1	Transcriptome analysis of the Larimichthys polyactis under heat and cold stress
2	Tianqi Chu ¹ , Feng Liu ^{2*} , Gaochan Qin ¹ , Wei Zhan ² , Mengjie Wang ¹ , Bao Lou ^{2*}
3	¹ School of fishery of Zhejiang Ocean University, Zhoushan 316022, China
4	² Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
5	
6	Running title: Transcriptional response of L. polyactis to temperature stress
7	
8	*Correspondence: Dr. Feng Liu
9	Institute of Hydrobiology,
10	Zhejiang Academy of Agricultural Sciences
11	Shiqiao Road 198
12	310021 Hangzhou
13	China
14	E-mail: lengfeng0210@126.com
15	
16	Acknowledgments
17	This research was supported by grants from the National Key Research and Development Program of
18	China (No. 2018YFD0901204), and the Special Fund for the key research and development project of
19	Zhejiang Province (No. 2017C02013).
20	

21 Abstract

22	The small yellow croaker (Larimichthys polyactis) is an important marine economic fish that is
23	widely distributed in the East Sea, Yellow Sea and Bohai of China. However, the wild populations of
24	small yellow croaker are severely depleted, and there is currently a developing large-scale artificial
25	propagation of this fish for aquaculture. However, the current variety of small yellow croaker that is
26	cultivated is not capable to coping with large fluctuations in temperature. Therefore, it is important to
27	understand the molecular mechanisms that are activated in response to temperature stress in the small
28	yellow croaker. Here, we conducted transcriptomic analysis of the liver of small yellow croaker under
29	heat and cold stress. A total of 270,844,888, 265,727,006 and 259,666,218 clean reads were generated
30	from heat temperature group, low temperature group and control group, respectively, and comparing
31	expression of genes in these transcriptomes, 10,878 unigenes that were differential expressed were
32	identified. Sixteen of the differentially expressed unigenes were validated by qRT-PCR. Pathway
33	enrichment analysis identified that the ER pathway, immune signaling pathway and metabolic response
34	pathway were affected by temperature stress. The results of this study provide a comprehensive
35	overview of temperature stress-induced transcriptional patterns in liver tissues of the small yellow
36	croaker. In addition, these results can guide future molecular studies of heat and cold stress response in
37	this species for improving the stock used for aquaculture.
38	

Keywords: *Larimichthys polyactis*; Heat stress; Cold stress; Liver transcriptomic; Illumina
 sequencing

41

43 1. Introduction

44	Water temperature is considered to be the 'abiotic master factor' for fish (Brett J R 1971),
45	impacting biological processes in aquatic animals, including development, growth, reproduction,
46	metabolism, behavior, and geographic distribution (Donaldson M R et al. 2008; Somero G N 2010).
47	Although fish can adapt to variations in water temperature through physiological plasticity or
48	micro-evolution, severe diseases or death occurs when they are exposed to temperatures exceeding
49	their thermal tolerance capability (Whitehead A et al. 2011; Céline Bellard et al. 2012). Due to the
50	intensification of global warming, extremely low winter temperatures and high summer temperatures
51	have led to mass mortality in farmed fish and damaging the economic profit of aquaculture farms. This
52	has negatively affected the economic development of several countries where the economy is
53	dependent on aquaculture, including China, Israel, and South America (Ibarz A et al. 2010). Therefore,
54	investigating the mechanisms underlying temperature adaptation and tolerance in fish species that are
55	used for aquaculture is very important.
56	The small yellow croaker (Larimichthys polyactis) belongs is a warm-temperate near-bottom
57	migratory fish. It is widely distributed in the East Sea, Yellow Sea and Bohai of China (Li Z et al. 2011).
58	The small yellow croaker is nutritious and its meat is of high quality, making it an important marine
59	economic fish. However, due to overfishing and deterioration of the environment in its native habitat,
60	the wild resources of the small yellow croaker are severely depleted (Chen WM and Cheng QQ 2013).
61	Artificial breeding techniques of the small yellow croaker have been developed recently, laying the
62	foundation for large-scale artificial propagation of this species (Liu F et al. 2019). The wild population
63	of small yellow croaker migrates based on water temperature, remaining in areas that are suitable for
64	their survival during the different seasons (Johnson J A and Kelsch S W 1998). However, fish in

65	aquaculture cannot move beyond the cultured space and area, therefore they cannot migrate to higher
66	or lower temperature to survive changes in temperature. The current method to combat this problem is
67	through adjusting water temperature using thermostat, but this method increases production costs.
68	Therefore, identifying economic methods to increase survival of small yellow croaker under changing
69	temperatures is important for sustainable aquaculture.
70	Transcriptomics approaches are robust and reliable for identifying genetic pathways that are
71	important for response to various conditions, facilitating the exploration of global gene expression
72	changes caused by abiotic stress. Multiple studies have identified gene expression responses elicited by
73	temperature stress in various fish species, such as rainbow trout (Oncorhynchus mykiss) (Li Y et al.
74	2017), zebrafish (Danio rerio) (Long Y et al. 2013), grass carp (Ctenopharyngodon idellus) (Yang Y et
75	al. 2016), yellow drum (Nibea albiflora) (Dongdong X et al. 2018), channel catfish (Ictalurus
76	punctatus) (Ju Z et al. 2002), gilthead sea bream (Sparus aurata) (Mininni A N et al. 2014), and large
77	yellow croaker (Larimichthy crocea) (Qian B and Xue L 2016).
78	However, transcriptomic profile of L. polyactis under heat and cold temperatures stress remains
79	to be elucidated. In the present study, RNA-Seq analysis was conducted to evaluate the effects of
80	temperature stress on <i>L. polyactis</i> . The liver is involved in lipid, glucose and protein metabolism of fish
81	(Tan P et al. 2017), but also regulates stress response. Therefore, we focused on the liver tissues for
82	transcriptome analysis. Investigating the molecular mechanisms underlying temperature stress response
83	in L. polyactis will contribute to understanding its adaptation to changes in temperature and promote
84	the development of temperature-tolerant breeds for this species.
85	

86 2. Materials and methods

87 2.1 Experimental design and sampling

88	One hundred and eighty small yellow croakers (55.0 \pm 0.6 g) were obtained from the Marine
89	Fishery Institute of Zhejiang Province (Xishan Island, Zhoushan, China). The fish were randomly
90	divided into three groups with three tanks per group: heat temperature group (HTS), low temperature
91	group (LTS) and control group (CT). Fish were cultured in aerated water tanks (0.5 m ³) with 20 fish in
92	each tank, and the tank had a flow through sea water supply maintained at 20 °C. After 14 days of
93	acclimation, fish were placed under heat and cold stress by altering the temperature of the water in the
94	tank at a constant rate of 2 $^{\circ}$ C per 1 h. In the heat temperature group, temperature was increased from
95	20 °C to 32 °C, and the cold temperature group was decreased from 20 °C to 6 °C. Liver tissues were
96	sampled from five fish per group at 6 h, and samples were immediately flash-frozen in liquid nitrogen,
97	and then stored at -80 °C for further analysis. All the procedures performed on animals were approved
98	by the Guidelines for the Care and Use of Laboratory Animals in China.
99	2.2 RNA isolation, library preparation and sequencing
100	Total RNA of liver tissues was extracted using Trizol reagent (Invitrogen, CA, USA) in
101	accordance with the manufacturer's procedure. The total RNA quantity and purity were determined by a
102	Bioanalyzer 2100 and RNA 1000 Nano LabChip Kit (Agilent, CA, USA) and samples with an RNA
103	integrity number (RIN) above 7.0. Poly(A) RNA was purified from total RNA (5µg) using poly-T
104	oligo-attached magnetic beads with the two rounds of purification. The mRNA was then fragmented
105	into small pieces using divalent cations under elevated temperature. The cleaved RNA fragments were
106	reverse-transcribed to create the final cDNA library for the mRNA-Seq sample preparation kit
107	(Illumina, San Diego, USA), with an average of 300 bp (±50 bp) insert size for the paired end libraries.
108	The paired-end sequencing was performed on Illumina Hiseq4000 (LC Sceiences, USA) following the

- 109 vendor's recommended protocol and the raw data files were deposited to NCBI's Sequence Read
- 110 Archive (SRA). The accession numbers are SRR10082705 (CT1), SRR10082704 (CT2),
- 111 SRR10082698 (CT3), SRR10082697 (CT4), SRR10082696 (CT5), SRR10082703 (LTS1),
- 112 SRR10082702 (LTS2), SRR10082701 (LTS3), SRR10082700 (LTS4), SRR10082699 (LTS5),
- 113 SRR10082695 (HTS1), SRR10082694 (HTS2), SRR10082693 (HTS3), SRR10082692 (HTS4),
- 114 SRR10082691 (HTS5).
- 115 2.3 De novo assembly, unigene annotation and functional classification
- 116 Cutadapt (Martin M 2011) and in house perl scripts were used to remove the reads that contained
- 117 adaptor contamination, low quality bases and undetermined bases. Sequence quality of the clean reads
- 118 were verified by FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) including the
- 119 Q20, Q30 and GC-content. All downstream analyses were based on clean reads, which were of high
- 120 quality. *De novo* assembly of the transcriptome was performed with Trinity 2.4.0 (Grabherr et al. 2011).
- 121 Trinity groups transcripts into clusters based on shared sequence content.
- 122 All assembled unigenes were aligned against the non-redundant (Nr) protein
- 123 (http://www.ncbi.nlm.nih.gov/), Gene ontology (GO) (http://www.geneontology.org), SwissProt
- 124 (http://www.expasy.ch/sprot/), Kyoto Encyclopedia of Genes and Genomes (KEGG)
- 125 (http://www.genome.jp/kegg/) and eggNOG (http://eggnogdb.embl.de/) databases using DIAMOND
- 126 (Buchfink B et al. 2014) with a threshold of E-value<0.00001. The assembled transcriptome was used
- 127 as the reference for the differential expression analysis.
- 128 2.4 Differential expression analysis

129 The expression levels of a unigene was calculated using the Transcripts per million (TPM) method

130 (Günter P. Wagner et al. 2012) and unigenes that were significantly up-regulated or down-regulated

131	were identified for three com	parisons: HTS-L2	FS. HTS-CT	, and LTS-CT	Γ. The differentially	expressed

- unigenes were selected with $|\log 2$ (fold change) |>1, with statistical significance (P < 0.05) using R
- package edgeR (Robinson M D et al. 2010) and the False Discovery Rate (FDR) set to < 0.001.
- 134 According to these criteria, smaller FDR and larger ratio indicates a larger difference of the expression
- between the compared groups. Finally, the different expression unigenes (DEUs) that were identified
- 136 were used to analyze differences in Gene ontology (GO) functional categories and KEGG pathways.
- 137 GO function analysis (including GO functional classification annotation and GO functional enrichment
- 138 analysis) for DEUs were performed by mapping all DEUs to each term of the GO database
- 139 (http://www.geneontology.org/) and calculating the gene numbers each GO term had. All of raw data
- about transcriptome were submitted to the NCBI GEO database.
- 141 2.5 Validation using quantitative real-time PCR
- 142 To examine the reliability of the RNA-Seq results, sixteen DEUs were selected based on their
- 143 potential functional important for validation using quantitative real-time RT-PCR (qRT-PCR). The
- housekeeping gene β -actin was used as the reference gene. Suitable primers (Table 1) were designed
- 145 using Primer Express 6.0 and synthesized by GENEWIZ (Suzhou, China) Co., Ltd. PCRs for each
- sample were performed as triplicates with the SYBR Green dye (TaKaRa, Dalian, China) and
- 147 StepOnePlusTM Real-Time PCR System according to the manufacturer's protocol. RNA samples that
- 148 were used for the RNA-seq experiment were selected for this experiment. The qRT-PCR conditions
- 149 were as follows: 95 °C for 30 s, 40 cycles at 95 °C for 5 s and 60 °C for 34 s and dissociation curve
- 150 analysis was carried out to determine the target specificity. The relative expression ratio of the target
- 151 genes versus β -actin was calculated using $2^{-\Delta\Delta^{CT}}$ method (Schmittgen T D and Livak K J 2008).
- 152 Relative mRNA expression levels were statistically analyzed using SPSS 21 software.

153

154 **3. Results**

- 155 3.1 Transcriptome assembly and annotation
- 156 To identify genes that are differentially expressed under temperature stress, transcriptomes were
- 157 generated from liver samples of animals placed in the heat temperature group (HTS), low temperature
- 158 group (LTS) and control group. HTS was exposed to 32 °C and LTS was exposed to 6 °C, while the
- 159 control group was maintained at 20 °C. In total, 276,893,528, 271,842,088, and 265,003,108 raw reads
- 160 were obtained from HTS, LTS and CT, respectively. A total of 270,844,888, 265,727,006 and
- 161 259,666,218 clean reads were generated by filtering the raw reads from HTS, LTS and CT, respectively.
- 162 We predicted 86,584 transcripts from the clean reads and N50 length was 1,773 bp (Table 2). The
- 163 length distribution of the transcriptome libraries is shown in Fig. 1.
- 164 The value of Pearson's correlation coefficients (R) for sample expression was 0.6-0.97 for CT1,
- 165 CT2, CT3, CT4 and CT5, 0.69-0.977 for HTS1 HTS2 HTS3 HTS4 and HTS5, and 0.741-1 for LTS1
- 166 LTS2 LTS3 LTS4 and LTS5 (Fig. 2). This highlighted that there was strong correlation of gene
- 167 expression patterns in the replicate liver transcriptomes, demonstrating that collection methods were
- 168 accurate. Unigenes were functionally annotated using NCBI_nr, GO, KEGG, Pfam, Swiss-Prot and
- 169 eggNOG (Table 3).

170 3.2 Differential expression analysis

- 171 We constructed a heat map to identify patterns of unigene expression across the three treatment
- 172 groups (Fig.3). Of these, 1,843 unigenes were expressed only in HTS-CT, 774 unigenes were expressed
- 173 only in LTS-CT, and 1,248 unigenes were expressed only in LTS-HTS, and expression of 664 unigenes
- 174 were shared across all groups. Compared to CT, 4,033 unigenes were upregulated and 3530 were

- downregulated in HTS, 1,997 unigenes were upregulated and 2,528 were downregulated in LTS, and
- 176 4,053 unigenes were upregulated and 2,774 were downregulated in both HTS and LTS (Fig.4).
- 177 3.3 GO enrichment and KEGG pathway analysis
- 178 To evaluate the biological and functional implications of the differentially expressed unigenes
- 179 (DEUs) under heat and cold stress, GO and pathway enrichment analysis were performed using the GO
- 180 and KEGG databases. There were 29 significant GO categories that were enriched in HTS, LTS and CT
- 181 groups (p < 0.01) belonging to three categories: biological process (10 subclasses), cellular component
- 182 (6 subclasses) and molecular function (13 subclasses) (Fig.5). KEGG analysis identifies the associated
- 183 biological signaling pathways of unigenes (Fig. 6), and we found that 13 pathways were significant
- enriched under HTS, LTS and CT groups (p < 0.01). "Protein processing in endoplasmic reticulum
- 185 (ER)" was the most enriched pathway, with 256 DEUs in this pathway. Other representative pathways
- 186 including "JAK-STAT signaling pathway", "NOD-like receptor signaling pathway", "Retinol
- 187 metabolism", "Spliceosome", and "Cysteine and methionine metabolism" were also identified.
- 188 **3.4** Validation of DEUs by using qRT-PCR
- 189 Quantitative real-time PCR was performed on 16 DEUs to validate the expression patterns of the
- 190 DEUs that were identified by RNA-Seq. The qRT-PCR results were significantly correlated with the
- 191 RNA-Seq results (p < 0.01) (Table 4), and all 16 genes showed the identical up-regulated and
- down-regulated patterns in both qRT-PCR and RNA-Seq experiments (Fig.7).

193

194 4. Discussion

195 4.1 The effect of temperature on the small yellow croaker

196 Water temperature plays an important role in the survival of small yellow croaker. Studying

197	temperature tolerance is important to	anarata strains that are more	registent to changes in temperature
131	temperature toterance is important to	generate strains that are more	resistant to changes in temperature.

- 198 Under laboratory conditions, temperature tolerances of fish are usually measured either through
- 199 methods where the temperature is dynamic (i.e., critical thermal methodology, CTM) or static (i.e.,
- 200 incipient lethal temperature, ILT) (Beitinger T L and Bennett W A 2000). Temperature tolerance has
- 201 been studied extensively in several fish species. For example, the CTM temperature of redhorse
- 202 suckers (Moxostoma erythrurum), sheepshead Minnow (Cyprinodon variegatus) and eastern
- 203 mosqyitofish (Gambusia holbrooki; Poeciliidae) is 35.4°C (Reash R J et al. 2000), 45.1°C (Beitinger B
- T L 1997) and 40.1°C (Meffe G K et al. 1995), respectively. Previous reports have suggested that the
- 205 mortality rate of small yellow croaker increases at temperatures higher than 32°C, thus we used 32°C
- for the HTS condition in our study. For the LTS, 6°C was selected based on the ILT temperatures of
- 207 Larimichthys crocea (Mu F S et al. 2017).
- 208 4.2 Difference in gene expression patterns
- 209 In the present study, the liver transcriptome was assembled and gene expression differences in the
- 210 HTS, LTS, and CT groups were compared without a reference genome, as the small yellow croaker
- 211 genome has not been assembled. We predicted 86,584 transcripts and functionally annotated
- approximately 37,702 unigenes, which was similar to other fish species, such as Atlantic Salmon
- 213 (Salmo salar) (Micallef G et al. 2012) and Oujiang color common carp (Cyprinus carpio var. color)
- 214 (Du J et al. 2019). N50 can be selected as a criterion to examination the quality of gene splice. Since
- 215 we did not have a genome of small yellow croaker, we estimated the N50 length using genomes of
- 216 large yellow croaker, which is closely related species with it. The estimated N50 length was 1,773 bp in
- the small yellow croaker, which was similar to the N50 length of 1,943 bp in the large yellow croaker
- 218 (Shijun X et al. 2015). The N50 value indicated that our assembled transcriptome was suitable for

219	analysis of DEUs between three experiment groups. We next identified DEUs across the different
220	treatment conditions, and found that heat treatment led to more up-regulated genes, and cold treatment
221	led to more down-regulation of genes. DEUs included the Heat shock proteins (HSPs) and the Relaxin
222	Family Peptide Receptors 3 (RXFP3).
223	4.2.1 Heat Shock Proteins family proteins
224	HSPs, also known as stress proteins and extrinsic chaperones, are expressed in all organisms when
225	exposed to stress (R.J. Roberts et al. 2010). In aquatic animals, they play a fundamental role in immune
226	response (Dong C W et al. 2006) and inhibition of apoptosis (Sandilands J et al. 2010). In the heat
227	stress group, 24 HSPs genes were significantly up-regulated (p < 0.01), and <i>Hsp30</i> had the highest
228	expression level change (10.83-fold), followed by Hsp90aa1 (10.11-fold), Hsp70 (9.91-fold) and
229	Hsp27 (hspb1, 6.65-fold). These genes have been extensively investigated in other fish species. When
230	rainbow trout blood was heat shocked in vitro, both Hsp70 and Hsp30 mRNA levels increased
231	significantly (Currie S et al. 2000). Hsp90aa1 expression is associated with stress-induced
232	cytoprotection (Di-An F et al. 2016). <i>Hsp90aa1</i> regulates the folding of proteins under stress, as well
233	as protein trafficking, transcriptional regulation, and epigenetic regulation of gene expression
234	(Csermely P et al. 1998; Pearl L H and Prodromou C 2006). Hsp27 has antiapoptotic effects through its
235	function in the mitochondria during thermotolerance (Samali A et al.2001).
236	Multiple HSPs were differentially expressed in the small yellow croaker exposed to stress. <i>Hsp70</i>
237	and Hsp90 promotes the degradation of damaged proteins and Hsp90a regulates immune signaling
238	pathway to prevent the damage. Moreover, HSPs also regulate energy metabolism, lipid, and
239	carbohydrate levels to response to changing of temperatures. Therefore, our transcriptomic analysis

suggests that increases expression of HSPs protects the small yellow croaker from heat stress.

241 4.2.2 Relaxin Family Peptide Receptors 3

242	Temperature stress affects the physiology of fish at multiple levels, and can affect the central
243	nervous system and brain activity. Under temperature stress, fish display behaviors indicative of stress
244	and avoidance, such as erratic swimming, abnormal posture, and aggregative behavior (Quigley J T and
245	Hinch S G 2006). Spatial and temporal ambient temperature variations directly influence cellular
246	biochemistry and thus the physiology of fish, which are ectoderms (Burg V D and E. H 2005).
247	Neurotransmitters regulate activity in fish (Ortiz M and Lutz PL 1995) and brain monoamine
248	neurotransmitters induce agonistic behavior and stress reactions (Winberg S and Nilsson G E 1993).
249	Therefore, the cranial nerve response of fish is important in its response to changes in temperature.
250	In the DEUs analysis, we found that RXFP3 expression changed significantly under temperature
251	stress (p < 0.01), which was up-regulated in HT vs LT (6.24-fold), down-regulated in LT vs CT
252	(6.51-fold) and up-regulated in HT vs CT (1.63-fold). RXFP3 regulates a wide range of behaviors,
253	including feeding, stress responses, arousal, and cognitive processes (Bathgate R A D et al. 2013).
254	RXFP3 has primarily been studied in mammals (Ganella D E et al. 2013; Kania A et al. 2014), and very
255	few studies have investigated its function marine fish (Fiengo M et al. 2013). For this reason, it is
256	unclear whether RXFP3 regulates neuroendocrine response to temperature. Our findings suggest that
257	RXFP3 plays an important role in temperature response. The mechanisms underlying this need further
258	investigation.
259	4.3 Pathways that are differentially expressed under temperature stress
260	A number of enriched pathways were found in the different treatment conditions. These included
261	protein processing in endoplasmic reticulum pathway, immune signaling pathway and metabolic

response pathway, and details are discussed below.

263 4.3.1 Protein processing in endoplasmic reticulum pathway

264	Endoplasmic reticulum stress (ERS) is a vital mechanism of cellular self-defense, but strong and
265	long-lasting ERS leads to irreversible cell damage (Qing D and Zhen Z 2009). ER is a subcellular
266	organelle where proteins are folded with the help of lumenal chaperones. Accumulation of misfolded
267	proteins in the ER causes ER stress and activates a signaling pathway called the unfolded protein
268	response (UPR). Studies of UPR targets engaged in endoplasmic reticulum-associated protein
269	degradation (ERAD) reveal an intimate coordination between efficient ERAD requires an intact UPR,
270	and inducing UPR increases ERAD capacity. Conversely, loss of ERAD leads to constitutive UPR
271	induction (Wodicka L 2000). It is well established that the number of correctly folded protein
272	significantly increases under heat stress. There are three ER transmembrane proteins in the small
273	yellow croaker: endoplasmic reticulum kinase (PERK), active transcription factor 6 (ATF6) and IRE1,
274	which promote cell survival by reducing the level of misfolded proteins (Lin J H et al. 2007). These
275	expression levels of these genes were up-regulated in animals that were under heat stress. Due to the
276	continued ERS, the ER function is severely impaired and the organelle elicits apoptotic signals, which
277	can be identified by the up-regulation of C/EBP homologous protein (CHOP). During ERAD, both the
278	Heat Shock Proteins family proteins (Hsp40, Hsp70, Hsp90) are up-regulated. HSPs, such as Hsp40
279	and Hsp70, can interact with misfolded proteins, preventing them from forming aggregates (Fink A L
280	1999). In the goby (Gillichthys mirabilis), Hsp70 and Hsp90 were strongly up-regulated during heat
281	shock and recovery from stress (Buckley and B. A 2006). In the study of Maraena whitefish
282	(Coregonus maraena), unfolded protein response (the major ER stress pathway) was one of two
283	characteristic pathways that were induced during acute and gradual heat stress (Alexander R et al.
284	2018). Our results are consistent with the above studies, showing that Hsp40, Hsp70 and Hsp90 were

up-regulated under heat stress.

286	In lower temperature stress experiment, PERK was the only ER transmembrane protein kinases
287	that were down-regulated, and the expression levels of CHOP was similar to the control. Protein
288	Disulfide Isomerase (PDI) recognizes unfolded and partially folded proteins. Due to expression levels
289	were down-regulated of PDIs family associated proteins, the function of PNGase and DUB were
290	undermined causing the damage of ERAD function. However, up-regulation of Hsp40 could
291	compensate for the degradation level of ERAD ensuring the recovery and maintenance of liver function.
292	In conclusion, ER function may be important for the temperature stress response of the small yellow
293	croaker.
294	4.3.2 Immune signaling pathway
295	Studies of immune pathways often focus on disease (Maekawa S et al. 2017). However, stress
296	response and immune dysfunction are increasingly being linked through similar molecular pathways
297	(Philip A M and Vijayan M M 2015). In general, temperature affects the immune system in teleosts
298	(Bowden T J et al. 2007; Rebl A et al. 2013). Here, we also found changes in the expression of genes
299	belonging to the Jak-STAT and NOD-like receptor signaling pathways under temperature stress.
300	The JAK-STAT signaling pathway is one of the ubiquitous signaling pathways in metazoans, and
301	is involved in proliferation, differentiation, survival, apoptosis of cells, and mediates immune disorders
302	(Song Z et al. 2012). JAK-STAT is negatively regulated by Protein Tyrosine Phosphatase (PTP),
303	Suppressor of cytokine signaling (SOCS) and protein inhibitor of activated STAT (PIAS). TC-PTP can
304	phosphorylate JAK1, JAK3, STAT1, STAT3, and STAT5 (Pouliot P et al. 2009), and the Kinase activity
305	of JAKs and activation of STATs are inhibited by SOCS (Morales J K et al. 2010), and the transcription
306	of STATs is inhibited by PIAS (Ivashkiv L B and Hu X 2004). Under heat stress, the expression levels

307	of TC-PTP and PIAS	were up-regulated,	which likely	promotes the ex-	pression levels	of SOCS and

- 308 activate anti-apoptotic programs. Under cold stress, STATs were down-regulated, which likely reduced
- the expression levels of SOCS.
- 310 In the NOD-like receptor signaling pathway, many genes were up-regulated after temperature
- 311 experiment, including *NOD2* and signal mediators (*TRIP6, Nemo, NFKB* and *JNK*). The expression
- 312 levels of RIP2, CARD8, PSTPIP1 and HSP90 family were up-regulated under heat stress and
- 313 down-regulated in lower temperature stress. These expression changes are likely to indirectly influence
- 314 the immune system. Thermal stress experiment in the Indian major carp catla (*Catla catla*) also found
- the activation of the NOD signaling pathway during thermal stress (Madhubanti Basu et al. 2015).
- 316 Therefore, these immune signaling pathways are likely to play a role in temperature stress response in
- 317 the small yellow croaker.
- 318 4.3.3 Metabolic response pathway
- 319 The metabolism of fish is dependent on the environmental temperature, and changes metabolic
- 320 rate is one of the most rapid cellular responses to the change of temperature (Somero G N 2010a).
- 321 Lipid peroxidation and antioxidant defense are affected by temperature (Bagnyukova T V et al. 2007),
- 322 altering energy metabolism, lipid, and carbohydrate levels through heat-shock proteins (Buckley and B.
- **323** A 2006a; Vergauwen L et al. 2010).
- 324 In present study, many biological processes were significantly altered when the small yellow
- 325 croaker were exposed to temperature stress. Metabolic response pathways, such as "Glutathione
- 326 metabolism", "Carbon metabolism", "Cysteine and methionine metabolism", "Arginine and proline
- 327 metabolism", "Retinol metabolism", "Oxidative phosphorylation", "Lipid and steroid metabolism",
- 328 "Fructose and mannose metabolism", "Amino acid metabolism" and "Carbohydrate metabolism" were

329	enriched in DEUs of animals exposed to temperature stress. This indicates that the regulation of
330	metabolic processes plays a key role of temperature response of the small yellow croaker. In particular,
331	metabolism of amino acids, carbohydrate and lipid were significantly influenced by the temperature
332	treatment, such as glycine, arginine, fructose, glycolate and glucose (Rawles S D et al. 2012). Under
333	heat stress, ATP-generating enzymes and glucose-6-phosphatase were up-regulated, suggesting that
334	heat stress led to a rapid production of ATP. This may be due in part to the requirement for ATP for the
335	function of molecular chaperones (Fink A L 1999a). Under cold stress, genes involved in lipid
336	metabolism were down-regulated, repressing fatty acid synthase and ceramide kinase expression levels.
337	Exposure to cold modifies lipid metabolism by lowering total saturated fatty acids in juvenile red
338	drum (Craig S R et al. 1995). Combined together, metabolic response pathways may play an
339	important role in the small yellow croaker's response to temperature stress.
340	
341	5. Conclusions
342	In conclusion, our transcriptome analysis demonstrated that temperature stress significantly
343	altered gene expression in the small yellow croaker. A large number of DEUs were identified between
344	animals that were exposed to control, heat and low temperatures. In addition, RXFP3 was identified as

- 345 a candidate gene that mediates temperature response. DEUs were enriched in the ER pathway, immune
- 346 signaling pathway and metabolic response pathway. By identifying candidate genes and cellular
- 347 pathways involved in temperature stress response, we provide important insights for future strategies to
- 348 generate small yellow croaker breeds that are tolerant of temperature stress for aquaculture purposes.
- 349
- 350

351 References

- 352 [1] Brett J R (1971) Energetic Responses of Salmon to Temperature. A Study of Some Thermal
- 353 Relations in the Physiology and Freshwater Ecology of Sockeye Salmon (Oncorhynchus
- 354 *nerkd*). American Zoologist 11(1): 99-113.
- 355 [2] Donaldson M R, Cooke S J, Patterson D A, et al. (2008) Cold shock and fish. Journal of Fish
- **356** Biology 73(7): 1491-1530.
- 357 [3] Somero G N (2010) The physiology of climate change: How potentials for acclimatization and
 358 genetic adaptation will determine 'winners' and 'losers'. Journal of Experimental Biology
 359 213(6): 912-920.
- 360 [4] Whitehead A, Galvez F, Zhang S, et al. (2011) Functional Genomics of Physiological Plasticity
 361 and Local Adaptation in Killifish. Journal of Heredity 102(5): 499-511.
- 362 [5] Céline Bellard, Bertelsmeier C, Leadley P, et al. (2012) Impacts of climate change on the
- **363** future of biodiversity. Ecology Letters 15(4): 365-377.
- 364 [6] Ibarz A, Francesc Padrós, Maria ángeles Gallardo, et al. (2010) Low-temperature challenges to
- 365 gilthead sea bream culture: review of cold-induced alterations and 'Winter Syndrome'.
- **366** Reviews in Fish. Biology & Fisheries 20(4):539-556.
- 367 [7] Li Z, Shan X, Jin X, et al. (2011) Long-term variations in body length and age at maturity of
- 368 the small yellow croaker (*Larimichthys polyactis* Bleeker, 1877) in the Bohai Sea and the
- 369 Yellow Sea, China. Fisheries Research 110(1):67-74.
- 370 [8] Chen WM, Cheng QQ (2013) Development of thirty-five novel polymorphic microsatellite

371 markers in *Pseudosciaena polyactis* (Perciformes: Sciaenidae) and cross-species

- amplification in closely related species, *Pseudosciaena crocea*. Biochemical Systematics and
 Ecology 47: 111-115.
- 374 [9] Liu F, Liu Y Y, Chu T Q, et al. (2019) Interspecific hybridization and genetic characterization
 375 of *Larimichthys polyactis* (♀) and L. crocea (♂). Aquaculture International 27:663–674.
- 376 [10] Johnson J A, Kelsch S W (1998) Effects of evolutionary thermal environment on
- 377 temperature-preference relationships in fishes. Environmental Biology of Fishes 53(4):
- **378** 447-458.

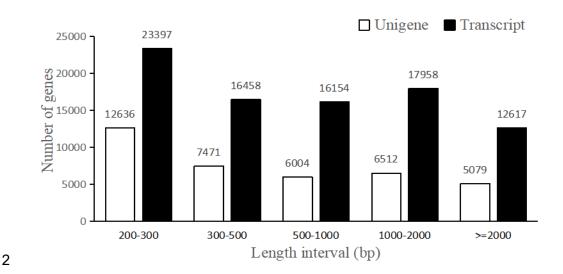
- 379 [11] Li Y, Huang J, Liu Z, et al. (2017) Transcriptome analysis provides insights into hepatic
- 380 responses to moderate heat stress in the rainbow trout (*Oncorhynchus mykiss*). Gene 619:
- **38**1 1-9.
- [12] Long Y, Song G, Yan J, et al. (2013) Transcriptomic characterization of cold acclimation in
 larval zebrafish. BMC Genomics 14(1): 612-612.
- 384 [13] Yang Y, Yu H, Li H, et al. (2016) Effect of high temperature on immune response of grass
- 385 carp (*Ctenopharyngodon idellus*) by transcriptome analysis. Fish & Shellfish Immunology 58:
 386 89-95.
- 387 [14] Dongdong X, Qiaochu Y, Changfeng C, et al. (2018) Transcriptional response to low
- 388 temperature in the yellow drum (*Nibea albiflora*) and identification of genes related to cold
- 389
 stress. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics 28:
- **390** 80-89.
- 391 [15] Ju Z, Dunham R, Liu Z (2002) Differential gene expression in the brain of channel catfish
 392 (*Ictalurus punctatus*) in response to cold acclimation. Molecular Genetics & Genomics
 393 268(1): 87-95.
- 394 [16] Mininni A N, Milan M, Ferraresso S, et al. (2014) Liver transcriptome analysis in gilthead sea
 395 bream upon exposure to low temperature. BMC Genomics 15(1): 765.
- 396 [17] Qian B, Xue L (2016) Liver transcriptome sequencing and de novo annotation of the large
- 397 yellow croaker (*Larimichthy crocea*) under heat and cold stress. Marine Genomics 25:398 95-102.
- 399 [18] Tan P, Dong X, Xu H, et al. (2017) Dietary vegetable oil suppressed non-specific immunity
 400 and liver antioxidant capacity but induced inflammatory response in Japanese sea bass
 401 (Lateolabrax japonicus). Fish & Shellfish Immunology 63: 139-146.
- 402 [19] Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing
 403 reads. Embnet Journal 17(1).
- 404 [20] Grabherr M G, Haas B J, Yassour M, et al. (2011) Full-length transcriptome assembly from
 405 RNA-Seq data without a reference genome. Nature Biotechnology 29(7): 644-652.
- 406 [21] Buchfink B, Xie C, Huson D H (2014) Fast and sensitive protein alignment using
- 407 DIAMOND. Nature Methods 12(1): 59-60.

- 408 [22] Günter P. Wagner, Kin K, Lynch V J (2012) Measurement of mRNA abundance using
- 409 RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci 131(4):
- 410 281-285.
- 411 [23] Robinson M D, Mccarthy D J, Smyth G K (2010) EdgeR: a Bioconductor package for
- differential expression analysis of digital gene expression data. Biogeosciences 26: 139-140.
- 413 [24] Schmittgen T D, Livak K J (2008) Analyzing real-time PCR data by the comparative CT
- 414 method. Nature Protocols 3(6): 1101-1108.
- 415 [25] Beitinger T L, Bennett W A (2000) Quantification of the Role of Acclimation Temperature in
- 416 Temperature Tolerance of Fishes. Environmental Biology of Fishes 58(3): 277-288.
- 417 [26] Reash R J, Seegert G L, Goodfellow W L (2000) Experimentally-derived upper thermal
- 418 tolerances for redhorse suckers: revised 316(A) variance conditions at two generating
- 419 facilities in Ohio. Environmental Science and Policy 3(supp-S1): 191-196.
- 420 [27] Beitinger B T L (1997) Temperature Tolerance of the Sheepshead Minnow, *Cyprinodon*421 *variegatus*. Copeia (1): 77-87.
- 422 [28] Meffe G K, Weeks S C, Mulvey M, et al. (1995) Genetic differences in thermal tolerance of
- 423 eastern mosqyitofish (*Gambusia holbrooki*; Poeciliidae) from ambient and thermal ponds.

424 Canadian Journal of Fisheries and Aquatic Sciences 52(12): 2704-2711.

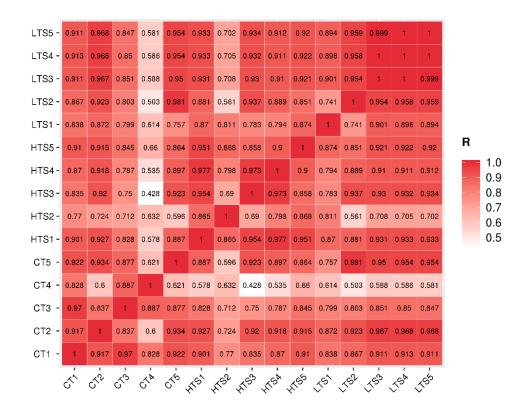
- 425 [29] Mu F S, Miao L, Li M Y, et al. (2017) Screening of microsatellite markers associated with
- 426 cold tolerance of large yellow croaker (*Pseudosciaena crocea*). Journal of Biology 34(1):
 427 34-38.
- 428 [30] Micallef G, Bickerdike R, Caroline Reiff, et al. (2012) Exploring the Transcriptome of
 429 Atlantic Salmon (*Salmo salar*) Skin, a Major Defense Organ. Marine Biotechnology 14(5):
 430 559-569.
- 431 [31] Du J, Chen X, Wang J, et al. (2019) Comparative skin transcriptome of two Oujiang color
 432 common carp (Cyprinus carpio var. color) varieties. Fish Physiology and Biochemistry
 433 45:177-185.
- 434 [32] Shijun X, Zhaofang H, Panpan W, et al. (2015) Functional Marker Detection and Analysis on
 435 a Comprehensive Transcriptome of Large Yellow Croaker by Next Generation Sequencing.
- **436** PLOS ONE 10(4): 0124432.

- 437 [33] R.J. Roberts, C. Agius, C. Saliba, P. Bossier, Y.Y. Sung (2010) Heat shock proteins
- 438 (chaperones) in fish and shellfish and their potential role in relation to fish health: a review.
- 439 Journal of Fish Diseases 33(10):789-801.
- 440 [34] Dong C W, Zhang Y B, Zhang Q Y, et al. (2006) Differential expression of three Paralichthys
- 441 *olivaceus* Hsp40 genes in responses to virus infection and heat shock. Fish & Shellfish
- 442 Immunology 21(2): 146-158.
- 443 [35] Sandilands J, Drynan K, Roberts R J (2010) Preliminary studies on the enhancement of
- 444 storage time of chilled milt of Atlantic salmon, Salmo salar L., using an extender containing
- the TEX-OE heat shock-stimulating factor. Aquaculture Research 41(4):568-571.
- 446 [36] Currie S, Moyes C D, Tufts B L (2000) The effects of heat shock and acclimation temperature
- 447 on hsp70 and hsp30 mRNA expression in rainbow trout: In vivo and in vitro comparisons.
- 448 Journal of Fish Biology 56(2):398-408.
- 449 [37] Di-An F, Jin-Rong D, Yan-Feng Z, et al. (2016) Molecular Characteristic, Protein
- 450 Distribution and Potential Regulation of HSP90AA1 in the Anadromous Fish *Coilia nasus*.
 451 Genes 7(8): 1-12.
- 452 [38] Csermely P, Schnaider T, Soti C, et al. (1998) The 90-kDa Molecular Chaperone Family:
- 453 Structure, Function, and Clinical Applications. A Comprehensive Review. Pharmacol Ther,
 454 79(2): 129-168.
- [39] Pearl L H, Prodromou C (2006) Structure and Mechanism of the Hsp90 Molecular Chaperone
 Machinery. Annual Review of Biochemistry 75(1): 271-294.
- 457 [40] Samali A, Robertson J D, Peterson E, et al. (2001) Hsp27 Protects Mitochondria of
 458 Thermotolerant Cells against Apoptotic Stimuli. Cell Stress & Chaperones 6(1): 49-58.
- 459 [41] Ouigley J T, Hinch S G (2006) Effects of rapid experimental temperature increases on acute
- 460 physiological stress and behaviour of stream dwelling juvenile chinook salmon. Journal of
 461 Thermal Biology 31(5): 429-441.
- 462 [42] Burg V D, E. H (2005) Brain Responses to Ambient Temperature Fluctuations in Fish:
- 463 Reduction of Blood Volume and Initiation of a Whole-Body Stress Response. Journal of
 464 Neurophysiology 93(5): 2849-2855.
- 465 [43] Ortiz M, Lutz P L (1995) Brain Neurotransmitter Changes Associated with Exercise and


466	Stress in A Teleost Fish (Sciaenops Ocellatus). Journal of Fish Biology 46(4): 551-562.
467	[44] Winberg S, Nilsson G E (1993) Roles of brain monoamine neurotransmitters in agonistic
468	behaviour and stress reactions, with particular reference to fish. Comparative Biochemistry
469	and Physiology C Comparative Pharmacology and Toxicology 106(3): 597-614.
470	[45] Bathgate R A D, Oh M H Y, Jason L W J, et al. (2013) Elucidation of relaxin-3 binding
471	interactions in the extracellular loops of RXFP3. Frontiers in Endocrinology 4(13): 1-10.
472	[46] Ganella D E, Ma S, Gundlach A L (2013) Relaxin-3/RXFP3 Signaling and Neuroendocrine
473	Function – A Perspective on Extrinsic Hypothalamic Control. Frontiers in Endocrinology
474	4(128): 1-11.
475	[47] Kania A, Lewandowski M H, Anna Błasiak (2014) [Relaxin-3 and relaxin family peptide
476	receptorsfrom structure to functions of a newly discovered mammalian brain system.
477	Postepy Higieny I Medycyny Doswiadczalnej 68(242): 851.
478	[48] Fiengo M, Gaudio R D, Iazzetti G, et al. (2013) Developmental expression pattern of two
479	zebrafish rxfp3 paralogue genes. Development Growth & Differentiation 55(9).
480	[49] Qing D, Zhen Z (2009) Role of endoplasmic reticulum stress in the pathogenesis of liver
481	diseases. International Journal of Internal Medicine 36(11): 665-668.
482	[50] Wodicka L (2000) Functional and genomic analyses reveal an essential coordination between
483	the unfolded protein response and ER-associated degradation. Cell 101(3): 249-258.
484	[51] Lin J H, Li H, Yasumura D, et al. (2007) IRE1 Signaling Affects Cell Fate During the
485	Unfolded Protein Response. Science 318(5852): 944-949.
486	[52] Fink A L (1999) Chaperone-Mediated Protein Folding. Physiological Reviews 79(2):
487	425-449.
488	[53] Buckley, B. A (2006) The cellular response to heat stress in the goby <i>Gillichthys</i> mirabilis: a
489	cDNA microarray and protein-level analysis. Journal of Experimental Biology 209(14):
490	2660-2677.
491	[54] Alexander R, Marieke V, Mareen N, et al. (2018) Gradual and Acute Temperature Rise
492	Induces Crossing Endocrine, Metabolic, and Immunological Pathways in Maraena Whitefish
493	(Coregonus maraena). Frontiers in Genetics 9(241).

494 [55] Maekawa S, Byadgi O, Chen Y C, et al. (2017) Transcriptome analysis of immune response

- 495 against, Vibrio harveyi, infection in orange-spotted grouper (*Epinephelus coioides*). Fish &
- 496 Shellfish Immunology 70: 628-637.
- 497 [56] Philip A M, Vijayan M M (2015) Stress-Immune-Growth Interactions: Cortisol Modulates
- 498 Suppressors of Cytokine Signaling and JAK/STAT Pathway in Rainbow Trout Liver. PLOS499 ONE 10(1371).
- 500 [57] Rebl A, et al. (2013) Transcriptome Profiling of Gill Tissue in Regionally Bred and Globally
- 501 Farmed Rainbow Trout Strains Reveals Different Strategies for Coping with Thermal Stress.
 502 Marine Biotechnology 15(4): 445-460.
- 503 [58] Bowden T J, Thompson K D, Morgan A L, et al. (2007) Seasonal variation and the immune
- 504 response: A fish perspective. Fish & Shellfish Immunology 22(6): 695-706.
- 505 [59] Song Z, Zhang L Y, Dong H B, et al. (2012) Advances in JAK-STAT Signaling Pathway.
- 506 China Animal Husbandry & Veterinary Medicine 39(06): 128-132.
- 507 [60] Pouliot P, Bergeron S, Marette A, et al. (2009) The role of protein tyrosine phosphatases in
 508 the regulation of allergic asthma: implication of TC-PTP and PTP-1B in the modulation of
 509 disease development. Immunology 128(4): 534-542.
- 510 [61] Morales J K, Falanga Y T, Depcrynski A, et al. (2010) Mast cell homeostasis and the JAK–
 511 STAT pathway. Genes & Immunity 11(8): 599-608.
- 512 [62] Ivashkiv L B, Hu X (2004) Signaling by STATs. Arthritis Res Ther 6(4): 159.
- 513 [63] Madhubanti Basu, Mahismita Paichha, Banikalyan Swain, et al. (2015) Modulation of TLR2,
- 514 TLR4, TLR5, NOD1 and NOD2 receptor gene expressions and their downstream signaling
- 515 molecules following thermal stress in the Indian major carp catla (*Catla catla*). 3 Biotech,
 516 5(6):1021-1030.
- 517 [64] Bagnyukova T V, Lushchak O V, Storey K B, et al. (2007) Oxidative stress and antioxidant
- defense responses by goldfish tissues to acute change of temperature from 3 to 23°C. Journal
 of Thermal Biology 32(4): 227-234.
- 520 [65] Vergauwen L, Benoot D, Blust R, et al. (2010) Long-term warm or cold acclimation elicits a
- 521 specific transcriptional response and affects energy metabolism in zebrafish. Comparative
- 522 Biochemistry and Physiology Part A: Molecular & Integrative Physiology 157(2): 149-157.
- 523 [66] Rawles S D, Green B W, Gaylord T G, et al. (2012) Response of sunshine bass (Morone


- 524 chrysops x M. saxatilis) to digestible protein/ dietary lipid density and ration size at summer
- 525 culture temperatures in the Southern United States. Aquaculture 356-357: 80-90.
- 526 [67] Craig S R, Neill W H, Gatlin D M (1995) Effects of dietary lipid and environmental salinity
- 527 on growth, body composition, and cold tolerance of juvenile red drum (*Sciaenops ocellatus*).
- 528 Fish Physiology and Biochemistry 14(1): 49-61.

1 Figures

3 Fig. 1 : Length distributions of the transcripts and unigenes

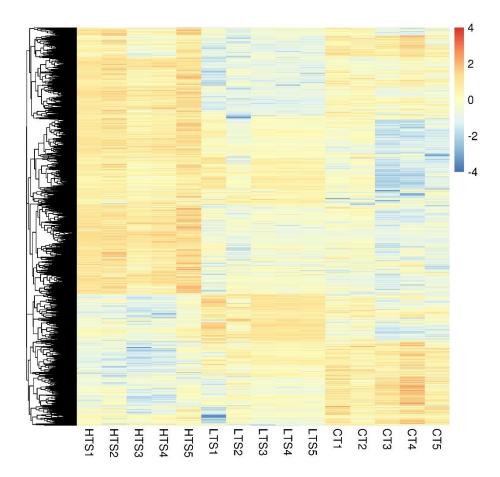
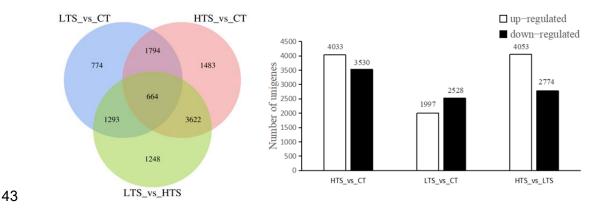
•

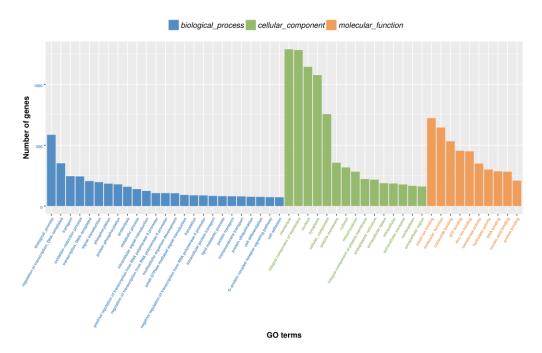
13

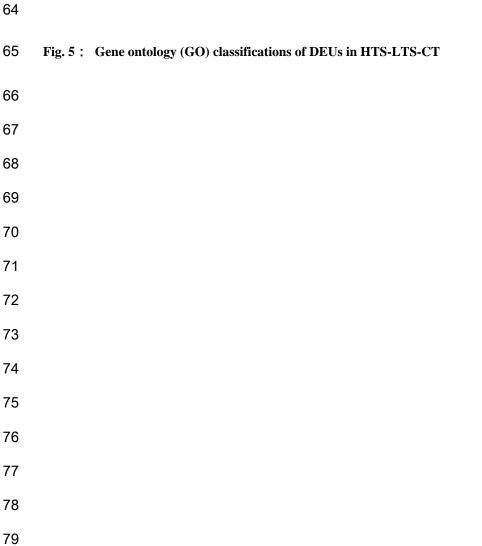
14

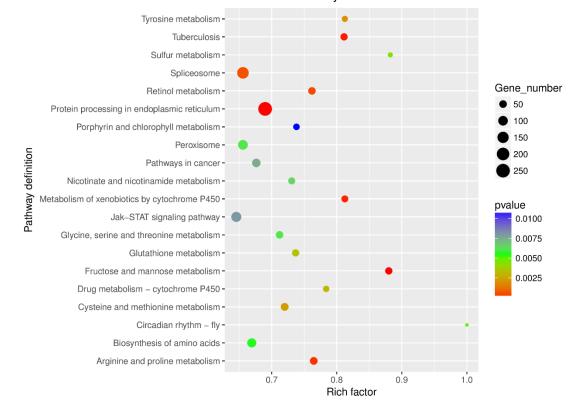
Fig. 2: Pearson correlation between samples

15			
16			
17			
18			
19			
20			
21			
22			
23			
24			
25			
26			
27			
28			

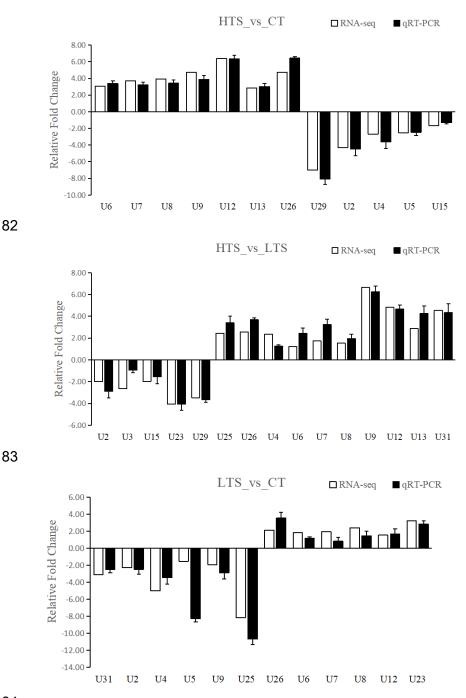

Fig. 3 : Heat map of the differentially expressed unigenes




44 Fig. 4 : Venn diagrams of differential expressed unigenes and differentially expressed unigenes

- 45 in different groups

- *.* 1



Statistics of Pathway Enrichment

81 Fig. 6 : Scatterplot of enriched KEGG pathways for DEUs in HTS-LTS-CT

84

85 Fig. 7 : Comparison of the expressions of RNA-Seq and qRT-PCR results

1 Tables

2 Table 1 : Primers used for qRT-PCR verification of differently expressed genes

Gene	Forward primer (5'-3')	Reverse primer (5'-3')	Length (bp)
U2	TGACAGCAGACGAAGAGT	TCCACAGAGGCATCAGAG	147
U3	TTCACCTTCTTCTGCTTCC	GTTCACTCTGTATTCGTTCTG	435
U4	AGGAGGAGAATGCTGTCA	TGAACAACCACGGATGAG	161
U5	AGTGTTCGTGGCATTCAT	TCTTCTGGTCCTCTGTGT	448
U6	ACTCTAGTGTGCCTGTGT	CTGCTTCTCCTCATCTGAC	362
U7	GACAGCCGCACTAAGATT	TGAAGAAGGAGGAAGAAGAC	430
U8	CTGGAGTGCTGGAGAGTA	GTGCCGTAGTAAGTGTAGG	366
U9	CAGAACAGCCGCATCTTC	ACACCGTCCTTGGTCTTC	311
U12	CTATCTTGTCACCAGCATT	TCACTCAGTCCTTCCTCT	106
U13	GTCTTCTCTTCGCACTCTT	GCCTCATCGTCTGTTCTC	124
U15	GACGCAATGACAGCAATG	TCCTCTCACCACCATAGC	181
U23	ATGACTACAGCAGTGATGAC	GGAGAACAAGAAGATGAAGATG	143
U25	CTGGCTGCTGGACTAATC	AGAGGAGTGAAGGCTGAG	170
U26	TCCTCCTCCTCCTCTTCA	GTCACCTCCACTTCCATAC	110
U29	GCCATTGACGAACATAAGG	CTCCAACTCATCCAGATAGG	354
U31	AACACTGAGCACAACTATGA	AGAGGTGAACTGAGGACTT	302
β-actin	GACCTGACAGACTACCTCATG	AGTTGAAGGTGGTCTCGTGGA	292

- 3
- -
- 4

5

6

8 Table 2 : Overview of assembly results

	Index	All	GC	Min.	Median	Max.	N50	Total
		number	(%)	Length	Length (bp)	Length		Assembled
				(bp)		(bp)		Bases
	Transcripts	86,584	48.05	201	574	13,564	1773	87,499,743
	Unigenes	37,702	47.17	201	445	13,564	1777	35,075,401
9								
10								
11								
12								
13								
14								
15								
16								
17								
18								
19								
20								
21								
22								
23								

24 Table 3 : Summary statistics of transcriptome annotation

	Database	Number	Ratio (%)	
	All	37,702	100.00	
	GO	14,976	39.72	
	KEGG	9,587	25.43	
	Pfam	13,179	34.96	
	eggNOG	16,580	43.98	
	NR	18,272	48.46	
25				
26				
27				
28				
29				
30				
31				
32				
33				
34				
35				
36				
37				

Group	Pearson correlation coefficient	Sig.
HTS - CT	0.988	0.000
HTS - LTS	0.960	0.000
LTS - CT	0.870	0.000

38 Table 4: The correlation coefficient of the results among RNA-Seq and real-time PCR