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Abstract

Humans depend on microbial communities for numerous ecosystem services such as global

nutrient cycles, plant growth and their digestive health. Yet predicting dynamics and function-

ing of these complex systems is hard, making interventions to enhance functioning harder

still. One simplifying approach is to assume that functioning can be predicted from the set of

enzymes present in a community. Alternatively, ecological and evolutionary dynamics of spe-

cies, which depend on how enzymes are packaged among species, might be vital for predict-

ing community functioning. I investigate these alternatives by extending classical chemostat

models of bacterial growth to multiple species that evolve in their use of chemical resources.

Ecological interactions emerge from patterns of resource use, which change as species

evolve in their allocation of metabolic enzymes. Measures of community functioning derive in

turn from metabolite concentrations and bacterial density. Although the model shows consid-

erable functional redundancy, species packaging does matter by introducing constraints on

whether enzyme levels can reach optimum levels for the whole system. Evolution can either

promote or reduce functioning compared to purely ecological models, depending on the

shape of trade-offs in resource use. The model provides baseline theory for interpreting

emerging data on evolution and functioning in real bacterial communities.

Introduction

Many biological processes that humans depend upon–such as global nutrient cycling, plant

growth and digestive health–rely on the action of microbial communities with hundreds or

even thousands of species [1–4]. A key challenge is therefore to understand such complex sys-

tems in sufficient detail to be able to predict overall functioning and how it changes under fluc-

tuating conditions [5, 6].

In both microbes and eukaryotes, measures of functioning such as yield or productivity tend

to increase towards an asymptote as species diversity increases [7]. However, the mechanisms

for these effects, in terms of resource use of species, interactions among species and their dynam-

ics over time, remain largely unknown [8]. Models are needed to identify key features that deter-

mine community functioning, and how we can modify them to enhance function [9, 10].
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The bacteria in our digestive tracts are a notable case [11]. Outnumbering human cells and

containing 300 times as many metabolic genes as the human genome [12], the gut community

breaks down indigestible macromolecules in our diet and releases beneficial compounds [3,

13]. The resulting metabolites provide a source of energy, especially in non-industrialised

diets, and feed into numerous physiological pathways, including appetite regulation and

immune responses [14, 15]. Disruption of the gut microbiota and of metabolite production

leads to gut disease and impaired health.

Despite the wealth of new data coming from metagenome sequencing, it remains unclear

how beneficial functions of microbiomes depend on the action of constituent species. Some

authors argue for widespread functional redundancy and that a far smaller set of species could

perform adequate function [16, 17]. Alternatively, full diversity might be vital for overall func-

tioning, if species have specialized metabolic roles and provide robustness of functioning in

varying conditions such as fluctuation in diet [18]. Metabolic function of component species

can be inferred from genome sequences [19] or from culture or co-culture experiments [20].

The hard part is to map from species metabolism and growth to overall community

functioning.

One simplifying approach is to infer function from metagenomes without considering how

genes are packaged among species [12]. Many animal and plant ecologists would be skeptical

of predicting ecosystem functioning from a homogenized blend of species traits. Although the

metagenome provides a snapshot of the metabolic diversity [21], population dynamics and

hence relative abundances of different functions depend on whole genomes and their growth

in a community of species. However, flux balance approaches for modeling metabolism of sin-

gle cells are useful without considering internal metabolite and enzyme dynamics in detail,

and recently these have been applied to communities [22, 23]. Perhaps species densities shift to

produce concentrations of enzymes at steady-state that are the same at the whole-system level

irrespective of how those enzymes are packaged among species.

Another issue for predicting functioning of microbial communities is evolution of compo-

nent species [24]. In productive communities such as the gut, species are likely to evolve over

short timescales (weeks) in response to changes in physical environment, resource availability,

or species interactions [25, 26]. Evolution in resource use might alter overall functioning of the

community. For example, if species evolve to partition resources or to increase their rate of use

of metabolites, this could enhance degradation of input resources [27]. Alternatively, evolution

might reduce functioning if species evolve to degrade intermediates that are beneficial for

overall functioning. Natural selection operates on individuals rather than on the whole com-

munity, so evolution does not necessarily optimize ecosystem functioning. The interplay

between ecological and evolutionary responses should therefore determine whether function-

ing can be predicted from a metagenome type approach or whether a species-based approach

is required.

I address these questions using a model of species metabolizing input resources via a series

of intermediates (Fig 1). The model is an extension of standard chemostat models of bacterial

population growth [28–30], adding evolution of resource use of each species. It is designed to

use parameters that could be measured in experiments with real microbes, but simplified to

enable general understanding of such systems. Although many additional processes operate in

real systems, the model provides baseline predictions for evolution and functioning in real bac-

terial communities. After illustrating how the model can be used to predict different aspects of

functioning, I evaluate the effects of packaging the same enzymes in different ways among spe-

cies (focusing on the comparison of specialists and generalists), in both non-evolving and

evolving versions.

Evolving microbial communities
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Methods

Ecological model with no evolution

Consider n species with densities Nk (k = 1,2,3,. . .,n) growing in an unstructured environment

via metabolism of m substrates with concentration Si (i = 1 to m). There is flow through the

system at a constant dilution rate D (chemostat conditions). Some substrates are present in the

inflow (at concentration Qi) whereas others are absent and are generated by metabolism of

inflow substrates. Both substrates and bacteria are removed in the outflow.

Growth occurs by metabolizing substrates according to a Monod growth function [29]. The

rate per cell of converting substrate i into substrate j in species k is

Jijk ¼
vijkEijkSi

ðKijk þ SiÞ
ð1Þ

where v is the maximum reaction rate per molecule of enzyme (sometimes called kcat), E is the

number of molecules of enzyme per cell, and K is the substrate concentration at which reaction

rate is half its maximum value (i.e. affinity for the substrate is 1/K, all parameters defined in

Table 1). In order to explore additional analytical solutions, I also considered a simpler model

with a linear growth function, i.e. replacing Jijk = vijkEijkSi.

The resource use of each species is defined by a matrix Ek that specifies the amount of

enzyme per cell for each reaction converting substrate i into substrate j. Species can be special-

ists on one reaction (i.e. only one Eijk>0) or generalists on several. A whole community can

exhibit functional redundancy if species share similar enzyme allocations, or functional
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Fig 1. Schematic diagram showing components and outputs of the model. Multiple coexisting species vary in their

ability to metabolise substrates in a metabolic pathway. A) Substrates are connected through a pathway performed by a

set of enzymes: Eij metabolises i to j. B) Resource use of each species is specified by a matrix of enzyme allocations:

species can either be specialist on one substrate or generalists on multiple substrates. C) Species grow in proportion to

the amount of substrate they metabolise and D) substrate concentrations change as they are degraded or produced by

one or more species. From these variables, various aspects of community functioning can be calculated, such as the rate

of degradation of input resources. In the evolutionary model, the enzyme allocations also evolve over time.

https://doi.org/10.1371/journal.pone.0218692.g001
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diversity if different species harbour enzymes for different steps. Constraints are used to define

pathways for the whole system (Fig 1); for example, here unidirectional catabolism breaking

input resources into derived smaller molecules is assumed (only Eijk above the diagonal are

positive and input resources have the lowest indices i). Pathways can branch (Ei,k is positive for

multiple j) or coalesce (E,jk is positive for multiple i). The total amount of enzyme produced

per cell is assumed fixed across all species [31]: resource use varies because species allocate dif-

ferent proportions of their total metabolic enzyme to different reactions in a linear trade-off

[32]. The effects of varying the trade-off between specialism and generalism is considered

below. For simplicity, enzyme expression is assumed to be constitutive, i.e. there is no plastic-

ity. Alternative modes of expression such as regulated resource switching could be investigated

in future. Kinetics can vary across species and reactions: species with higher v for a given sub-

strate grow more rapidly at high substrate concentrations, those with lower K more efficiently

at low substrate concentrations.

The dynamics are then modelled by the following ordinary differential equations (ODEs),

which sum the metabolism of each substrate in each species:

dSi

dt
¼ DðQi � SiÞ �

X

k ¼ 1; . . . ; n

j ¼ 1; . . . ;m

NkJijk þ
X

k ¼ 1; . . . ; n

j ¼ 1; . . . ;m

NkJjik ð2Þ

dNk

dt
¼

X

i ¼ 1; . . . ;m

j ¼ 1; . . . ;m

cijkNkJijk � DNk ð3Þ

The terms for substrate concentrations represent dilution, metabolism of substrate i and

production of substrate i in turn. The terms for population densities represent growth and

dilution in turn. Parameter cijk is a constant converting metabolism of a given reaction into

bacterial cells, which encapsulates both ATP produced per molecule of substrate and the pro-

portion of ATP devoted to growth [28]. Growth on multiple substrates is assumed to be addi-

tive [30, 33]–substrates are alternative resources that can be metabolised without interference

(empirically reasonable, especially in low nutrient systems, [33, 34]. There are n+m state vari-

ables and up to 2nm(m-1) +m+1 parameters in the fully specified catabolic model (only

parameters above the diagonal for each matrix v, K, E and c). Parameter complexity is

Table 1. List of state variables and parameters.

Term Definition Hypothetical units

Nk Density of species k Cells ml-1

Si Concentration of substrate i mmol ml-1

Eijk Allocation of species k to enzyme metabolising

substrate i to substrate j
Molecules cell-1 (relative to total enzyme content,

assumed fixed)

vijk Maximum reaction rate mmol molecule-1 enzyme

Kijk Half-saturation constant mmol ml-1

cijk Conversion rate from metabolism to bacterial density Cells mmol-1

μk Mutation rate in species k Molecules cell-1 day-1

D Dilution rate ml day-1

Qi Input concentration of substrate i mmol ml-1

a Cost of generalism parameter (Eijk)
a has units molecules cell-1

https://doi.org/10.1371/journal.pone.0218692.t001
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simplified by constraining pathways (i.e. assigning many values to 0) or by restricting which

parameters are free to vary among species and reactions.

Analytical solutions. With continuous flow and no evolution, species growth and metab-

olism lead to steady-state concentrations and species densities [30, 35]. Steady-state solutions

for a linear pathway performed by a set of species each specialized to metabolise just one sub-

strate can be calculated for the Monod model (S1 Appendix, Fig 2). For substrate i used by spe-

cies i, steady-state values of the state variables are:

~Si ¼
DKi

civi � D
ð4Þ

~Ni ¼ ciðQ1 � YiÞ ð5Þ

Yi ¼
X

j¼1 to i

~Sj ð6Þ

for all substrates except the final substrate (S1 Appendix, [29]). These solutions are stable as

long as species i grows faster than it is washed out by the outflow (Fig 2D). If so, the final sub-

strate, m, which is not metabolized, has steady-state concentration ~Sm ¼ Q1 � Ym. These

expressions can be used to calculate various measures of community functioning and to design

possible interventions to enhance functioning (Table 2, S1 Appendix, S1 Fig). Here, I focus on

the steady-state concentrations of input, intermediate and final substrates.

Evolutionary model

I added evolution to the chemostat model by assuming that species evolve through changes

in their enzyme allocation (matrix Ek for species k) over time, modeled as the product of

the genetic variance-covariance matrix (Gk) and the selection gradient, which relates the

mean growth rate of each species ( �Wk) to changes in the expression level of each enzyme in

turn:

dEk

dt
¼ Gkr

�Wk ð7Þ

where the elements of

r �Wk ¼
@ �Wk

@E12

;
@ �Wk

@E13

; . . . ;
@ �Wk

@Eij

 !

ð8Þ

and �Wk is the mean growth rate per cell per unit time [37], i.e. Eq 3 divided by Nk. The diag-

onal elements of matrix Gk are the heritable variation in enzyme expression, μk. Under the

constraint that total enzyme production is fixed and there are no other genetic correlations

among enzymes, the non-diagonal elements are -μk /(m-1). For example, with 2 enzymes

the genetic correlation between them is -1.0, i.e. as one increases in frequency the other

decreases by the equivalent amount. Boundary constraints were included in the simulations

so that changes to enzyme levels above one or below zero were truncated.

Eqs 7 and 8 derive from quantitative genetics models of [38] as applied to clonal popula-

tions by [39]. It assumes large populations and a lack of substructure within species (e.g. diver-

sification) such that changes can be modelled as changes in the mean phenotype of each

population. It is chosen as the simplest model to allow changes in mean resource use without

introducing additional structure in an already complex model (S1 Appendix).

Evolving microbial communities
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Fig 2. Analytical solutions for a linear pathway (A) with specialist species and no evolution. Parameter values were: dilution rate, D = 0.01

(in B and C); input substrate concentration, Q1 = 0.5 (in D and E); all v = 0.2; all K = 1; values of c chosen from a normal distribution with

mean 1 and sd 0.2, = 1.56, 0.80, 0.89, 1.45 for each reaction in turn. Increasing the concentration of input resource increases allows successive

intermediate substrates in the pathway to accumulate up to a maximum steady-state value (B), as species performing those steps are able to

grow faster than the rate of washout (C). Reactions with higher biomass yields per molecule of substrate metabolized (e.g. red and blue) have

lower steady-state concentrations of substrate and a faster increase in species density as input resources increase. Increasing the dilution rate

has a reverse kind of effect: only earlier steps in the pathway can be sustained as dilution rates increase (D and E). For each intermediate

substrate, there is a single dilution rate that maximizes its concentration at steady-state (D), which is the threshold below which the species

that can use that substrate is able to persist (E).

https://doi.org/10.1371/journal.pone.0218692.g002
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Implementation

The model was simulated in the R statistical programming language using the lsoda function

of the deSolve package. Code is available at https://github.com/tim-barra/

BacteriaCommunityEcoEvoModel. Simulations were run for the ecological model (no evolu-

tion) and the evolutionary models in turn: initially for linear pathways with 1, 2 and 3 species,

before implementing a branching and coalescing pathway performed by 8 species. Steady-state

solutions for models with 1 to 3 species for the linear growth function were explored using

SageMathCloud and Collaborative Calculation in the Cloud (CoCalc). The effects of the pack-

aging of enzymes among species were investigated by comparing models with generalists that

express multiple enzymes to models with the same enzymes and values of kinetic parameters

present, but with each enzyme restricted to a different specialist species.

Results

Does packaging of enzymes among species matter for functioning? One

non-evolving generalist

I first consider a single non-evolving generalist that metabolises two input resources with che-

mostat concentration S1 and S2. I assume that kinetic parameters of each enzyme are the same

as in the specialists but the generalist allocates a fraction E1 of its total enzyme to substrate 1

and E2 to substrate 2. Outcomes are more complicated than with two specialists because

dynamics of substrate 1 now also depend on the amount of growth on substrate 2 and vice

versa. If E1 = E2 = 0.5, the input concentrations of each substrate are equal, and both enzymes

have the same kinetic parameters, then ~S1 and ~S2 are the same for the generalist as for the two

specialists (Fig 3A). In all other cases, solutions differ between the generalist and specialist

cases. For example, if E1> E2, then ~S1 is reduced marginally compared to the specialist solu-

tion (for 0.5< E1< 1.0, Fig 3B), whereas ~S2 increases, reaching the input concentration Q2

when no enzyme is allocated to substrate 2 (Fig 3B).

Other parameters have consistent effects: the more profitable substrate for growth (either

higher c or k, or lower m) is metabolised less by the generalist than by two specialists, whereas

Table 2. Example metrics of functioning that can be calculated for a chemostat model with a linear pathway performed by a set of specialist species (see S1 Appen-

dix for derivations).

Scenario Metric of functioning Possible interventions to enhance functioning

Bioremediation Reduce concentration of toxic input substrate in

the outflow, ~S1 ¼
DK1

c1v1 � D

Introduce a species with higher c1v1 or lower K1, which is feasible as it would outcompete

encumbent species [36]. An easier solution is to reduce D.

Waste-water

treatment

Decompose the greatest amount of input substrate

per unit time,

DðQ1 �
~S1Þ

Set dilution rate to intermediate optimum value for production, given by

Dopt ¼
c1v1ðK1þQ1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K1ðK1þQ1Þ
p

Þ

K1þQ1

Animal gut Increase concentration of intermediate substrate

(e.g. short chain fatty acids), ~Si ¼
DKi

civi � D

Introducing a species with lower c1v1 or higher K1 is unfeasible, as it would be outcompeted

by encumbent species and could not invade. Instead could increase mortality of species i, e.g.

with selective antibiotics or phage.

Easier option is to tune D to be slow enough to allow earlier steps in pathway to be sustained

but fast enough that product i cannot sustain growth of a bacterial population, defined by:

D <
cjvjðQ1 � YjÞ

ðKjþQ1 � YjÞ
for all j< i but D >

civiðQ1 � YiÞ

ðKiþQ1 � YiÞ
.

Bioreactor Increase production of end product,
~Sm ¼ Q1 � Ym

Increase concentration of input resource, or reduce Ki or increase civi of species performing

any intermediate reaction (the metabolic step to target with the biggest influence on final

yield be calculated, see S1 Appendix).

If feasible, shorten the pathway, e.g. by finding a species that converts substrate i to substrate i
+2 directly (under certain conditions, see S1 Appendix).

Tune D to the optimal rate for production.

https://doi.org/10.1371/journal.pone.0218692.t002
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the less profitable substrate is metabolised more (Fig 3D, 3E and 3F). This is because growth

generated by metabolism of the more abundant resource increases total enzyme for the rarer

resource, NE2, above levels that could be sustained by a specialist; but devoting half the cellular
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Fig 3. Comparison of steady-state solutions with 2 input resources both metabolized into a single waste product by either two specialists (X-axis) or

one generalist species (Y-axes). Each point represents a separate run with parameter values chosen from uniform distributions (c = 0.1 to 1, v = 0.1 to 1,

K = 0.01 to 5, D = 0.01 to 0.05, Q = random partition, i.e. broken stick, of 10 between the two substrates, E = random partition of 1.0). Parameters were fixed

to be the same for substrate 1 and 2 except for the parameter varied in each panel as described in titles. The same parameters were used for matching

specialist and generalist runs represented by a single point in order to compare the effects of enzyme packing into species. Simulations ran for 2000 time

units.

https://doi.org/10.1371/journal.pone.0218692.g003
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enzyme to the less abundant resource reduces metabolism of the more abundant substrate. In

some cases, one of the specialists cannot persist but a generalist can (vertical sequence of blue

points at ~S2 ¼ 5, Fig 3E), and in others specialists can persist but a generalist cannot (horizon-

tal sequence of points at ~S1 ¼ 5, Fig 3E). Clearly the way that enzymes are packaged among

different species alters functioning in this simplest case. Similar results are obtained for a path-

way in which substrate 1 is metabolized into derived substrate 2, which itself can be metabo-

lized for growth (S1 Appendix, S2 Fig).

Does the packaging of enzymes among species matter? Two non-evolving

generalists

The situation changes when 2 species coexist on 2 substrates. Now, irrespective of whether

there are 2 specialists, 2 generalists, or 1 specialist and 1 generalist, the steady-state concentra-

tion of both substrates is the same as the specialist case, ~Si ¼ D=civi, whenever both species

persist. The only change in metabolic functioning occurs if one or both species cannot persist,

in which case functioning is given by single-species solutions. Coexistence is determined by

the following threshold enzyme allocation for the 2-input model with linear growth function

(Fig 4):

Ethresh ¼
c1v1v2Q1 � v2D

c1v1v2Q1 þ c2v1v2Q2 � v1D � v2D
ð9Þ

If one species devotes more enzyme to substrate 1 than this threshold (e.g. E11> Ethresh)

and the other species devotes less enzyme to substrate 1 than the threshold (i.e. E12< Ethresh),

then the species can coexist. When all enzyme parameters and input concentrations are the

same for both substrates, Ethresh is 0.5: one species needs to be more specialized on substrate 1

and the other more specialized on substrate 2, but even a small divergence from 50:50 alloca-

tion is sufficient for coexistence. Otherwise, if both species devote more enzyme to substrate 1

than this threshold (E11> Ethresh and E12> Ethresh) then the species with the lowest allocation

to substrate 1, i.e. the more generalist, will persist alone, and functioning collapses back to the

single generalist case described in the previous section (S3 Fig). A similar but reverse outcome

occurs if both species devote more enzyme to substrate 2 (E11< Ethresh and E12< Ethresh, S3

Fig). The conclusions also apply to a pathway with 1 input substrate and 1 derived substrate, to

3-species coexistence (S1 Appendix), and to the model with a Monod growth function (S4

Fig). Comparing 2 specialists with 2 generalists, functioning is therefore independent of how

enzymes are packaged among species as long as both species are able to persist in both cases.

The effects of evolution in one and two species models

Steady-state solutions of the linear growth model can be obtained for a single generalist evolv-

ing in its use of 2 input substrates according to Eq 7.

~Si ¼
D
civi

ð10Þ

~E1 ¼
c1v1v2Q1 � v2D

c1v1v2Q1 þ c2v1v2Q2 � v1D � v2D
ð11Þ

~N ¼
c1v1v2Q1 þ c2v1v2Q2 � v1D � v2D

v1v2

ð12Þ
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Evolution therefore simplifies the solution compared to the non-evolving model and yields

a steady-state enzyme allocation with substrate solutions equivalent to 2 specialist species. The

species devotes more enzyme to the resource with the highest balance of growth yield and rate

(i.e. higher value of civiQi−D). A specialist on substrate 1 evolves when growth on substrate 2 is

unsustainable (i.e. ~E1 ¼ 1 when Q2�D/c2v2 as long as growth on substrate 1 is sustainable, i.e.

Q1>D/c1v1). A specialist on substrate 2 evolves with the reverse conditions. A similarly tracta-

ble result is obtained for a single generalist adapting to 1 input substrate 1 and 1 derived sub-

strate: growth is sustained as long as growth on the input substrate is viable; enzyme is always

allocated to the derived substrate 2 as well for all viable solutions; and there is an inherent ben-

efit towards specializing on the input resource, even if the growth yield on both substrates is

equivalent (S1 Appendix, see also [40]). [41] present general results for optimal allocation of

enzyme in a single species using metabolic control theory.

With two evolving species present, there is a region of neutral equilibrium meeting the cri-

teria for coexistence of two species outlined above: one species has E11> Ethresh and E12<

Ethresh, the other the opposite. Systems evolve towards enzyme allocations within the equilib-

rium region determined by starting enzyme allocations and densities (Fig 4), and both species

persist as long as both substrates deliver sustainable growth. The outcome can either be partly

complementary generalists or one specialist and one generalist. Once at steady-state, all sys-

tems deliver the same metabolic functioning as two specialists or a single optimal generalist,

irrespective of starting conditions. There is an eco-evolutionary interaction since the evolution

of species 1 depends on the starting density and enzyme allocation of species 2 and vice versa.

Once a solution with S1 = D/c1v1 and S2 = D/c2v2 is reached, the growth rate of a perfect gener-

alist species or two specialists invading at low frequency is 0, showing that the solution is evo-

lutionarily neutral (S1 Appendix). Similar dynamics are observed for the 1 input, 1 derived

substrate model and for the model with Monod growth (S4 Fig).

Evolution therefore facilitates coexistence of 2 generalists and reduces competitive extinc-

tion. As a result, there is considerable functional redundancy since, within the bounds outlined

above, sets of species with different enzyme allocations can provide the same metabolic

functioning.

Ecology, evolution and functioning in a decomposition pathway: 8 species,

11 substrates

To illustrate metabolic functioning of a more diverse community, I simulated communities

with 8 species performing a decomposition pathway inspired by fermentation of indigestible

polysaccharides in the human colon (Fig 5, [42]). Two input substrates (starch and inulin) are

degraded via linear pathways to a set of shared intermediates (lactate and the short-chain fatty

acid acetate) and 3 terminal metabolites (the short-chain fatty acids butyrate and propionate

plus waste gas, representing CO2 and methane, which I assume is not metabolized). Starch

enters at higher concentration than inulin (3 versus 2 units of concentration). The pathway

could also represent breakdown of two input resources (e.g. cellulose and chitin) by a soil or

Fig 4. Evolutionary trajectories with 2 species and 2 input resources starting from different enzyme allocations.

Species 1 allocates enzyme to substrate 1 more than species 2 does (E11> = E12). (A) All parameters equal, v = 0.5,

c = 0.5, Q1 = Q2 = 5, D = 0.02. (B) With different starting densities, N1 = 0.5, N2 = 0.1. (C) With different conversion

parameters, c1 = 1.0, c2 = 0.5. In each case, species evolve towards a region of neutral equilibrium defined by the

threshold in Eq 9, but the final enzyme allocation and densities depend on starting values. The dark grey region also

indicates the region of coexistence of 2 species for an ecological model with no evolution. The lower light grey triangle

indicates the region where species 1 alone persists and the upper light grey triangle indicates the region where species 2

alone persists.

https://doi.org/10.1371/journal.pone.0218692.g004
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aquatic bacteria community [43]. My aim is to investigate in theory how species packaging

and evolution affects functioning, rather than simulate a real pathway, which in the gut con-

tains many more steps [42].

Again, I randomly allocated enzyme among species so that starting inoculum contained the

same amount of each enzyme in every run. By chance this can result in functional redundancy,

i.e. multiple species sharing similar resource use profiles. Enzyme parameters were chosen at ran-

dom from uniform distributions set to allow general persistence of the diverse system (c = 0.13 to

1, v = 0.13 to 1, K = 0.13 to 1, D = 0.01 to 0.05) and Monod growth was used since analytical solu-

tions were unfeasible. I assumed that both steps out of a branching point in the network have the

same rate parameters and yields, and starting species using that metabolite were allocated equal

amounts of each enzyme (e.g. 33% of enzyme breaking down lactate is assigned to each of the

three breakdown steps to produce propionate, butyrate and acetate in turn).

Ecological model. With the chosen range of parameter values, all 8 species survived in

most runs of the ecological model with specialists (874/1000, average number of species surviv-

ing = 7.8 ± 0.8 sd). With generalists, fewer species survived: only rarely did all 8 species survive

(40/1000, average number of species surviving = 5.3 ± 1.3 sd). The most abundant species

comprised an average 42±12% of total bacterial yield in the generalist communities versus

24±6% of yield in the specialist communities. Surviving species on average allocated more

enzyme to the starch input pathway than starting species, because of the higher influx concen-

tration of starch than inulin, and to acetate degradation, because more energy flows through

acetate than other intermediates in this pathway (arrow thickness, Fig 5). Survivors were also

marginally more distinct from each other in enzyme allocations (mean pairwise Euclidean dis-

tance higher in 622/1000 cases, 2.8% higher on average) and slightly more specialist (mean

allocation to leading enzyme higher in 573/1000 cases, 1.8% higher on average) than the start-

ing species.

The steady-state of input and intermediate substrates was on average lower for the general-

ist community than for the specialist community (colour shading Fig 5 and S5 Fig). In con-

trast, the concentration of terminal metabolites was on average higher for generalists as was

total bacterial biomass (higher for generalist communities than specialist communities in 857/

1000 cases, 5.8% higher on average, S5 Fig). Together this indicates that the whole pathway ran

at a faster rate with generalists than specialists: generalists sustained higher community-level

concentrations of enzymes for less profitable steps than specialist communities could.

Transient dynamics also varied (S6 Fig). On average, the generalist communities took 72%

longer to reach steady-state for input substrates than specialist communities but were 20%

quicker to produce terminal substrates. This occurred because growth on the input substrates

increases concentrations of enzymes for later substrates in the generalist community, whereas

specialists on later substrates only grow once those substrates are present in high abundance.

Evolutionary model. Allowing species to evolve changes the outcomes. Now 8 species

survived in nearly all runs (998/1000) and metabolic functioning converged towards the corre-

sponding specialist run (Fig 6, S7 Fig). Exceptions arose when not all specialist species could

survive, i.e. because one step did not yield sufficient energy to outgrow dilution rate. The

evolving generalists retained some enzyme allocation to those substrates because they do pro-

vide energy for growth, just not enough to sustain a specialist. In many of those cases, all 8 spe-

cies evolved to have near identical phenotypes, i.e. the optimum allocation for a single species

utilizing this pathway (S8 Fig). Even when 8 functionally divergent species survived (905/1000

runs) species tended to converge in enzyme allocation patterns (mean pairwise Euclidean dis-

tance 0.29±0.06sd versus 0.41±0.04sd for surviving generalists in the ecological model).

Evolutionary outcomes depend on the trade-off between specialism and generalism.

The above models assume a linear trade-off that a generalist with equal allocation to two
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enzymes grows half as fast on each substrate (when in excess) as a specialist. To investigate the

effect of stronger trade-offs, I introduced a parameter a, which I term the cost of generalism.

Now the rate of metabolism for each reaction becomes

Jijk ¼
vijkðEijkÞ

aSi

ðKijk þ SiÞ
ð13Þ

and the selection gradient for enzyme ijk becomes
vijkSiaðEijkÞ

a� 1

ðKijkþSiÞ
. In a generalist, all E<1 and so

a>1 causes a concave trade-off and the growth rate on each substrate is lower than with a lin-

ear trade-off. This reflects a cost of generalism, for example maintaining the machinery to

express different enzymes, that increases as more enzymes are present.

A concave trade-off switches the balance towards specialism. Consequently, non-evolving

generalist communities now display worse overall metabolic functioning than specialists, with

higher concentrations of input and intermediate substrates and lower concentrations of termi-

nal products (Fig 7 and S9 Fig). Evolution now improves functioning relative to a non-evolv-

ing community of generalists (S10 Fig), and species diverge in their enzyme profiles (Fig 8).

Simulations started with specialists remained as strict specialists rather than converging as

they did with a linear trade-off. The evolving community did not reach the level of functioning

of a community of strict specialists, however, over the timescale of the simulations. There
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Fig 5. A decomposition pathway inspired by fermentation of indigestible polysaccharides in the human gut by the microbiome.

Simulations of the ecological model with 8 species were run in pairs: one version with a set of specialists degrading each input and

intermediate metabolite in turn and one version with generalists with random complementary allocation of enzymes for each metabolic

step among species (so that each enzyme summed to 1.0 across the set of species, and enzyme allocation summed to 1 within each species).

Parameter values were drawn from uniform distributions (between 0.13 to 1 for c, v and K parameters, and between 0.01 to 0.05 for D).

Values for each enzyme were the same within a specialist versus generalist pair of simulations, but varied among 1000 replicated runs of

those pairs. Red = higher steady-state concentrations of a metabolite for generalists than specialists, on average across 1000 replicates.

Blue = lower concentrations for generalists than specialists. The thickness of arrows is proportional to the difference in average allocation of

enzyme to that step between the starting species of generalists and the final surviving species: values ranged from 0.008 for starch to malto-

oligosaccharides to -0.006 for fructo-oligosaccharide to fructose.

https://doi.org/10.1371/journal.pone.0218692.g005
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remain constraints therefore in reaching enzyme allocations across species that deliver opti-

mum community-level functioning.

Discussion

The packaging of traits among species was important for overall functioning. A community of

generalists functions differently from a community of specialists, because packaging–namely,

which combination of enzymes are found together in the same species versus different spe-

cies–introduces constraints on outcomes. Generalist communities can sustain metabolic steps

that are not profitable enough for a specialist to grow faster than dilution, but in doing so gen-

eralist species lose out from additional growth on more profitable substrates. Transient

dynamics also depend on how enzymes are packaged among species: generalist communities

are slower to respond to an initial excess of input substrate, but quicker to perform linear

decomposition pathways because enzyme levels for later steps are ‘primed’ by earlier ones.

Nonetheless, the models also predict considerable functional redundancy. Functioning con-

verged on the same outcome whenever enzyme concentrations were able to reach optimum

system-level concentrations: either by ecological changes in species densities or evolution of

enzyme allocations. A range of species densities and evolutionary endpoints yielded the same

metabolic functioning: there were multiple ways of packaging enzymes to yield identical func-

tioning. There are reasons to suspect, however, that real communities are less redundant than

found here. First, functional redundancy was only extensive when there was a weak cost to
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Fig 6. Simulations of the simplified gut pathway starting with 8 species. In each plot, the value for the generalist community is the Y axis and the value for the

matching specialist community is the X axis. The top row (A to E) shows results for the ecological model and the bottom row (F to J) shows results for the evolutionary

model. An example of an input substrate (S1, starch, A, F), intermediate substrate on input pathway (S5, glucose, B, G), intermediate substrate on converging pathway

(S8, acetate, C, H) and terminal substrate (S10, butyrate, D, I), and the total bacterial biomass (E, J) are shown. Blue = more species survive in specialist run;

yellow = same number of species survive; red = more species survive in generalist run. Each point represents a separate run with parameters chosen from uniform

distributions (0.13 to 1 for c, v and K parameters, 0.01 to 0.05 for D, E of each species = random partition of 1.0 for the generalist model), which were the same for each

enzyme for the matched specialist and generalist versions of each run. Simulations ran for 20000 time units, with 1000 replicated runs.

https://doi.org/10.1371/journal.pone.0218692.g006
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generalism (i.e. a linear trade-off). Second, I assumed that an enzyme’s kinetic parameters are

the same irrespective of which species it is found in. If some species have faster reactions or

lower saturation constants than others, this would shift competition in their favour. Third, I

assumed that all species can evolve all patterns of enzyme allocation, which is unlikely. It is

therefore likely that species matter even more in real communities than found here.

Evolution generally resulted in a less productive community that yielded lower levels of end

products than a non-evolving community of generalists, when a linear trade-off for generalism

was assumed. With a concave trade-off, evolution now improved metabolic functioning rela-

tive to the non-evolving generalist case, but it still did not always lead to perfect specialism,

which yielded the best overall metabolic pathway rate in these conditions. These results gener-

ate predictions of when evolution should improve or reduce functioning of a set of species

encountering a new environment, which depends on starting phenotypes as well as the selec-

tion gradients on changing enzyme profiles. They also confirm that optimum functioning of

the whole community need not be selected for within species [26]. Models based on assuming

optimality of the whole system might not be applicable to species communities: instead, mod-

els are needed that explicitly consider dynamics and progress towards final states.

The model incorporates eco-evolutionary interactions [44–46]. Species evolution depended

on the traits of other species, and species densities were affected by evolution. I only modelled

one mutation rate here, but because starting conditions affected final outcomes, the speed of

evolution would change the outcome (e.g. lengthening or shortening trajectories in Fig 4). In

the model with a linear trade-off for generalists, species tended to converge in trait values.

Again, this likely reflects the frugal approach to parameters and broad equivalence of species

a=1 a=2

A) Mean conc ‘starch’

0.
0

0.
4

0.
8

1.
2

a=1 a=2

B) Mean conc ‘butyrate’

0.
0

0.
5

1.
0

1.
5

2.
0

Fig 7. Average values of measures of functioning across trials with a linear trade-off for generalists (a = 1) versus a concave trade-off

(a = 2). A) Mean concentration of substrate 1, i.e. input starch. Higher values = less efficient degradation. B) Mean concentration of

substrate 10, i.e. butyrate, a beneficial terminal product. Values are shown for non-evolving generalists (dark grey), evolving generalists

(mid grey) and evolving communities that started as specialists (light grey). Parameter values assigned as described in Fig 6. Standard

errors across 1000 replicate runs are shown.

https://doi.org/10.1371/journal.pone.0218692.g007
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except enzyme allocation. All species experienced the same selection pressure at each time

based on resource availability, but outcomes differed because of different starting phenotypes.

If species differed in enzyme kinetic parameters as well, then selection pressures would vary

across species and lead to a wider range of outcomes.

How do these predictions compare to experimental evidence? Gravel et al. [47] evolved a

set of species to be either more specialist or more generalist in turn and then constructed com-

munities from them. The generalist communities displayed greater productivity than specialist

communities (measured over 72 hours, which was too short for further evolution, hence equiv-

alent to non-evolving simulations), which matches predictions here for the linear trade-off for

generalism.
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exemplar run shown.

https://doi.org/10.1371/journal.pone.0218692.g008
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There is also some evidence for species evolving towards convergent resource use. Foster

and Bell [48] found that random pairs of wild species isolated from tree-hole communities

tend to have negative interactions indicative of overlapping resource use. These findings pre-

sented a paradox as to how species coexist in nature. One answer is that many other environ-

mental parameters vary spatially or temporally and species grow differentially with respect to

those. The model presents an alternative: species coexist in a near neutral equilibrium shaped

by evolutionary responses to resource competition. Four studies of coevolving species in labo-

ratory microcosms, however, find results more consistent with a concave resource trade-off:

species evolved resource partitioning over time leading to increased community productivity

[27, 43, 49, 50].

Clearly more quantitative evaluation is required to investigate such cases. The models do

not currently match experiments in detail. I assumed unusual starting conditions that comple-

mentary generalists are present, in order to investigate the effects of species packaging while

holding other variables constant. This assumption is unrealistic for arbitrary starting species.

Another difference is that I assumed constant resource supply whereas experiments used serial

transfer or growth in batch, which causes fluctuating levels of input versus derived resources

[30]. These modifications could be investigated in future. Another assumption for investiga-

tion is that metabolite use evolves through changes in the allocation of a fixed total enzyme

content per cell to different metabolic pathways. The existence of cellular trade-offs in protein

allocation have support from biochemical theory and data showing that competition for cellu-

lar energy and protein synthesis machinery (i.e. a finite number of ribosomes) limits total pro-

tein amounts and overall growth rate [31,32]. But changes in total protein content and gain or

loss of genes might additionally occur in real systems. More specific consideration of the

genetics of resource use evolution, for example through mutations to regulatory pathways,

might also be needed to predict real systems: the present model assumes the contribution of

multiple genes (i.e. a quantitative trait) but does not consider genetic mechanisms explicitly.

Future versions could also model explicitly the role of bacterial evolution in interactions

between hosts and microbiomes, including greater diversity of metabolites than considered

here and more fine-scale spatial and temporal variation in resource availability along the gut

[51]. This could include potential for community-level selection on microbiome functions that

affect host fitness.

The model provides guidance for predicting microbial functioning from genome data.

Under most conditions, single cell genomics or long-read sequencing technology would be

needed to infer which genes are found together within genomes; a metagenomics gene-level

approach would not be sufficient to infer overall function. More challenging still, replicates

show that functioning depends greatly on quantitative parameter values, not just enzyme pres-

ence or absence. Genome data do not readily yield estimates of kinetic parameters for enzymes.

In principle, the model could be parameterised for quantitative predictions. Species’ growth

rates can be measured on media of each substrate to estimate kinetic and conversion parame-

ters. RNA sequencing could reveal which enzymes are expressed during growth on complex

media [52]. Selection experiments in monocultures could estimate rates of evolution and

genetic correlations between use of alternative resources [53]. A parameterised model could

then be simulated to see if it predicts responses in an experimental community, followed by

exploration of extra processes needed to improve model fit. Alternatively, with whole commu-

nities, a combination of modelling, experimental perturbation [54], and time series of geno-

mic, transcriptomic and metabolic data [55, 56] could be used to estimate key dynamic

quantities. For example, does a non-evolving model parameterised at an early time-point ade-

quately predict dynamics at a later time point or is evolution of species traits needed to explain

later dynamics?
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To conclude, although there are theoretical scenarios in which packaging of enzymes among

species makes little difference to overall functioning (specifically with evolution and a linear

trade-off), it is more likely that the packaging of enzymes among species does affect overall func-

tioning. Species-based ecological and evolutionary models are vital in order to track bacterial

dynamics and functioning and to design interventions for enhancing beneficial functions.
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S1 Appendix. Additional explanation and derivation of the model.

(PDF)

S1 Fig. For a linear pathway of 4 specialists degrading a single input resource: (A) the amount

of substrate 1 degraded per unit time, i.e. DðQ1 �
~S1Þ; (B) The amount of each derived sub-

strate produced per unit time, which is D~Si below the threshold for washout of species i and D

(Q1- Yi) above the threshold. Parameter values were: input substrate concentration, Q1 = 0.5

(in D and E); all v = 0.2; all K = 1; values of c chosen from a normal distribution with mean 1

and sd 0.2, = 1.56, 0.80, 0.89, 1.45 for each reaction in turn. Note the maximum production

rate of substrate 2 (orange) occurs at a higher dilution rate than the threshold for persistence

of species 2 (which is at the inflection point on the orange curve), but for all other substrates

the optimum dilution rate is at the threshold for persistence of the corresponding species.

(PDF)

S2 Fig. Comparison of steady-state solutions with 1 input and 1 derived substrate metabo-

lized by either two specialists (X-axis) or one generalist species (Y-axes). Each point repre-

sents a separate run with parameter values chosen from uniform distributions (c = 0.1 to 1,

v = 0.1 to 1, K = 0.01 to 5, D = 0.01 to 2, E = random partition of 1.0). Input concentration of

substrate 1 was held fixed at 5 units. Parameters were fixed to be the same for substrate 1 and 2

except for the parameter varied in each panel as described in titles. The same parameters were

used for matching specialist and generalist runs represented by a single point in order to com-

pare the effects of enzyme packing into species. Simulations ran for 2000 time units.

(PDF)

S3 Fig. Simulations of a model with 2 input substrates and 2 species. Steady-state concentra-

tions of substrate 1 (A) and 2 (B) for 2 specialists (x-axis) versus 2 generalists (y-axis). Red =

just species 1 survives; blue = just species 2 survives; black = both species survive. Species 1 is

defined as the species allocating most enzyme to substrate 1, i.e. E11>E12. Steady-state con-

centrations for substrates 1 (C) and 2 (D) when the generalist species are able to evolve during

the simulation. Each point represents a separate run with parameter values chosen from uni-

form distributions (c = 0.13 to 1, v = 0.13 to 1, D = 0.01 to 0.05, E = random partition of 1.0).

Simulations ran for 20000 time units.

(PDF)

S4 Fig. Simulations of a model with 1 input and 1 derived substrate and 2 species. Steady-

state concentrations of substrate 1 (A) and 2 (B) for 2 specialists (x-axis) versus 2 generalists

(y-axis). Red = just species 1 survives; blue = just species 2 survives; black = both species sur-

vive. Species 1 is defined as the species allocating most enzyme to substrate 1, i.e. E11>E12.

Steady-state concentrations for substrates 1 (C) and 2 (D) when the generalist species are able

to evolve during the simulation. Each point represents a separate run with parameter values

chosen from uniform distributions (c = 0.13 to 1, v = 0.13 to 1, D = 0.01 to 0.05, E = random

partition of 1.0). Simulations ran for 20000 time units.

(PDF)
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S5 Fig. Simulations of the ecological model of the simplified gut pathway starting with 8

species. Steady-state concentrations of substrates and biomass for specialists (x-axis) versus

non-evolving generalists (y-axis). Blue = more species survive in specialist run; yellow =

same number of species survive; red = more species survive in generalist run. Each point repre-

sents a separate run with parameter values chosen from uniform distributions (c = 0.13 to 1,

v = 0.13 to 1, d = 0.01 to 0.05, E = random partition of 1.0). Simulations ran for 20000 time

units.

(PDF)

S6 Fig. An example of transient dynamics in substrate concentrations of a corresponding

generalist (solid lines) and specialist (dashed lines) community for a linear pathway of 3

species. Similar outcomes were observed for the 8-species community but a 3-species systems

is shown here for clearer visualization. Parameter values for this example: c1 = 0.20, c2 = 0.33,

c3 = 0.23, v1 = 0.28, v2 = 0.57, v3 = 0.24, D = 0.045, Q1 = 6, species 1 E11 = 0.04, E21 = 0.36, E31 =

0.60, species 2 E12 = 0.65, E22 = 0.01, E32 = 0.34, species 3 E13 = 0.32, E23 = 0.63, E33 = 0.05.

(PDF)

S7 Fig. Simulations of the simplified gut pathway starting with 8 species. Steady-state con-

centrations of substrates and biomass for specialists (x-axis) versus evolving generalists (y-

axis). Blue = more species survive in specialist run; yellow = same number of species survive;

red = more species survive in generalist run. Each point represents a separate run with param-

eter values chosen from uniform distributions (c = 0.13 to 1, v = 0.13 to 1, D = 0.01 to 0.05,

E = random partition of 1.0). Simulations ran for 20000 time units.

(PDF)

S8 Fig. The mean Euclidean distance for enzyme allocation between species at the start of

each run and at the end of the run allowing species to evolve. Red = not all specialists sur-

vived in the specialist run. Yellow = same number of species survived in the specialist and

evolving generalist runs. The 1:1 line is shown: in every run, the species are more similar in

their enzyme profile by the end than at the start.

(PDF)

S9 Fig. Simulations of the ecological model of the simplified gut pathway starting with 8

species and a cost of generalism exponent a = 2, i.e. a concave trade-off for generalism.

Steady-state concentrations of substrates and biomass for specialists (x-axis) versus non-evolv-

ing generalists (y-axis). Blue = more species survive in specialist run; yellow = same number of

species survive; red = more species survive in generalist run. Each point represents a separate

run with parameter values chosen from uniform distributions (c = 0.13 to 1, v = 0.13 to 1,

D = 0.01 to 0.05, E = random partition of 1.0). Simulations ran for 20000 time units.

(PDF)

S10 Fig. Simulations of the evolutionary model of the simplified gut pathway starting

with 8 species and a cost of generalism exponent a = 2, i.e. a concave trade-off for gen-

eralism. Steady-state concentrations of substrates and biomass for specialists (x-axis) versus

evolving generalists (y-axis). Blue = more species survive in specialist run; yellow = same

number of species survive; red = more species survive in generalist run. Each point represents a

separate run with parameter values chosen from uniform distributions (c = 0.13 to 1,

v = 0.13 to 1, D = 0.01 to 0.05, E = random partition of 1.0). Simulations ran for 20000 time

units.

(PDF)
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