (maternal UPD14) accounts for most of

the child’s phenotypes, including truncal obesity (weight 99th

centile), moderately short stature (height first centile), and mild

intellectual disability (Temple et al. 1991), while the diabetes

mellitus phenotype is likely attributed to the metabolic conse-

quences of the disorder (BMI 38; class II obesity). In addition, the

child has sensorineural hearing impairment, a condition that is

not a reported characteristic of the syndrome. Of the variants that

Figure 4. Specificity comparisons. Simulations on normal SNP and
exome samples were compared to measure the proportion of samples
without UPD detections.
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remained after filtering, four were present in known Mendelian

disease genes (DRD2, TTN, PLAU, TECTA). The gene TECTA en-

codes an extracellular matrix protein (tectorin alpha) of the tec-

torial membrane, the surface of the sensory epithelium of the

cochlea (Balciuniene et al. 1999), and is a well known cause of

autosomal dominant (MIM:601543) and autosomal recessive

(MIM:603629) hearing loss. This proband had novel compound

heterozygous variants, with a missense substitution inherited from

the mother and a stop gained mutation inherited from the father.

Neither parent has a documented hearing disability, suggesting

that the compound heterozygosity has resulted in the recessive

form of hearing loss in the child. Recently, a hearing-impaired

proband with normal-hearing parents was found to contain

compound heterozygous variants (missense and splicing mutation

leading to truncated protein) in the TECTA gene, which was in-

dicated to be pathogenic through in vitro functional character-

ization (Sagong et al. 2012).

The patient with UPD of chromosome 9 is a 15-yr-old male

patient with developmental delay and intellectual disability,

recruited following noninformative aCGH CNV analysis. His

family history was notable for having several second-degree family

members with similar phenotypes. The child also has a congenital

heart defect. As the clinical features were relatively common

among children with congenital disorders, it was more challenging

to use phenotypic matching to identify specific genetic candidates

in this patient. The child has four rare functional variants in

Mendelian disease genes (MLLT3, LAMC3, HNRNPU, SLC6A8). The

HNRNPU gene is a known intellectual disability gene, and the de

novo variant is well supported by sequencing data (11 of 22 se-

quence reads in proband and absent in well-covered parents), al-

though sequencing by capillary sequencing is ongoing. In addi-

tion, the child has a hemizygous missense variant in SLC6A8 and

defects in this gene are known to cause X-linked intellectual dis-

ability through creatinine transport malfunction.

The patient with maternal UPD of chromosome 2 is a 7-yr-old

male patient, with a complex phenotype profile including global

developmental delay, glandular hypospadias, overriding toe and

bicuspid aortic valve. Recently, a female child, also with UPD-

maternal of chromosome 2 and complex phenotype, distinct from

our patient, had been exome sequenced and many (18) candidate

variants were identified on the UPD chromosome, none de-

finitively pathogenic (Carmichael et al. 2012). None of that girl’s

phenotypes are coincident with our patient, suggesting that an

imprinting disease is not the likely cause of the diseases in these

children. In our patient, the entire burden of rare homozygous

coding variants (20 variants) lay on the UPD chromosome. We

identified six variants in Mendelian disease genes (EIF2AK3, AGXT,

PASK, L1CAM, CUL4B, GLA). Two of these variants are interesting

with respect to the global developmental delay in this child. The

child has a hemizygous variant in the GLA gene causing an amino

acid change, D313Y, which has been exculpated as a cause of Fabry

disease (Niemann et al. 2013), but recently associated with severely

decreased GLA enzyme activity in plasma and the formation of

white matter lesions in males (Lenders et al. 2013). Also potentially

interesting is the rare, missense hemizygous (X chromosomal)

variant in CUL4B, a gene well recognized to cause mental retar-

dation and hypogonadism (Isidor et al. 2010), although our pa-

tient has a less severe phenotype than is typically associated with

a null mutation in CUL4B.

The patient with UPD of chromosome 17 had delayed de-

velopmental milestones, growth retardation, microcephaly, and

suffers from seizures intractable to medical intervention. She was

found to have decreased serum magnesium and renal magnesium

wasting but genetic testing for diseases of renal hypomagnesium

Figure 5. Receiver operator characteristic curve comparing UPD detection accuracy. Accuracy of UPD detection at different simulated UPD sizes. (dio)
UPDio; (tool) UPDtool; (trio) SNPtrio.
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wasting (TRPM6 and SCN1A gene testing) was normal. Her seizures

did not resolve after intravenous magnesium infusion and result-

ing restoration of blood magnesium to normal range, suggesting

that hypomagnesaemia alone is not the cause of her seizures. The

child has three variants in Mendelian disease genes (FKBP10,

SCN4A, CCDC40). The missense SNV in SCN4A is interesting as

it is very rare (0.0012 minor allele frequency), inherited from

a heterozygous parent, but made homozygous on the UPD chro-

mosome, and located in a gene that encodes a subunit of a voltage-

gated sodium channel. This sodium channel is implicated in

a diversity of neuromuscular disorders, such as periodic paralysis

and myotonia congenita, diseases that mimic seizure disorders

(Stephenson et al. 2004; Uldall et al. 2006). While channelopathies

often follow a dominant mode of inheritance (Koch et al. 1993),

recessive modes have been seen as well (Trip et al. 2008), and

several channel proteins are known to underlie severe seizure dis-

orders, such as KCNQ2 (Ohtahara syndrome) (Yamatogi and

Ohtahara 2002) and paralogs of SCN4A, such as SCN1A (Wolff et al.

2006), SCN2A (Kearney et al. 2001), and SCN9A (Singh et al. 2009).

In addition, the child has compound heterozygous missense mu-

tations in UNC13C, a gene known to result in an inability to learn

complex motor tasks in mouse knockouts (Augustin et al. 2001).

The male patient with complete paternal UPD of chromo-

some 1 had diverse clinical features, including skeletal defects,

immunological defects (IgG deficiency, impaired T-cell function),

as well as phenotypes shared with the mother—short attention

span and short stature. There were five variants in known Men-

delian disease genes (GJA8, ADCK3, LMNA, EFHC2, KAL1), none of

which is associated with phenotypes consistent with those in the

proband. The majority of rare, homozygous variants were present

on the UPD chromosome (11 on chr1 and three on chrX).

Discussion
The search for disease-causing variants is

a central task of modern genomics. Ad-

vances in sequencing technology have

greatly improved sequencing throughput

(Mardis 2008), yet the identification of

disease-causative variants is complicated

by genetic diversity among individuals of

our species (The 1000 Genomes Project

Consortium 2010). As a result, study de-

signs have evolved to narrow the field of

candidate variants. Trio-based family de-

signs (Evangelou et al. 2006) can sub-

stantially narrow the field of candidate

high-penetrance variants by leveraging

inheritance information in variant call-

ing. In addition to the power for family-

based studies to readily identify de novo

variants and compound heterozygosity,

and reduce population stratification in

association analysis, they can be used to

identify uniparental disomy.

Methods to detect UPD have evolved

with our ability to interrogate the genome.

Trio-based UPD calling has advantages

compared with proband-based calling as

the former can identify uniparentally

inherited genotypes directly and is sen-

sitive to heterodisomy, while the latter

relies on detection of large (typically

larger than 10 Mb) regions of homozygosity confined to a single

chromosome and is blind to heterodisomy. On the other hand,

this strategy of using informative genotypes as a signal for uni-

parental disomy can be polluted by hemizygous or erroneous

genotypes that mimic uniparental signatures. UPDio has unique

advantages compared with existing trio-based UPD detection

programs for mitigating the effect of genotype errors and hetero-

zygous deletions. First, genotype errors have the potential to

hypersegment UPD calling in SNPtrio and UPDtool, tools that

detect runs or blocks of UPD, but have little effect on disrupting

the per chromosome rate of informative genotypes, the metric

used by UPDio. Second, SNPtrio and UPDtool are vulnerable to

false isodisomy created by hemizygous regions in the proband,

while UPDio has an integrated CNV filter to avoid common CNV

and user-specified sample-specific CNV regions before the binomial

test is applied. Since deletions generate genotypic signatures

identical to isodisomy, this step is essential to prevent the un-

intentional ascription of deletions as UPD. With the availability of

tools to detect CNVs from SNP genotyping and exome data (Love

et al. 2011; Fromer et al. 2012; Li et al. 2012; P Vijayarangakannan,

T Fitzgerald, C Joyce, S McCarthy, ME Hurles, pers. comm.), our

software tool enables users to remove these erroneous signatures

from UPD analyses using data from a single platform, by providing

sample-specific CNVs in BED (Quinlan and Hall 2010) or VCF

format. In addition, the statistical test applied in UPDio in-

trinsically adjusts for differences in platform genotyping density,

which varies in orders of magnitude between exome data, SNP

data, and whole-genome data. Also, only UPDio outputs a measure

of statistical confidence, a P-value that can be calibrated by the user

to achieve the desired sensitivity and specificity. Only UPDio can

read single-sample and multi-sample VCF files, the modern ge-

Figure 6. DDD UPD P-value distributions. Distribution of the –log10 P-values for UPD detections from
different data sources, with or without CNV data. Presence of sample-specific CNV data increases the
proportion of extremely significant events and decreases the proportion of marginally significant events.
P-value minimum truncated to 1 3 10�100.
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notype file standard, and thus can be more easily assimilated as

a module into existing pipelines. While UPDtool was the fastest

method of the three tested, UPDio performs additional processing

to cleanse poor-quality genotypes and avoid copy number regions;

nevertheless, it completes UPD calling on high-density SNP trio

data in under 3 min, and is the least memory intensive of the three

methods for detecting UPD events. In fact, memory efficient iter-

ator functions enabled UPDio to process a whole-genome trio us-

ing less memory than either of the competing programs used to

process a SNP trio.

We compared the relative accuracy of the three trio-based

UPD calling software using each tool’s default parameter settings

on the same set of simulated data. We found marked differences in

the sensitivity and specificity of these three software tools. The

practical utility of SNPtrio is greatly hampered by its lack of spec-

ificity, whereas UPDtool exhibited very low sensitivity, was only

capable of detecting the very largest of simulated UPD events, and

would miss most small UPD events. In contrast, using default pa-

rameters, UPDio was sensitive and specific for simulated UPD

events at 1 Mb from SNP data and 10 Mb from exome data, with

broadly equivalent sensitivity to SNPtrio. There are several factors

that likely account for these dramatic differences in calling accu-

racy. Probably the most important factor is due to the need to

finely calibrate SNPtrio and UPDtool, which use statistical ap-

proaches that are more vulnerable than is UPDio to platform-

differences in genotype density and genotype error rates.

Unfortunately, unlike UPDio, SNPtrio and UPDtool do not offer

a convenient user-adjustable threshold of statistical threshold.

The sensitivity and resolution of UPD detection is inherently

determined by the density, distribution, and accuracy of geno-

typed sites. In our study, the sensitivity for detecting smaller UPD

events was lower for trios in exome data primarily because the

number of informative sites genotyped was (;103) fewer, al-

though other factors, such as less even distribution and slightly

higher genotyping error rate may have been contributory. Exome

genotyping accuracy could potentially be improved by multi-

sample calling, which would include explicit homozygous refer-

ence genotypes for all variants detected in one or more samples,

and UPDio is capable of processing multi-sample VCF files. How-

ever, the technical noise (median of zero apparently uniparental

genotypes per chromosome in SNP data, and a median of one

apparently uniparental genotype per chromosome in exome data)

is exceptionally low, allowing for detection sensitivity on either

platform to be 100% for whole-chromosomal UPD events and

sensitive for most simulated segmental events at the 1-Mb level in

SNP data and the 10-Mb size for exome data. This size is clinically

relevant as non-trio-based studies of UPD typically only investi-

gate potential UPD when regions of homozygosity exceed 10 Mb

(Conlin et al. 2010).

Smaller UPD events, such as those affecting 1 Mb in size, are

challenging to detect due to a paucity of informative genotypes.

For example, the SNP chip data contain on average only 14 in-

formative genotypes per megabase window. Still, with high-quality

genotypes, the occurrence by chance of 14 contiguous UPD-

characteristic genotypes is a very unlikely event, and the pre-

viously developed contiguous runs of informative genotypes

method may be marginally more sensitive than the proposed

method at detecting events at this size. However, the contiguous

runs method is also more likely to be sensitive to small runs of

UPD-mimicing genotypes occurring by chance across the whole

Figure 7. UPD example plot. A plot of QC-passing proband genotypes on each autosome. The position and color reflect zygosity (homozygous,
heterozygous) and informative state (biparental inheritance, maternal isodisomy, maternal heterodisomy or isodisomy, paternal isodisomy, paternal
heterodisomy or isodisomy). The figure displays each chromosome ideogram. Each chromosome has an x-axis (chromosome position) and y-axis (zy-
gosity, and informative event type). In this case, the UPD event for chromosome 2 is depicted with a mixture of dark-green points (maternal isodisomy)
and light-green points (maternal isodisomy or maternal heterodisomy). The zygosity row demonstrates homozygosity along the entirety of the chro-
mosome, reflecting the complete isodisomy.
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genome, lowering specificity. Moreover, smaller UPD events are

less likely to be pathogenic and are much more likely to be mosaic

(Kotzot 2008), implying that alternative UPD detection approaches,

based on B-allele frequency of proband genotypes, would be more

appropriate for segmental UPD events.

We implemented UPD detection on 1057 unique trios and

identified four probands with whole-chromosomal isodisomy, one

with whole-chromosomal heterodisomy, and one proband with

segmental uniparental isodisomy of 10 Mb. Using UPDio, all six

UPD events were easily called from both platforms yielding highly

significant P-values in both SNP and exome data. Given this finding

and the simulation results, this suggests that exome-based trio de-

signs are appropriate to detect UPD, without the requirement to run

SNP chips specifically for this purpose. Also interesting is the

conspicuous lack of detection of complete heterodisomy events

in this data set, which are invisible to proband-based inquiry

but detectable using this trio-based analysis. This suggests that

the prevalence of complete heterodisomy is indeed rare, although

larger cohorts of analyzed trio data will prove useful to substantiate

this conjecture. Heterodisomic events, by virtue of not homo-

zygosing rare functional variants, can only be pathogenic through

imprinting disorders.

The proportion of UPD events detected in the DDD project to

date represents a nearly 253 enrichment for UPD as compared

with what had been expected from prior population prevalence

estimates, and is highly significant (the P-value compared with

established estimates of one in 3500 is 9 3 10�7 [binomial test] and

compared with a proportion of six of 16,881 in the WTCCC is 2 3

10�5 [Fisher exact test]). There are several explanations that could

cause the high rate seen in our study: (1) a high false-positive rate

in UPD detection in DDD, (2) the estimation of UPD prevalence in

the population is an underestimate and the DDD study has higher

prevalence of benign UPD by chance alone, (3) some of the UPD

events are disease causing. There is over-whelming statistical evi-

dence of UPD in all six cases from two independent platforms,

suggesting that (1) is not the explanation. To address the question

of whether UPD prevalence in the population has been under-

estimated we attempted to empirically estimate the rate of UPD

using SNP genotyping data on unrelated individuals from the

Wellcome Trust Case Control Consortium. There are limitations to

this approach, mainly that it is indirect (we are only able to identify

UPD by observing single-chromosome large runs of homozygosity,

not directly from the inheritance patterns of individual geno-

types), and confounded by other causes of large runs of homozy-

gosity, such as identity by descent, identity by state, or loss of

heterozygosity. Notwithstanding these limitations, we found that

previous prevalence estimates about uniparental disomy in the

human population are compatible with our observations. There-

fore, the suggestion that some individuals with UPD in our study

may have UPD-related disorders warrants further investigation.

Thus, we interrogated the probands harboring these UPD

events for UPD-related diseases. In only one of these six individuals

does the UPD region encompass a known imprinting disorder re-

gion (Temple Syndrome, UPD14 Maternal). This child’s pheno-

types are consistent with the known manifestation of Temple

Syndrome; however, the child also has hearing impairment, which

may be explained by compound heterozygous variants in TECTA

found during exome variant analysis. We identified possible dis-

ease-causing variants for the other probands who had UPD events

and for whom exome sequence data were available. Similar to the

offspring of consanguineous unions, UPD chromosomes provided

a rich source of candidate recessive variants, since isodisomy can

promote parental heterozygosity to homozygosity. We note that

the complete isodisomy of chromosome 2 in one proband reflects

homozygosity of ;8% of the genome, which is a similar pro-

portion to that expected among offspring of first-cousin marriages

(1/16, ;6%).

Candidate recessive variants were identified for each pro-

band, although none is definitively pathogenic, these candidate

genes deserve further investigation. We note that the specific as-

certainment of patients in this study, whom are only recruited

once clinical genetics services have failed to obtain a diagnosis,

may bias against the discovery of UPD events that result in a well-

recognized imprinting or recessive disorders for which routine

diagnostic assays are available.

As sequencing technologies continue to increase the cost-

effectiveness of genome-wide sequencing data, our ability to in-

terrogate UPD will improve. The tool we developed can scale to

interrogation of whole-genome genotype data, as files are read

line-by-line without storing large data hashes, thus making effi-

cient use of memory. Although we note that UPD detection is

ultimately fundamentally limited to a resolution on the scale of

tens of kilobases by the density of informative genotype configu-

rations in the parents. Given the broad range of recessive and

imprinted phenotypes associated with UPD, its detection should

be a part of the genetic analysis for disease studies more broadly, as

it is a small, but important piece of the puzzle of pathogenic ge-

nomic variation.

Methods

Genotype segregation and statistical analysis
A site genotyped in parents and proband is considered ‘‘infor-
mative’’ if it is diagnostic for uniparental or biparental inheritance
(Table 1). Some genotype configurations supporting UPD are de-
finitive for isodisomy (uniparental–isodisomic, UI), while others
could reflect isodisomy or heterodisomy (uniparental–ambiguous,
UA). These configurations can be further classified by maternal or
paternal inheritance, reflecting a total of four uniparentally
inherited signatures: UI_M, UI_P, UA_M, UA_P. Genotype config-
urations may also be supportive only of eudisomy, i.e., normal
biparental inheritance (BPI).

The number of informative genotypes arising from maternal
or paternal origin were counted for each chromosome and assessed
for statistical significance. A binomial test was used to compare the
proportion of genotypes supporting each of the four types of UPD
on each chromosome to the genome-wide average proportion for
that UPD type. Those chromosomes harboring an enrichment of
UPD-type proportions are ‘‘called’’ as UPD if they were statistically
unlikely. As a threshold of statistical significance we adjusted an
initial 0.05 alpha using a Bonferroni correction to account for 88
tests (four different types of UPD event possible on each of 22
autosomes), yielding a P-value cutoff of 0.000568, which we
demonstrated through simulations (see section ‘‘Simulations’’) was
a sensitive and specific detection calibration.

Deciphering Developmental Disorders sample recruitment

The Deciphering Developmental Disorders (DDD) project is a
parent–offspring trio study. Its main aim is to identify the disease-
causing variants in 12,000 children with undiagnosed severe
developmental conditions. These children are referred to a clinical
geneticist at one of 24 regional genetics services in the UK and
Ireland where recruitment includes recording of detailed clinical
information though the DECIPHER database (Firth et al. 2009) and
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collection of samples for DNA analyses. Proband DNA and parental
DNA are genotyped genome-wide using SNP-chips and/or exome
sequencing, and copy-number profiled in the proband using array
Comparative Genomic Hybridization (aCGH). A total of 1057
unique trios were analyzed in this study, for which all probands
had aCGH CNV data available and the vast majority had genome-
wide genotype data available both from SNP chips and exome
sequencing.

Exome processing

Exome sequencing genotypes were available for 937 (of 1057; 89%
of) trios. Exome capture was performed with the Agilent SureSelect
v.3 50-Mb baits and augmented with 5 Mb of custom regulatory
sequences. Sequencing was performed with the Illumina HiSeq
2000 platform to greater than 503 mean coverage using paired-
end 75-bp read-length sequence reads. Alignment to the genome
reference GRCh37, version hs37d, used BWA (Li and Durbin 2009)
version 0.5.9. Picard tools version 1.46 (McKenna et al. 2010) was
used to mark duplicates, and GATK version 1.1-20 was used to re-
align indels and recalibrate indel quality scores. Single sample
variant calling used SAMtools (Li et al. 2009) and GATK for single
nucleotide variants (SNVs), and SAMtools and Dindel (Albers et al.
2011) for insertion–deletions (indels). Quality control filters (ge-
notype quality <30.0, homopolymer runs >5, variant quality by
depth <5.0, read depth <4 or >1200, strand bias >10.0) were ap-
plied. Only biallelic, autosomal SNVs and indels passing all filters
were considered for analysis.

The genotype-calling pipeline we used is based on single-
sample calling and creates single-sample VCF files, which do not
contain positions that are homozygous for the reference base.
To include these homozygous positions (required for deducting
inheritance patterns), we made the assumption that common
polymorphisms in well-covered exome-targeted regions were ho-
mozygous for the reference allele if no alternate allele was geno-
typed at that position. Accordingly, we explicitly annotated
homozygous-reference genotypes to positions in our VCF files if
the position was contained within the inner 80% of highly covered
(30 median average sequence read depth) exome-targeted regions
and the minor allele frequency (The 1000 Genomes Project Con-
sortium 2010) of the variant was between 0.05 and 0.95. We en-
sured that this procedure maintained high genotyping calling
accuracy by demonstrating high genotype dosage correlation (r =

0.9958, Pearson correlation, two-sided P-value < 2.2 3 10�16)
among 1,369,049 QC-passed sites from 50 samples genotyped by
SNP and exome platforms. Among the 937 trios analyzed by
exome, the per-trio average of genotype positions in which all
members of the trio were jointly genotyped was 54,394 positions, of
which 3619, on average, were informative. Thus, the average den-
sity of informative exome sites per megabase was 1.2 (3619 * 1 3

106/3 3 109). We measured the noise floor of genotyping errors
and calculated the median number of the four categories of
uniparental informative event types, which was consistently one
per chromosome. During UPD detection from SNP data, we
detected a proband with a UPD event for which no exome data
had been generated; exome analysis was performed for this trio
post hoc to enable confirmatory validation of this event from
exome data.

SNP processing

Genome-wide SNP array genotypes were available for 1041 trios.
The SNP typing platform used was a custom genotyping chip, us-
ing a backbone of 733,059 HumanOmniExpress-12v1_A-b37 po-
sitions and the addition of 94,840 selected positions. Genotyping

was performed using Illuminus (Teo et al. 2007), recorded in PLINK
format, and converted to VCF format using plinkseq version 0.08.
A set of 695,829 autosomal SNPs was used in this analysis. Samples
were rejected on the basis of a high proportion of missing geno-
types, but not due to outlying levels of heterozygosity rate, to
prevent exclusion of samples that may contain UPD chromo-
somes. Among the 1041 trios available, 1035 SNP trios passed
sample QC and were analyzed in this study. After UPD detection
was performed in exome data, it was determined that one of these
QC-failed samples in the SNP data was the father of a proband with
a UPD event; this trio was processed post hoc to enable confir-
matory validation of the UPD event in the SNP data. An average of
439,205 variant sites were genotyped per trio, of which 42,490 on
average, were informative. Thus, the average density of informative
SNP genotypes across one megabase was 14.2 (42,490 * 1 3 106/3 3

109). The median number of the four categories of uniparental in-
formative event types was consistently zero per chromosome.

Avoiding positions in copy number variant regions

The diploid human genome can vary locally in copy number,
through deletions and duplications of chromosomal segments.
The majority of genotype callers, including those used in this
study, are ignorant to changes in copy number, i.e., they assume
diploidy, and interpret hemizygosity as diploid homozygosity. For
the purpose of detecting uniparental disomy, this can be prob-
lematic because single-copy loci, which reflect (uniparental)
monosomy by definition, could be spuriously identified as unipa-
rental disomy. Therefore, we incorporated into the software tool
a copy number filter that avoids genotyped sites present in or near
(within 10 kb) deletions common in the population or present in
the sample (using user-specified CNV data encoded in VCF or tab-
separated-value format).

The list of common deletions was acquired by selecting copy
number variable regions of greater than one percent frequency
from a composite of multiple studies (Barnes et al. 2008; Conrad
et al. 2010). Sample-specific CNV data were generated using a
custom, exome-focused, 2,000,000 probe Agilent aCGH array.
CNVs were called using CNsolidate, an in-house algorithm that
integrates 12 change-point detection algorithms (T Fitzpatrick,
P Vijayarangakannan, N Carter, M Hurles, in prep.). CNV data
were available for all 1057 probands studied.

Simulation testing

We generated a variety of data sets to evaluate the detection
accuracy of UPDio. In addition, we compared the detection ac-
curacy of UPDio with two other trio-based UPD detection
methods.

To prepare sensitivity evaluations we simulated the presence
of a UPD event by introducing genotypes consistent with unipa-
rental maternal inheritance into a proband VCF. Then, we imple-
mented the three methods using each tool’s default parameters to
detect maternal UPD events in a trio consisting of the original
parents and the modified proband. For simulating heterodisomy,
proband genotypes were substituted for both alleles of maternal
genotypes in the selected regions. For simulating isodisomy, pro-
band genotypes were substituted for homozygosity of one of the
maternal alleles, chosen at random. We simulated complete UPD
as well as segmental UPD at various sizes: 1, 2, 5, 10, and 20 Mb.
Simulated regions of the required length were randomly placed
across autosomes and selected unless the region overhung the edge
of the chromosome or >25% of its length overlapped known
UCSC-defined ‘‘gap’’ regions. For each permutation of UPD size,
class, and platform, we simulated 100 trio data sets. Sensitivity was
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defined as the proportion of these trios with detection of the
simulated maternal event by the algorithm.

For assessing specificity, we selected empirical genotype SNP
and exome data from trios in which the probands had no obvious
UPD events at Bonferroni-corrected P-values, nor contained any
large (longer than 10 Mb) regions of homozygosity. By doing so, we
reasoned that only genotyping errors and rare undetected CNVs
would lead to false UPD detections. Specificity was then defined as
the proportion of trios lacking any maternal UPD.

We used the procedure described above to calculate UPDio
sensitivity and specificity at various P-value stringencies to con-
struct receiver operator characteristic (ROC; true positive vs.
1—false positive rate) curves. In addition, we calculated the sen-
sitivity and specificity of all three methods using default para-
meters. For UPDio, we used a Bonferroni-corrected P-value thresh-
old. For UPDtool, we used the following defaults settings: min_mes
(300), window size (10 kb), min_mes_fraction (1%), min_hetero
(90%), min_iso (85%), min_mes_paternal (80%), and max_mes_
paternal (20%). Although SNPtrio is supported as a webtool, the
investigators kindly provided us with the source code, which we
adapted to run locally. The webtool outputs and plots all events,
regardless of P-value significance, and we likewise did not impose
a threshold when running this tool.

Identifying candidate variants

High-quality exome data were available for five of six probands
with detected UPD events and these samples were analyzed for
several sources of candidate variants: inherited single nucleotide
substitutions and indels; inherited compound heterozygotes; de
novo substitutions and indels; and copy number variants. Ho-
mozygous substitions and indels and heterozygous de novo vari-
ants were analyzed if they were rare (below 0.5% frequency in 1000
Genomes [The 1000 Genomes Project Consortium 2010] and be-
low 1.0% internal DDD-frequency), and in a functional or loss-of
functional Variant Effect Predictor (VEP) version 2.6 category
(splice donor variant, splice acceptor variant, stop gained, frame-
shift variant, stop lost, initiator codon variant, inframe insertion,
inframe deletion, missense variant). The subset of CNVs that were
on the UPD chromosome, were homozygous deletions, at least
5 kb, and overlapped at least one gene, were selected for scrutinized
investigation. De novo variants were detected by DeNovoGear
(Ramu et al. 2013), subjected to stringent algorithmic filtering
and experimental validation. We used an in-house algorithmic
approach to leverage inheritance information from parents to
improve curation of proband genotypes and to detect compound
heterozygous variants. Since our pipeline uses inheritance in-
formation to stringently curate variant detection, regions inheri-
ted from a single parent produce genotypes that fail these filters;
therefore, variant detection on the UPD chromosome required
tailored retention. A panel of pathogenicity scores was obtained for
filtered variants, including Genomic Evolutionary Rate Profiling
(GERP) (Cooper et al. 2005), Polymorphism Phenotyping (Poly-
Phen) (Ramensky et al. 2002), Sorting Intolerant From Tolerant
(SIFT) (Ng and Henikoff 2003) scores, and Haploinsufficiency
Score (Huang et al. 2010). All variants in the above categories were
cataloged (see Supplemental Table 1). Additionally, variants were
prioritized if they resided in genes associated with Mendelian
disease; these genes were identified as being included in an in-
ternal database of congenital disease genes, ‘‘Developmental Dis-
ease Genes 2 Phenotype’’ (DDG2P), or present as ‘‘DM’’ variants
(not ‘‘DM?’’ variants) in the Human Genome Mutation Database
(HGMD) (Stenson et al. 2014). Variants were considered candidate
variants if mutations in these genes were known to result in phe-
notypes consistent with the patient’s phenotype profile.

Prevalence data

The Wellcome Trust Case Control Consortium (WTCCC1; Ac-
knowledgments) is a group of research centers in the UK that
studies the genetic basis for common diseases. The WTCCC1 was
a study composed of 14,000 individuals having one of seven dis-
eases, and an additional 3000 individuals in control groups. The
samples were genotyped using the Affymetrix 500k chip. We uti-
lized a ‘‘missing genotype’’ quality-control metric by removing
samples with >10% missing genotypes. Since isodisomy is expec-
ted to affect the average rate of genomic heterozygosity, we did not
filter samples on abnormal rates of heterozygosity. A total of
16,881 individuals were included for analysis. We used PLINK
(v1.07) (Purcell et al. 2007) to calculate runs of homozygosity that
contained at least 50 homozygous positions and spanned at least
500 kb in size. We subsequently used custom Perl scripts to select
samples with large (larger that 10 Mb) stretches of homozygosity
and identify those samples containing large regions of homozy-
gosity affecting only one chromosome.

Computational performance

The UPD calling method uses iterators to scan VCFs line by line,
resulting in a low memory footprint (30 Mb of RAM per trio) re-
gardless of genotyping density. The calling speed is reasonably
quick (3 min for a SNP trio), and scales linearly with number of
probes. Each trio can be run independently; therefore, the number
of trios that can be analyzed simultaneously is only limited by the
capacity of the data center used to drive the tool. The UPD code was
written mainly in Perl v5.10.0. All required Perl modules are
available on CPAN. A plotting tool is included that allows the vi-
sual display of aberrant genotypes and zygosity of the proband.
Plotting requires the module ‘quantsmooth’ (Eilers and de Menezes
2005) available on CRAN.

Software availability

Software for UPD detection in trios, UPDio, is freely available at
https://github.com/findingdan/UPDio. Instructions and prepro-
cessing scripts are included to enable users to prepare VCF input
files from custom exome capture designs.
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