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Pristionchus pacificus is a nematode model organism whose genome has recently been sequenced. To refine the genome
annotation we performed transcriptome and proteome analysis and gathered comprehensive experimental information
on gene expression. Transcriptome analysis on a 454 Life Sciences (Roche) FLX platform generated >700,000 expressed
sequence tags (ESTs) from two normalized EST libraries, whereas proteome analysis on an LTQ-Orbitrap mass spec-
trometer detected >27,000 nonredundant peptide sequences from more than 4000 proteins at sub-parts-per-million
(ppm) mass accuracy and a false discovery rate of <1%. Retraining of the SNAP gene prediction algorithm using the gene
expression data led to a decrease in the number of previously predicted protein-coding genes from 29,000 to 24,000 and
refinement of numerous gene models. The P. pacificus proteome contains a high proportion of small proteins with no known
homologs in other species (‘‘pioneer’’ proteins). Some of these proteins appear to be products of highly homologous genes,
pointing to their common origin. We show that >50% of all pioneer genes are transcribed under standard culture con-
ditions and that pioneer proteins significantly contribute to a unimodal distribution of predicted protein sizes in P. pacificus,
which has an unusually low median size of 240 amino acids (26.8 kDa). In contrast, the predicted proteome of Caenorhabditis
elegans follows a distinct bimodal protein size distribution, with significant functional differences between small and large
protein populations. Combined, these results provide the first catalog of the expressed genome of P. pacificus, refinement of
its genome annotation, and the first comparison of related nematode models at the proteome level.

[Supplemental material is available online at http://www.genome.org. The 454 Life Sciences (Roche) sequencing data from
this study have been submitted to the NCBI Short Read Archive (http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi) under
accession no. SRA010772. Sequences from targeted RT-PCR reactions have been submitted to GenBank (http://
www.ncbi.nlm.nih.gov/Genbank/) (accession numbers provided in Supplemental Tables 4 and 6). Mass spectrometry data
have been uploaded to the Proteome Commons Tranche repository (https://proteomecommons.org/tranche/).]

Genome sequence data are useful only when genes are correctly

annotated and information on their genomic localization, ex-

pression, and function is available. Comprehensive annotation of

protein-coding genes is largely done in silico and is error-prone,

especially when performed without experimental information

on gene expression. Recent development of rapid techniques for

nucleic acid sequencing has enabled comprehensive detection of

transcribed genomic regions and use of this information in ge-

nome annotation. Especially, the platforms that implement high-

throughput pyrosequencing, such as 454 Life Sciences (Roche)

FLX, are powerful tools for genome annotation. This platform

produces fewer reads (400 K–500 K) than other next-generation

sequencers. However, these reads are on average longer (>200 bp

vs. ;50 bp) and are essential for an accurate reconstruction of any

metazoan transcriptome. This platform has recently been used in

the annotation of eukaryotic and prokaryotic genomes (Shin et al.

2008; Vera et al. 2008).

In addition to the evidence of gene expression at transcrip-

tion level, mass spectrometry (MS)-based proteomics is increas-

ingly used for experimental identification of translated genomic

sequence. In a ‘‘proteogenomics’’ approach (Ansong et al. 2008;

Gupta et al. 2008), the complete protein extract of an organism

is digested into peptides, which are then mass-measured and

fragmented in a mass spectrometer. Mass spectra are typically

searched against a database containing a six-frame translation of

the raw genome assembly and can therefore identify new, unpre-

dicted open reading frames and refine existing gene models. Pio-

neered already in 1995 (Yates et al. 1995), proteogenomics has

since been used to provide experimental evidence for gene ex-

pression in various model organisms, such as Arabidopsis thaliana

(Baerenfaller et al. 2008), Plasmodium yoelii yoelii (Carlton et al.

2002), Toxoplasma gondii (Xia et al. 2008), and Homo sapiens

(Fermin et al. 2006). A recent study of Caenorhabditis elegans iden-

tified more than 6000 gene products by mass spectrometry and

refined many gene models even in this well-studied organism

(Merrihew et al. 2008).

Pristionchus pacificus is a nematode that has been established

as a model organism in evolutionary developmental biology

(Sommer et al. 1996; Hong and Sommer 2006). It shares many

advantageous features with C. elegans, in that it can be grown easily

under laboratory conditions by feeding on Escherichia coli OP 50, it

has a short generation time (4 d at 20°C), and it is a self-fertilizing
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hermaphrodite, which makes it amenable to forward and reverse

genetics. The genome of P. pacificus was recently sequenced in

a whole-genome shotgun approach with 10-fold coverage. The

calculated genome size is 169 megabases (Mb) with a total num-

ber of 29,000 predicted protein-coding genes and a minimal gene

content of 23,500 genes, as inferred from RT-PCR analyses (Diet-

erich et al. 2008). Many of these genes share no sequence similarity

with already known genes in other nematodes and different phyla

(‘‘pioneer’’ genes). In comparison, the genome of C. elegans is

completely assembled, consisting of a 100-Mb genome with 20,060

encoding genes (The C. elegans Sequencing Consortium 1998;

Dieterich and Sommer 2009). P. pacificus and C. elegans belong to the

same phylogenetic clade (Fig. 1A), which provides an ideal evolu-

tionary distance for comparison of their proteome structures.

Here, we perform a comprehensive analysis of the P. pacificus

transcriptome and proteome using 454 FLX sequencing and LTQ-

Orbitrap mass spectrometry, respectively. We search high-accuracy

MS data against the predicted proteome and six-frame translation

of the raw genomic assembly. We identify more than 700,000

expressed sequence tags (ESTs) and 27,000 nonredundant peptide

sequences and use these data to refine the genome annotation and

compare the predicted and detected proteome of P. pacificus with

that of the other nematode models. We show that >50% of all pi-

oneer genes are transcribed and that pioneer proteins significantly

contribute to the unimodal distribution of predicted protein sizes in

P. pacificus. Finally, we observe that the predicted proteome of C.

elegans follows a distinct bimodal distribution, with significant

functional differences between small and large protein populations.

Results
The aim of this study was to provide the first experimental catalog

of the expressed genome of P. pacificus and to use this information

for further refinement of the genome annotation. To obtain

enhanced coverage of the expressed genome, we used two com-

plementary approaches: transcriptome sequencing and high-

accuracy MS proteomics. For the transcriptome analysis, total RNA

was isolated from a mixed culture (containing all developmental

stages, including eggs) and dauer stage culture of P. pacificus and

sequenced on the 454 Life Sciences (Roche) FLX pyrosequencing

platform.

For the proteome analysis, protein extracts were isolated from

a mixed culture and second juvenile (J2) stage culture of P. pacificus.

In all proteomics experiments, the protein extracts were divided

into soluble and insoluble fractions, separated by 1D SDS-PAGE,

and in-gel digested by trypsin. To achieve better analytical depth,

soluble protein fractions were additionally digested in-solution by

trypsin, and the resulting peptide mixtures were separated by

isoelectric focusing. All peptide mixtures were subjected to nano-

LC-MS/MS analysis on an LTQ-Orbitrap mass spectrometer. The

MS data were processed and prepared for database search using the

MaxQuant software suite. All MS/MS spectra were searched using

the Mascot search engine against a decoy database consisting of

the predicted P. pacificus proteome (based on old assembly;

Dieterich et al. 2008), E. coli proteome, common laboratory con-

taminant proteins, and a six-frame translation of the P. pacificus

raw genomic assembly. The complete workflow is summarized in

Figure 1B.

Gene expression analysis of P. pacificus

In the 454 FLX transcriptome measurement, a sequencing run of

the normalized mixed stage cDNA library yielded 334,441 ESTs

that mapped uniquely to the genome top 965 contigs and had

a median read length of 240 bp. In the normalized dauer stage li-

brary, 376,796 ESTs mapped to the top 965 contigs and had a me-

dian read length of 250 bp. In total, 711,237 ESTs were detected in

both analyzed developmental stages.

In the proteome measurement, MS data pre-processing using

MaxQuant software resulted in 1,190,811 spectra that were sub-

mitted to the Mascot search engine. Database searching led to the

identification of 27,561 nonredundant peptide sequences at an

estimated false discovery rate (FDR) of 0.2% at the peptide level. Of

these, 22,208 were detected in the mixed culture and 17,412 in the

J2 stage (Supplemental Table 1). The applied biochemical workflow

enabled enhanced proteome coverage, as only 7989 (29%) pep-

tides were identified in all three approaches (Fig. 2A). Robust

recalibration algorithms integrated in the MaxQuant software led

to the overall average absolute peptide mass deviation of 0.345

parts per million (ppm) with a standard deviation of 0.434 ppm

and enabled the use of narrow individualized precursor ion mass

tolerances in the database search (Fig. 2B; Cox and Mann 2008) .

Detected peptides were assembled into proteins and protein

groups by MaxQuant software (see Methods). Of the detected

protein groups, 3451 mapped to the P. pacificus predicted proteome

(old assembly), 266 to the E. coli proteome, 50 to reversed se-

quences, 30 to contaminants included in the database, and the

remainder to the raw genomic translation. The FDR at the protein

Figure 1. Phylogeny of Pristionchus pacificus and proteogenomics
workflow employed in this study. (A) Phylogenetic relationship of nema-
todes with sequenced genomes. The genome sizes (megabases) are
written in brackets. The clades are depicted in the tree. (B) P. pacificus gene
expression was assessed at the levels of transcription and translation and
in three different developmental stages: dauer, J2, and ‘‘mixed stage’’
(containing all developmental stages, including eggs). In proteomics ap-
proach, several workflows for protein extraction and separation were
used. ESTs detected with 454 pyrosequencing and peptide sequences
detected with LTQ-Orbitrap mass spectrometry were used for genome
reannotation.
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group level was 1%. A list of all proteins detected by searching the

six-frame translation database is available in Supplemental Table 2.

Refinement of P. pacificus gene predictions

We used the transcriptomics and proteomics data to refine the

gene predictions in the P. pacificus genome sequence. In the tran-

scriptome measurement, of a total of 711,237 detected ESTs,

223,849 ESTs corresponded to genomic regions that were not

predicted by the old gene model (Dieterich et al. 2008): 96,754

ESTs in the mixed culture and 127,095 ESTs in the dauer stage.

In the proteomics measurement, of 27,561 detected nonredun-

dant peptide sequences, 2783 nonredundant peptides exclusively

mapped to the translated genomic sequence, providing direct ex-

pression evidence for 1537 genomic regions (contigs and their

corresponding reading frames) that were previously not predicted

as protein-coding. The median length of genomic peptide hits was

12 amino acids (Fig. 2C), and their posterior error probability (PEP)

distribution was distinctly different than that of highest-scoring

reverse database hits (Fig. 2D), confirming the high reliability of

the data set. To gain additional information on the splice junc-

tions, MS/MS peak lists derived by MaxQuant software were sub-

mitted to the PepSplice search engine, which uses raw DNA

sequence information to calculate peptides with gaps corre-

sponding to potential GT–AG introns (Roos et al. 2007). The

PepSplice database search resulted in identification of 541 spliced

peptide sequences (Supplemental Table 3) that enabled identifi-

cation of exact exon/intron boundaries in corresponding genes.

We used the information on the newly detected loci

from both approaches to retrain the SNAP prediction algorithm

(Dieterich and Sommer 2009), previously used for genome anno-

tation of P. pacificus (Dieterich et al. 2008), and employed it to

reannotation of gene predictions on the raw genome assembly.

The genome reannotation led to a decrease in the number of pre-

dicted protein-coding genes from 29,424 (as reported at http://

www.pristionchus.org), to 24,231, mainly through connection of

Figure 2. Overview of the proteomics results. (A) Application of complementary biochemical workflows for protein extraction and peptide separation
led to enhanced proteome coverage. (sol) Soluble fraction; (pel) pellet. (B) Peptides were detected with a mean absolute mass deviation of 0.345 ppm. (C )
Peptide sequences that mapped to the genome translation (‘‘genomic peptides’’) had a median size of 12 amino acids. (D) Distribution of posterior error
probabilities (PEP) was markedly different in the genomic and reversed peptide sequences.
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neighboring coding regions. Consequently, 3263 old gene models

were not contained in the genome reannotation, 1848 new gene

models (7736 exons) have been identified, and 11,313 existing

gene models were extended (Fig. 3). The new gene prediction is

available at http://www.pristionchus.org.

Although our experiments were not designed to perform

a direct comparison of the transcriptomics and proteomics, our

study provides insights into the main contributions of the

two platforms to genome reannotation. Of 1848 new gene mod-

els, only 73 were covered by peptides, demonstrating the superior

genome coverage of the transcriptomics platform and pointing to the

gene model refinement—rather than gene discovery—as the main

contribution of the proteomics platform. Indeed, <25% of peptides

that mapped to translated genomic sequence were in the inter-

genic regions of the old gene model, whereas the majority were in

the intragenic regions (i.e., in the intron sequences), therefore

Figure 3. Genome reannotation resulted in new gene predictions and new gene models. (A) Example of a new gene model. New gene model
‘‘Contig126-snap.64’’ contains the old model ‘‘Contig126-snap.71’’. (B) Example of a new gene prediction. The gene model ‘‘Contig125-snap.27’’
appeared only after retraining of the SNAP prediction algorithm with gene expression data.
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exclusively affecting the existing gene

models. In addition, proteomics signifi-

cantly contributed to determination of

exon–exon splice junctions.

For independent confirmation of

expression of newly predicted genes, we

chose 99 candidates and amplified them

with RT-PCR on cDNA from mixed-stage

animals. Of analyzed transcripts, 60 could

be amplified and sequenced, confirming

their expression (Supplemental Table 4).

Catalog of detected P. pacificus proteins

The refinement of the P. pacificus genome

using transcriptomics and proteomics

data led to its most comprehensive and

accurate annotation to date. To derive a

comprehensive catalog of detected P.

pacificus proteins, we used the refined ge-

nome database to create the corresponding

decoy protein database and search our

mass spectrometry data against it. Resub-

mission of 1,190,811 spectra to the Mascot

search engine resulted in identification of

32,126 nonredundant peptide sequences

that mapped to 4029 P. pacificus protein

groups at FDR 1% (Supplemental Table 5).

To gain insight into the distribution of

functional protein classes among detected

proteins, we used the Blast2GO software to

perform BLAST searches of detected pro-

tein sequences against the complete

nrNCBI database and to extract the Gene

Ontology (GO) terms. The GO analysis of

the detected P. pacificus proteins revealed

overrepresentation of cytosolic and de-

velopmental proteins, and underrepre-

sentation of membrane proteins (Sup-

plemental Fig. 1). The distribution of GO

terms compared favorably with the recent

proteomics analysis of C. elegans (Schrimpf

et al. 2009) and demonstrated a sampling

of similar protein classes in P. pacificus de-

spite the more comprehensive proteome

coverage in the C. elegans study.

Features of the predicted P. pacificus proteome

In silico translation of the predicted P. pacificus protein-coding

genes showed an unusually low median predicted protein size of

240 amino acids (26.8 kDa) (Fig. 4A). BLAST analysis of the pre-

dicted proteome against the whole nrNCBI database did not

retrieve any significant hits (E < 1 3 10�3) for 10,258 (42.3%)

predicted proteins. We refer to them as ‘‘pioneer’’ proteins.

To gain insights into this group of proteins, we created a data-

base consisting only of pioneer proteins and analyzed their features

separately from the complete predicted proteome. Interestingly,

the pioneer proteins are very short, with a median protein size

of 143 amino acids (16 kDa). Their removal from the predicted

proteome resulted in a significant increase in median size of the

remaining proteins, from 240 amino acids (26.8 kDa) to 330 amino

acids (36.9 kDa) (Fig. 4A), a value very close to the median size

of proteins detected by MS (358 amino acids or 40 kDa). This leads

to the conclusion that a majority of pioneer genes are not trans-

lated under tested conditions (environmental and/or develop-

mental). Indeed, out of 4029 P. pacificus protein groups detected

by MS, only 435 (10.8%) were products of pioneer genes. The

search of unidentified MS spectra against a decoy database con-

sisting only of pioneer proteins did not lead to significantly better

coverage (data not shown). However, the coverage of pioneer

genes was greater in the transcriptome analysis, where 5224

(51%) were detected to be expressed. To verify expression of pi-

oneer genes we performed developmental stage-specific RT-PCR

experiments. Out of 86 randomly chosen pioneer genes detected

by MS, 56 could be amplified from mixed-stage cDNA and se-

quenced. Of this 56 transcripts, 31 showed different levels of

expression in the tested second to fourth juvenile (J2–J4) stages,

showing that at least some of the pioneer proteins may be

Figure 4. Features of the P. pacificus predicted proteome. (A) Protein size distribution shows that the
pioneer proteins are mainly responsible for the unusually low median protein size in P. pacificus. (B)
BLAST results of the pioneer proteins against themselves show presence of highly homologous proteins
that may have a common origin.
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functionally relevant in different developmental stages (Supple-

mental Table 6).

To gain further insights into primary sequence characteristics

and origin of pioneer proteins, we performed a stringent BLAST

analysis (E < 1 3 10�20, bit score > 90) of every entry in the pioneer

protein database against the whole database. Despite the stringent

criteria, 2086 entries (20%) returned multiple (1–85) BLAST hits,

pointing to the existence of close structural homologs among

pioneer proteins (Fig. 4B). Indeed, the first genome draft of

P. pacificus has already revealed that ;30% of the pioneer genes

could be grouped into distinct protein families (Dieterich et al.

2008). We observe that some of the structurally related pioneer

proteins reside on the same translated contigs, reflecting the prox-

imity of their corresponding genes in the genome. Together, these

data point to a likely common origin of part of the pioneer genes.

Comparison of the predicted P. pacificus proteome
with proteomes of nematode models

We used the reannotated genome as a starting point for compari-

son of the predicted proteome of P. pacificus with three published

nematode proteomes: C. elegans (The C. elegans Sequencing Con-

sortium 1998), C. briggsae (Stein et al. 2003), and Brugia malayi

(Ghedin et al. 2007). Surprisingly, the predicted protein sizes fol-

lowed a unimodal distribution in P. pacificus and B. malayi and

a distinct bimodal distribution in C. elegans and C. briggsae

(Fig. 5A). To test whether this was a consequence of different

qualities of gene annotations, we extended this comparison to

three additional members of the Caenorhabditis genus: C. remanei,

C. brenneri, and C. japonica, whose genome assemblies are publicly

available (http://www.wormbase.org/), but are not yet peer-

reviewed. These three organisms also showed distinct distributions

of protein sizes, with C. japonica matching the unimodal protein

size distribution and C. remanei and C. brenneri matching the bi-

modal distribution (Supplemental Fig. 2A,B). To assess the func-

tional relevance of this observation, we performed GO analysis of

the predicted P. pacificus and C. elegans proteomes. Whereas the GO

analysis of the two proteomes showed a very similar overall dis-

tribution of GO classes (Supplemental Fig. 3), the GO analysis

applied separately to the small and large protein populations in

C. elegans pointed to a significant functional relevance (Fig. 5B).

The short protein population was enriched in functions related to

nucleosome assembly, translation, and development, while the

long protein population was enriched in functions related to

protein phosphorylation, signal transduction, and ion transport.

Notably, protein functions (GO terms) enriched in one tested data

set were depleted in the other, pointing to the functional com-

plementarity of the two protein populations.

Discussion
In this study, we performed a comprehensive analysis of gene ex-

pression in P. pacificus with the goals of (1) genome refinement, (2)

in-depth analysis of the detectable proteome, and (3) comparative

predicted proteome analysis of the nematode model organisms. To

achieve optimal gene expression coverage, we performed tran-

scriptome and proteome analyses of P. pacificus cultures from

different developmental stages, covering the mixed population,

dauer, and J2 stages. By sequencing ESTs we achieved compre-

hensive coverage of the transcribed genomic regions and com-

plemented it with information on the translated genomic regions

from the proteomics experiment. Both technological platforms

used in this study—454 FLX nucleic acid pyrosequencing and LTQ-

Orbitrap mass spectrometry—represent the state of the art in the

fields of transcriptomics and proteomics, respectively. The use of

the 454 platform in this study enabled acquisition of one of the

most comprehensive collection of ESTs so far used for genome

refinement. In addition, the use of LTQ-Orbitrap MS resulted in

one of the most accurate proteogenomics data sets to date, both in

terms of mass accuracy and FDR (0.2%). We note that in this study

the MS/MS spectra were recorded in the low-resolution linear ion

trap analyzer, whereas the MS spectra were recorded in the high-

resolution Orbitrap mass analyzer. This was needed to achieve

a high speed of MS/MS acquisition at high precursor ion mass ac-

curacy, both of which are crucial in proteogenomics. One of the

challenges in the use of mass spectrometry in proteogenomics

applications is the use of six-frame translation protein databases

that result in the increase of search space and decrease in search

specificity. Although high mass accuracy has an obvious potential

to resolve this problem, the proteome complexity and high dy-

namic range of gene expression have so far made fast-scanning and

low-accuracy mass spectrometers almost exclusively used in pro-

teogenomics applications. While such instrumentation ensures in-

depth proteome coverage, it requires the use of wide mass toler-

ance windows (up to 4 Da) during database search. In this study,

the sub-ppm measurement mass accuracy of precursor ions en-

abled the use of narrow initial mass tolerance window during da-

tabase search (7 ppm or 0.007 Da at m/z = 1000), and even higher

tolerances for peptide acceptance (Cox and Mann 2008), thereby

significantly increasing search specificity and reducing the FDR.

This is especially important when searching the peptide mass

spectra against the translation of the complete genome assembly as

>80% of entries present nonsense protein sequences (e.g., wrong

reading frames).

The refined P. pacificus gene predictions provided a unique

opportunity to study its proteome features and compare them with

C. elegans, a related and well-studied nematode model. C. elegans

was recently a subject of a comprehensive proteogenomics study,

in which 245 novel genes were identified and 151 existing gene

models were modified (Merrihew et al. 2008). The drastically

higher number of newly predicted and modified P. pacificus gene

models in our study is caused in part by using a transcriptomics

platform for genome reannotation, but also reflects more com-

prehensive existing genome annotation of C. elegans.

A distinct feature of the P. pacificus proteome is the presence of

short proteins with no apparent homologs in current protein

databases such as nrNCBI (‘‘pioneer’’ proteins). A high proportion

of genes without any known homologs was previously reported

in the P. pacificus genome (Dieterich et al. 2008), but their ex-

pression was never demonstrated. Here, we show that at least

a portion of these genes is expressed under tested conditions. Al-

though only ;10% of predicted pioneer proteins were detected by

MS, their coverage was higher in the transcriptome data set, where

>50% were detected. At present, it is not clear whether this dis-

crepancy is due to better transcriptome coverage, impaired trans-

lation, or low abundance (and therefore undersampling) of this

class of proteins. The RT-PCR data showed that at least part of the

pioneer genes show stage-specific expression, pointing to their

potential roles in development. Interestingly, >20% of the pioneer

proteins show similarity in primary structure and may therefore

have a common origin. Although these data show that a fraction of

pioneer proteins are synthesized and may be functional, their ex-

act function and origin remain to be elucidated.
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An interesting aspect that arose from the comparison of

P. pacificus and C. elegans proteomes is the bimodality of protein

size distribution in the C. elegans proteome. To our knowledge,

this is the first reported example of a bimodal distribution of pro-

tein sizes in any proteome, with pronounced functional differ-

ences between the two protein populations. At present it is

not clear whether this distinct proteome feature is of biological

relevance; however, it seems to represent a phylogenetic trait,

as only species of the Caenorhabditis crown group show the

bimodal distribution, whereas C. japonica follows a unimodal

distribution. Also, we note that the enrichment of GO terms

related to protein phosphorylation among the larger protein

population may reflect the unusually high number of protein

kinases reported in C. elegans (Manning et al. 2002). Since the

recently published phosphoproteome of C. elegans showed an

unusual functional distribution of phosphoproteins (Zielinska

et al. 2009), a quantitative comparison of P. pacificus and C. elegans

organisms at the phosphoproteome level is likely to give valu-

able insights into evolution of phosphorylation networks in

Metazoa.

Figure 5. Comparison and functional analysis of protein size distributions in nematode models. (A) Predicted protein sizes in P. pacificus and B. malayi
have a unimodal distribution, whereas C. elegans and C. briggsae have distinct bimodal distributions. (B) Gene Ontology enrichment analysis for short and
long proteins in C. elegans shows distinct functional differences between the two classes of proteins.
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Methods

Culturing of worms and preparation of protein extracts
P. pacificus strain PS312 was grown on 10-cm NGM agar plates
spotted with 2 mL of E. coli OP50 solution. Plates were inoculated
with 50–100 worms and incubated at 25°C. The mixed-stage
population was harvested shortly after the bacterial lawn was
consumed, avoiding starvation of the animals. After thoroughly
washing with distilled water and 0.9% sodium chloride, the ani-
mals were incubated with ampicillin (100 mL/mL) and chloram-
phenicol (34 mL/mL) in 0.9% sodium chloride for 48 h to remove
residual bacteria. The worms were then pelleted and prepared for
proteomics measurements. The animals in the J2 developmental
stage were harvested as follows: Plates full of eggs were washed
with distilled water and the animals were bleached with hydrogen
peroxide and 5 M sodium hydroxide, leaving just the eggs alive.
Animals were then spotted on 10-cm NGM agar plates for hatching
for 24 h, and collected by washing after removing debris and
corpses. Animals were pelleted and stored frozen until further
analysis. For protein isolation, 100 mL of animals was solubilized in
300 mL of denaturation buffer (6 M urea, 2 M thiourea, 10 mM Tris
at pH 8.0). After three cycles of freeze (liquid nitrogen) and thaw
(37°C), 100 mL of glass beads were added and the solution was
vortexed for 20 min. After centrifugation (20 min, 20.800g, 4°C),
the protein concentration of the supernatant was determined us-
ing the Bradford assay. The pellet was solubilized in sample buffer
for gel electrophoresis and further analysis.

OffGel electrophoresis and in-solution digestion

For OffGel fractionation the proteins were reduced by incubation
in 1 mM dithiotreitol (DTT) for 1 h at room temperature. Alkyl-
ation was performed in 5.5 mM iodoacetamide (IAA) in 50 mM
ABC for 1 h at room temperature in the dark. Proteins were
digested using LysC (1:100 w/w) for 3 h at room temperature and
trypsin (1:100 w/w) overnight at room temperature after diluting
the sample with four volumes of 20 mM ammonium bicarbonate
(ABC). The resulting peptides were separated using the 3100 Off-
Gel fractionator (Agilent) according to manufacturer’s instruc-
tions with a 12- or 24-well setup. Focusing was done with 13-cm
(12-well) or 24-cm (24-well) Immobiline DryStrips pH 3–10
(GE Healthcare) at a maximum current of 50 mA for 50 kVh. Pep-
tide fractions were harvested and desalted using C18 StageTips as
previously described (Ishihama et al. 2006).

GeLC-MS and in-gel digestion

For GeLC-MS analysis 100 mg of the supernatant and the solubi-
lized pellet were loaded on a NuPAGE Bis-Tris 4%–12% gradient gel
(Invitrogen). After brief Coomassie staining, each lane was cut into
10 slices that were further cut into small pieces. Destaining was
performed by washing three times with 10 mM ABC and acetoni-
trile (ACN) (1:1, v/v) and was followed by protein reduction with
10 mM DTT in 20 mM ABC for 45 min at 56°C, and alkylation with
55 mM iodoacetamide in 20 mM ABC for 30 min at room temper-
ature in the dark. The gel pieces were then washed twice for 20 min
in destaining solution followed by dehydration with ACN. The
liquid was removed and gel pieces were swollen at room tempera-
ture by adding 13 ng/mL sequencing-grade trypsin (Promega) in
20 mM ABC. Digestion of proteins was performed at 37°C over-
night. The resulting peptides were extracted in three subsequent
incubation steps with 30% ACN/3% TFA; with 80% ACN/0.5%
acetic acid; and with 100% ACN. Supernatants were combined,
ACN was evaporated in a vacuum centrifuge, and peptides were
desalted using C18 StageTips.

NanoLC-MS/MS analysis

All digested peptide mixtures were separated on a nanoLC-2D
HPLC (Eksigent) coupled to a LTQ-Orbitrap-XL (Thermo Fisher
Scientific) through a nano-LC-MS interface (Proxeon Biosystems).
Binding and chromatographic separation of the peptides was
performed on a 15-cm fused silica emitter of 75-mm inner diame-
ter (Proxeon Biosystems), in-house packed with reversed-phase
ReproSil-Pur C18-AQ 3-mm resin (Dr. Maisch GmbH). The peptide
mixtures were injected onto the column in HPLC solvent A (0.5%
acetic acid) at a flow rate of 500 nL/min and subsequently eluted
with a 107-min segmented gradient of 2%–80% HPLC solvent
B (80% ACN in 0.5% acetic acid) at a flow rate of 200 nL/min.

The mass spectrometer was operated in the data-dependent
mode to automatically switch between MS and MS/MS acquisition.
Survey full-scan MS spectra were acquired in the mass range of m/z
300–2000 in the orbitrap mass analyzer at a resolution of 60,000.
An accumulation target value of 106 charges was set and the lock
mass option was used for internal calibration (Olsen et al. 2005).
The 10 most intense ions were sequentially isolated and frag-
mented in the linear ion trap using collision-induced dissociation
(CID) at the ion accumulation target value of 5000 and default CID
settings. The ions already selected for MS/MS were dynamically
excluded for 90 sec. The resulting peptide fragment ions were
recorded in the linear ion trap. In total, 101 LC-MS measurements
were performed, corresponding to 10 d of measurement time.

The mass spectrometry data associated with this manuscript
may be downloaded from the Proteome Commons Tranche re-
pository (https://proteomecommons.org/tranche/) using the fol-
lowing hash: QgF9ukyrC8Y74IIE8L/y2ccmTd02ElO8UnFcVLVF
wvy1C+/41QDGWVzZIR96f33MKIui57iuS6x8 8KNT2v4RiIuHRN4
AAAAAAAALhA==.

Data processing and analysis

MaxQuant data processing and Mascot database search

All raw files were processed together using the MaxQuant software
suite (v. 1.12.35) (Cox and Mann 2008; Cox et al. 2009). Raw MS
spectra were first processed by the Quant module to generate peak
lists. This module performs a nonlinear mass recalibration for each
individual precursor ion and calculates precise masses as well as
individual mass errors. To retrieve peptide sequences from the
processed spectra, we used the Mascot search engine v.2.2 (Matrix
Science). The processed MS spectra were searched against an
in-house assembled target-decoy database that consisted of the
in silico–predicted proteome of P. pacificus (SNAPNG2.aa.annot,
27,103 sequences); a complete six-frame translation of its genome
(sctg_plus_2000.fas, 14,654 contigs; 87,924 sequences after six-
frame translation); E. coli proteome (4256 sequences); and 262
commonly observed contaminants. All protein sequences in the
database were reversed and appended to the database. This enabled
the estimation of false discovery rate (FDR) in the data set by
a target-decoy search strategy (Elias and Gygi 2007).

In the database search, carbamidomethylation (Cys) was set
as fixed modification, whereas oxidation (Met) and acetylation
(protein N termini) were set as variable modifications. The mass
tolerances for precursor and fragment ions were set to 7 ppm and
0.5 Da, respectively.

The retrieved peptide sequences were further processed with
the Identify module of the MaxQuant software. This module
considers all 10 peptide candidates suggested by Mascot for each
fragmentation spectrum and filters them according to consistency
with a priori information, e.g., the individual precursor mass er-
rors. Furthermore, the probability that an individual peptide is
a false hit given its score and length is estimated by a Bayesian
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probability (posterior error probability [PEP]). All filtered peptide
sequences are sorted according to their PEP values, starting with
the best PEP. To control the FDR the peptides are accepted until 1%
of reversed peptides have accumulated within the list. The iden-
tified peptides are then assembled back into proteins. If a set or
subset of identified peptides can be assigned to more than one
protein, these proteins are joined into a protein group (Nesvizhskii
and Aebersold 2005; Cox and Mann 2008). Finally, the FDR on
protein group level was also controlled to be at 1%.

PepSplice database search

The PepSplice search engine (Roos et al. 2007) was used to com-
plement Mascot-based searches. PepSplice uses a cache-optimized
peptide database search algorithm for aligning spectra to genome-
wide spliced six-frame translations. MaxQuant-processed MS/MS
spectra (J2 + Mixed Stage) were searched against a target database,
which contained all spliced six-frame translations of the 965
largest supercontigs ($2 kb). All possible splicing events up to an
intron size of 2 kb were considered and the maximal FDR was set to
1% on the peptide level. PepSplice also employs a target-decoy
search strategy to estimate the FDR.

Downstream bioninformatics analysis

All downstream bionformatics was done in R (v. 2.9.0; http://
www.r-project.org).

Protein size distributions were determined from the most
recent versions of publicly available protein databases (http://
www.wormbase.org). Distributions were determined by the ‘‘den-
sity’’ function from the base R package using default bandwidth.
For robust estimation of protein size distribution, 99% of all pro-
teins within the particular databases were considered. All BLAST
searches in this study were performed by BLASTP v.2.2.21.

Gene Ontology analysis

GO annotation for the predicted P. pacificus and C. elegans (WS140,
WS195) proteomes was derived using Blast2GO software (Conesa
et al. 2005). For each query sequence the software first detects up to
20 homolog sequences in the nrNCBI database (nrNCBI version
was from August, 2009; E-value <1 3 10�3) by a BLAST search.
Based on the GO terms associated with these candidate sequences
the software applies an annotation rule that filters and reports the
most specific annotations.

To test for enrichment or depletion of specific GO terms
among the identified proteome, the topGO R package was used
(Alexa et al. 2006). This package implements two scoring methods
that take care of the underlying GO graph topology. We used the
‘‘elim’’ algorithm that starts at the leaves of the induced GO graph
and subsequently removes all proteins from the corresponding
parent nodes that have been already used for testing the children
nodes. Therefore, only the most specific GO terms for each protein
were considered.

Fisher’s exact test served as test statistic assuming the hyper-
geometric distribution as null-distribution. The derived P-values
were further adjusted for multiple hypothesis testing by the
method of Benjamini and Hochberg (Benjamini and Hochberg
1995) to control the FDR.

PCR analysis

To validate expression of proteins that were identified by MS, we
chose 184 genes for RT-PCR. The primers were designed with the
online tool Primer3 (Rozen and Skaletsky 2000) with an average
amplicon size of 100 bp and were purchased from Eurofins MWG.
For stage-specific cDNA, J2 stages were collected as described above

and grown to J3 and J4, respectively. Total RNA was isolated using
TRIzol (Invitrogen) according to the manufacturer’s instructions.
cDNA was produced using the Superscript III cDNA synthesis
kit (Invitrogen) for 2 h at 42°C for the reverse transcription. PCR
reactions were performed for 35 cycles of 20 sec at 95°C, 30 sec at
55°C, and 30 sec at 72°C. The reactions were subsequently sepa-
rated on a 2% TBE agarose gel, stained with ethidium bromide, and
visualized under UV light.

Transcriptome sequencing on the 454 Life Sciences (Roche)
FLX platform

Total RNA was isolated from a mixed and dauer stage culture of
P. pacificus (Ppa 312, California) using TRIzol (Invitrogen) according
to the manufacturer’s instructions. The RNA was sequenced at the
Genome Sequencing Center at Washington University, St. Louis,
MO using the 454 FLX for 454 sequencing.

Transcriptome assembly

The 454 reads were processed prior to assembly. Low-quality base
calls were removed from read ends by Lucy (Chou and Holmes
2001) using default settings. Highly repetitive sequence segments
were removed by Figaro (White et al. 2008) using default settings.
We assembled 28,599/26,092 contigs from the 350,839/394,453
remaining sequences with the EST version of PCAP.REP. These
contigs encompass >10 Mb of transcribed sequence.

Transcriptome mapping

The assembled contigs and all trimmed reads were aligned to the
genome using Exonerate (Slater and Birney 2005) with a maximal
intron size of 20 kb. In summary, we could identify 98,254 unique
acceptor and 95,210 unique donor sites. This data set was sub-
sequently used to improve the Pristionchus genome annotation.

Gene prediction

We took the 11 largest supercontigs from the Hybrid Genome As-
sembly (Sanger + 454). We predicted a new set of genes with the
current hidden Markov model (HMM) gene model plus external
evidence as given by the 454 transcriptome data (98254 Acceptor
and 95210 Donor sites). This new gene set was subsequently used
to retrain our HMM gene model (SNAPNG2).

All protein database searches for peptide identification were
carried out on this reference data set. We used the genomic hits
from Mascot and PepSplice as additional external evidence in the
next gene model training step (4431 data points/coding seg-
ments). We updated our gene model to its final version and reran
the gene predictions including all available external evidence
(MS/MS + 454).
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