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Abstract 14 

 15 

Alzheimer’s disease (AD) is a brain disorder that is mainly characterized by a progressive 16 

degeneration of neurons in the brain, causing a decline in cognitive abilities and difficulties in 17 

engaging in day-to-day activities. This study compares an FFT-based spectral analysis against 18 

a functional connectivity analysis based on phase synchronization, for finding known 19 

differences between AD patients and Healthy Control (HC) subjects. Both of these quantitative 20 

analysis methods were applied on a dataset comprising bipolar EEG montages’ values from 20 21 

diagnosed AD patients and 20 age-matched HC subjects. Additionally, an attempt was made 22 

to localize the identified AD-induced brain activity effects in AD patients. The obtained results 23 

showed the advantage of the functional connectivity analysis method compared to a simple 24 

spectral analysis. Specifically, while spectral analysis could not find any significant differences 25 

between the AD and HC groups, the functional connectivity analysis showed statistically 26 

higher synchronization levels in the AD group in the lower frequency bands (delta and theta), 27 

suggesting that the AD patients’ brains are in a ‘phase-locked’ state. Further comparison of 28 

functional connectivity between the homotopic regions confirmed that the traits of AD were 29 

localized in the centro-parietal and centro-temporal areas in the theta frequency band (4-8 Hz). 30 

The contribution of this study is that it applies a neural metric for Alzheimer’s detection from 31 

a data science perspective rather than from a neuroscience one. The study shows that the 32 

combination of bipolar derivations with phase synchronization yields similar results to 33 

comparable studies employing alternative analysis methods. 34 

 35 

Introduction 36 

 37 

Alzheimer’s disease (AD) is a brain disorder that is mainly characterized by a progressive 38 

degeneration of neurons in the brain. As the disease progresses, a cortical disconnection occurs, 39 

causing a deficit in memory and a decline in other cognitive capabilities [1]. AD-related effects 40 

on the patient’s brain can be identified with various tools, one option being the 41 

electroencephalogram (EEG), which measures the electrical activity of the brain. EEG is a fast 42 
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and non-invasive method that provides a high temporal resolution. However, it lacks in spatial 43 

resolution, meaning that it is not the most precise method for the diagnosis of a brain disorder. 44 

 Quantitative EEG (qEEG) analysis takes EEG recordings, commonly interpreted by 45 

clinicians using visualization tools, one step further, giving the possibility of digitally 46 

processing and presenting the signal characteristics in spectral and spatial domains [2]. In a 47 

spectral analysis, a given signal is broken down and examined in the frequency domain. This 48 

type of analysis is useful when finding differences between patients diagnosed with a disorder 49 

and healthy individuals, by examining relevant frequency bands to identify a noticeable change 50 

in the activity within a particular frequency band [3]. A very common yet powerful tool used 51 

in spectral analysis is the Fast Fourier Transformation (FFT) [4]. This algorithm can be used 52 

to find band-specific differences by calculating the power of each band separately. 53 

When conducting a spectral analysis, the power spectral density (PSD) is often used to 54 

determine differences in brain activity between frequency bands. Previous studies have shown 55 

that compared to healthy controls (HC), AD patients show an increase of PSD in the theta band 56 

and a decrease in the alpha band [3, 5, 6]. In AD diagnosis specifically, a spectral analysis can 57 

show discrepancies between AD and other types of dementia, such as vascular dementia (VaD) 58 

[1].  59 

However, while these studies suggest that EEG spectral analysis may differentiate AD 60 

patients from HC [7], several other studies that examined the process of AD have concluded 61 

that this brain disorder is involved with changes in the distributed networks related to memory 62 

[8] and that the changes observed in the frequency bands may not sufficiently reflect this. 63 

Moreover, as mentioned above, patients suffering from AD experience a cortical 64 

disconnection. It is therefore important to examine various Regions of Interest (ROIs) that are 65 

affected by the disease. Hence, more reliable signal processing methods are required to capture 66 

the complexity of this disorder and investigate the processes that underlie the occurring 67 

symptoms [9, 10]. An alternative to a spectral analysis is the connectivity analysis; a method 68 

which allows to study the communications between different regions of the brain [10]. 69 

Functional connectivity analysis measures the degree of synchronization between two 70 

EEG signals; a higher connectivity indicates more effective communication between the 71 

examined brain regions [11]. There are several ways of conducting a functional connectivity 72 

analysis. For instance, Coherence analysis has been used exhaustively in detecting differences 73 

between AD patients and HC. Recent studies indicate a decrease in the coherence levels 74 

between ROIs for the AD [3, 12]. Although coherence has brought some novelty in studies 75 

involving AD patients, it is worth mentioning that it solely takes into account linear 76 

correlations, thus not considering nonlinear interactions. 77 

Nonlinear correlations, on the other hand, can give crucial information in a functional 78 

connectivity analysis. A widely used method for this is the phase synchronization (PS) 79 

analysis. PS looks at the oscillatory activity in two brain regions in terms of their phases [13]. 80 

The oscillations are therefore said to be synchronized if their phases are similar. PS excels over 81 

coherence analysis in terms of being able to account for nonlinearity [14]. Moreover, a study 82 

has shown that differences have been found in terms of synchronization between within-band 83 

connections and between-band connections (e.g., within delta band; between delta and theta 84 

bands) [15]. This study in particular also discovered that AD patients showed much lower 85 

strength of synchronization for between-frequency band analysis when compared to HC.  86 
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PS has several indices of measurement, with the phase-lag index (PLI) and phase-87 

locking value (PLV) being the most used measures [16]. The PLI gets a time-series of phase 88 

differences and computes the asymmetry corresponding to the distribution of these phase 89 

differences [17]. In a recent PS study using the PLI as the index of choice, results showed that 90 

in AD patients, the lower alpha band presented a decrease in functional connectivity situated 91 

in the posterior region [18]. On the other hand, PLV looks at the consistency in phase 92 

difference. The PLV value ranges from 0, indicating random phase differences, to 1 indicating 93 

a fixed phase difference [19]. For example, a study performing cross-frequency coupling (CFC) 94 

using PLV on AD patients reached the conclusion that, oscillations in the alpha band, and more 95 

specifically around the dominant peak, are phase-locked with the gamma band power [20]. 96 

Results were observable in the posterior region of the brain suggesting that AD elicits a region-97 

specific change in functional connectivity.  98 

In sum, the current state-of-the-art calls for a comparison between computational 99 

methods that are used for diagnosis of Alzheimer’s disease. So far, most studies have reported 100 

the outcomes of either a spectral analysis or a connectivity analysis [6, 21-23]. However, 101 

conducting a connectivity analysis and comparing it with a spectral analysis using the same 102 

dataset presents two advantages; 1) it shows which method can yield the most accurate and 103 

complete information in AD diagnosis [3, 24], and 2) it can identify the affected ROIs instead 104 

of solely looking at whether the patient suffers from AD. By finding potential ROIs, it is 105 

believed that this technique could help predicting AD in its early stages of development [10].  106 

The proposed study serves as a comparison between the two methods, namely the 107 

spectral and connectivity analyses. The two types of analysis were conducted on a set of EEG 108 

recordings obtained from patients suffering from AD and from their respective healthy controls 109 

(HC), in an attempt to address the following research question:  110 

RQ1: How does a functional connectivity analysis perform against a spectral analysis 111 

in finding differences between patients diagnosed with Alzheimer’s disease (AD) and 112 

healthy controls (HC)?  113 

Moreover, this study attempted to answer a secondary research question:  114 

RQ2: Can a functional connectivity analysis localize the differences identified in the 115 

brain activity of AD subjects when compared to that of the HCs?  116 

To answer this question, a series of statistical tests were made using the results provided 117 

by the connectivity analysis. 118 

 119 

 120 

Methods and Materials 121 

 122 

Dataset and Preprocessing 123 

 124 

The EEG dataset was provided by the University of Sheffield under a relevant NDA. All 125 

subjects were informed about the experiment and signed an informed consent form. The dataset 126 

consists of 12-seconds, eyes-open recordings of 20 AD-diagnosed patients and 20 age-matched 127 

HC, younger than 70 years of age (Table 1). 128 

 129 
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 130 

Table 1: General information of the AD and HC groups including sample size,  131 

age mean with standard deviation and gender ratio per group 132 

 133 

  

AD 

 

 

HC 

Size N = 20 

 

N = 20 

Age 60 (SD = 4.40) 

 

61 (SD = 6.67) 

Gender (F/M) 

 

8/12 12/8 

 134 

 135 

 136 

 The participants’ EEGs were recorded using the International 10-20 system [25]. To 137 

reduce volume conduction effects from a common reference [26], 23 bipolar derivations were 138 

used in this study. Figure 1 gives an overview of the electrodes and bipolar channels. More 139 

specifically, the following bipolar channels were used: F8-F4, F7-F3, F4-C4, F3-C3, F4-FZ, 140 

FZ-CZ, F3- FZ, T4-C4, T3-C3, C4-CZ, C3-CZ, CZ-PZ, C4-P4, C3-P3, T4-T6, T3-T5, P4-PZ, 141 

P3-PZ, T6-O2, T5-O1, P4-O2, P3-O1, O2-O1. These bipolar channels are the most commonly 142 

used in clinical practice [27]. During the recording, the participants were instructed to reduce 143 

their movements and not to think of anything in particular (i.e., resting state EEG).  144 

The raw EEG signals were preprocessed in EEGLAB (v.2021.0), MATLAB. First 145 

signals were downsampled to 500Hz. Next, a band-pass filter was applied between 0.1 and 100 146 

Hz using EEGLAB functions following the requirements used for the phase synchronization 147 

(see Section ‘Functional Connectivity Analysis’) to avoid phase distortion. Additionally, a 148 

notch filter was used to attenuate signals in 48-52 Hz. 149 

 150 

 151 
Figure 1: EEG signals were collected from 23 bipolar channels based on the 10-20 international system 152 
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Spectral Analysis 153 

 154 

The power spectral density (PSD) of the entire signal for each of the bipolar montages was 155 

calculated using EEGLAB’s spectopo() function. This function makes use of the FFT algorithm 156 

to extract and plot the PSD. The signal was subsequently divided into five frequency bands: 157 

delta (1-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), gamma (36-44 Hz) and the 158 

mean power in each band was computed. These ranges were selected according to [28] and 159 

were also used in the connectivity analysis. A Shapiro-Wilk test was applied to the data to 160 

check for normality and subsequently, a Mann-Whitney U-test was used to compare band 161 

power medians between the groups AD and HC.  162 

 163 

Functional Connectivity Analysis  164 

 165 

Functional connectivity analysis was carried out using the PLV index [28]. First, a continuous 166 

wavelet transform was applied (i.e., the Complex Morlet wavelet), with this wavelet being used 167 

as a kernel to compute the PLV, which is defined by Equation 1:  168 

 169 

𝑃𝐿𝑉(𝑡) =  
1

𝑁
|∑ 𝑒𝑖𝜃(𝑡,𝑛)

𝑁

𝑛=1

|                                                        (1) 170 

 171 

where n is an index for the trial number and θ indicates the phase difference. The phase-locking 172 

value yielded by PLV ranges from 0 to 1, with 1 indicating that two signals have an identical 173 

relative phase across N trials. Conversely, values that approach 0 indicate little to no phase 174 

synchrony between the signals. For every subject, the PLV was calculated for all possible 253 175 

bipolar channel combinations in five frequency bands as defined above. Next, inspired by [29], 176 

‘Global Connectivity’ and ‘Homotopic Pair Connectivity’ were computed using the extracted 177 

PLV values and were compared between the groups. 178 

 179 

Global Connectivity 180 

Global Connectivity was computed by averaging all 253 PLV values that were obtained per 181 

frequency band. This led to a total of five PLVmean values per subject (i.e., one PLVmean per 182 

frequency band). Following the Shapiro-Wilk test, a Mann-Whitney test was used to compare 183 

the mean PLVs between the AD and HC groups. The aim of this evaluation was to determine 184 

whether band-specific differences could be found in the global functional connectivity of the 185 

AD subjects against the HCs.  186 

 187 

Homotopic Pair Connectivity 188 

Homotopic Pair Connectivity was computed by focusing on certain pairs of bipolar derivations 189 

that were homotopic in the Left and Right brain hemispheres (mirror areas of the brain 190 

hemispheres). Based on previous classifications [30, 31], four pairs that were, in part, shown 191 

most affected by Alzheimer’s disease were selected. These pairs are demonstrated in Figure 2. 192 

Pair A consisted of the homotopic pair located in the centro-parietal region of the brain (C3-193 

P3 & C4-P4). Pair B corresponded to the pair in the fronto-central area (F3-C3 & F4-C4), Pair 194 
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C consisted of electrodes located in the parieto-occipital region (P3-O1 & P4-O2) and Pair D 195 

consisted of electrodes placed in the centro-temporal area (C3-T3 & C4-T4). For each pair, the 196 

PLV was computed in the five frequency bands and a Mann Whitney U-test was carried out to 197 

compare the band-specific PLVs between the two AD and HC groups. 198 

 199 

 200 
Figure 2: Homotopic pair connectivity was examined in four mirror regions in the left and right hemispheres 201 

including A) centro-parietal (C3-P3 & C4-P4), B) fronto-central area (F3-C3 & F4-C4), C) parieto-occipital 202 

(P3-O1 & P4-O2) and D) centro-temporal (C3-T3 & C4-T4) connections. 203 

 204 

 205 

Localization of AD using Homotopic Pair Connectivity 206 

To answer the secondary RQ, the four homotopic pairs were compared against each other to 207 

ascertain which areas displayed a significant connectivity difference between the two groups. 208 

To do this, the PLV values obtained from both subject groups in each of the above-mentioned 209 

homotopic pairs were compared using Linear Mixed Effects (LME) regression models. LME 210 

was fit using the lme4() package [32] and was chosen for this analysis because the repeated 211 

measure from the homotopic pairs were correlated, violating the assumptions of other tests, 212 

such as ANOVAs.  213 

The analysis included two steps; first, the LME model was fit with PLVs as response 214 

variable and Pair and Group as predictors. Participants were included as a random factor in the 215 

model. The interaction term was included to prevent the overly enthusiastic outcome that there 216 

is a difference in connectivity between HC and AD for all pairs. Next, following verification 217 

of main effects, post-hoc comparisons were conducted between pairs to examine which brain 218 

regions showed significant difference between the two groups. These steps were only applied 219 

to the frequency bands that showed statistically significant difference between the AD and HC 220 

groups in at least one of the homotopic pairs in the ‘Homotopic Pair Connectivity’ analysis. 221 

 222 

 223 
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Results 224 

 225 

Spectral Analysis 226 

 227 

The Shapiro-Wilk test applied to the band power data rejected the null hypothesis of normal 228 

populations distributions (p < 0.05). Therefore, the non-parametric Mann-Whitney U-test was 229 

used to compare the groups in each frequency band. The test did not find any significantly 230 

different delta power for the AD subjects (Mdn = 4.23) than the healthy controls (Mdn = 4.07), 231 

U = 174, p = 0.45. Similar results were observed for the theta (Mdn = 2.42 vs. Mdn = 4.30, U 232 

= 146, p = 0.15), alpha (Mdn = 1.88 vs. Mdn = 2.29 , U = 162 , p = 0.31), beta (Mdn = 1.67 vs. 233 

Mdn = 1.76, U = 152 , p = 0.2) and gamma bands (Mdn = 0.67 vs. Mdn = 0.90, U = 158 , p = 234 

0.26). Therefore, it can be concluded that the spectral analysis yielded no significant 235 

differences between the AD subjects versus HC in any of the five frequency bands. 236 

 237 

Functional Connectivity Analysis 238 

 239 

Global Connectivity 240 

Figure 3 illustrates the distribution of PLVmean from all subjects in the AD and HC groups in 241 

all five frequency bands. The result of the Mann-Whitney test indicated that the average PLVs 242 

from all channel combinations were significantly higher in the theta band for the AD 243 

participants (Mdn = 0.31) when compared to the HCs (Mdn = 0.26), U = 326, p = 0.0004. This 244 

was not the case for the delta (Mdn = 0.30 vs. Mdn = 0.28, U = 258, p = 0.12), alpha (Mdn = 245 

0.26 vs. Mdn = 0.24, U = 264, p = 0.09), beta (Mdn = 0.18 vs. Mdn = 0.18, U = 226, p = 0.50) 246 

and gamma bands (Mdn = 0.18 vs. Mdn = 0.18, U = 181, p = 0.62).  247 

 248 

 249 
Figure 3: The average PLVs obtained from all connectivity pairs for the five frequency bands (Global 250 

Connectivity). Plots marked with * indicate statistically significant difference (p < 0.05) between AD patients 251 

and HCs. 252 
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 253 

Homotopic Pair Connectivity  254 

Figure 4 illustrate the PLV values obtained from the homotopic pair in the centro-parietal area 255 

(Pair A) of the AD and HC groups in the five frequency bands. The Mann-Whitney test 256 

displayed a significantly higher PLV in the theta band for AD participants (Mdn = 0.64) as 257 

compared to HCs (Mdn = 0.52), U = 292, p = 0.01. No significant results were found for the 258 

other four frequency bands.  259 

 260 

 261 

Figure 4: The PLVs obtained from the homotopic pair in the centro-parietal region (Pair A). Plots marked with 262 

* indicate statistically significant difference (p < 0.05) between AD patients and HCs. 263 

 264 

 265 

Figure 5 illustrates the PLV values obtained from the homotopic pair in the fronto-central 266 

region (Pair B) of the AD and HC groups in the five frequency bands.  The Mann-Whitney test 267 

displayed a significantly higher PLV for AD participants in both the delta (AD Mdn = 0.57, 268 

HC Mdn = 0.45, U = 275, p = 0.04) and theta bands (AD Mdn = 0.65, HC Mdn = 0.50, U = 269 

282, p = 0.03). No significant results were found for the other three frequency bands. 270 

 271 
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 272 
Figure 5: The PLVs obtained from the homotopic pair in the fronto-central region (Pair B). Plots marked with * 273 

indicate statistically significant difference (p < 0.05) between AD patients and HCs. 274 

 275 

 276 

Figure 6 illustrates the PLV values obtained from homotopic pairs in the parieto-occipital 277 

region (Pair C) of the AD and HC groups in the five frequency bands. The Mann-Whitney test 278 

indicated a significantly higher PLV for the AD group (Mdn = 0.64) as compared to the HCs 279 

(Mdn = 0.49), solely in the delta band (U = 293, p = 0.01). The test resulted in insignificant 280 

outcome for the other four frequency bands. 281 

 282 

 283 
 284 

Figure 6: The PLVs obtained from the homotopic pair in the parieto-occipital region (Pair C). Plots marked with 285 

* indicate statistically significant difference (p < 0.05) between AD patients and HCs. 286 
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 287 

Lastly, Figure 7 shows the PLV values obtained from homotopic pairs in the centro-temporal 288 

region (Pair D) of the AD and HC groups in the five frequency bands. The Mann-Whitney test 289 

indicated a significantly higher PLV solely in the theta band of AD participants (Mdn = 0.48) 290 

as compared to the HCs (Mdn = 0.40, U = 280, p = 0.03). The results of group comparisons in 291 

the other four frequency bands remained insignificant. 292 

 293 

 294 
Figure 7: The PLVs obtained from the homotopic pair in the centro-temporal region (Pair D). Plots marked with 295 

* indicate statistically significant difference (p < 0.05) between AD patients and HCs. 296 

 297 

 298 

In sum, the comparison of PLV in the selected homotopic pairs resulted in observing the main 299 

differences in the low frequency bands of delta and theta. 300 

 301 

Localization of AD using Homotopic Pair Connectivity 302 

To compare the connectivity across homotopic pairs and identify the most relevant brain region 303 

affected by AD, LME regression models were applied to the homotopic PLVs in the theta and 304 

delta frequency bands. The model confirming main effects for both Pair and Group was 305 

selected and post-hoc analysis using Tukey adjusted pairwise comparisons of least-squares 306 

means were conducted. Table 2 summarizes the outcome of post-hoc comparisons. 307 

In the theta band, the pairwise difference between AD patients and HCs reached 308 

significance for Pair A (LSM difference = 0.115, SE = 0.0517, p = 0.028) and Pair D (LSM 309 

difference = 0.101, SE = 0.0517, p = 0.038). While not statistically significant, trends were 310 

observed for Pair B (LSM difference = 0.097, SE = 0.0517, p = 0.064), whereas the difference 311 

between the AD and the HC group did not reach significance for Pair C. No significance was 312 

observed in the delta band. 313 

 314 

 315 
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 316 

Table 2: Summary of the results of the post-hoc analysis of the LME regression. 317 
 318 

Homotopic Pair Delta band (1 – 4 Hz) Theta band (4 – 8 Hz) 

A ✘ ✓ 

B ✘ ✘ 

C ✘ ✘ 

D ✘ ✓ 

 319 

 320 

Discussion 321 

 322 

The current study explored differences in the brain activity of patients afflicted with 323 

Alzheimer’s disease compared to a Healthy Control cohort, using quantitative analyses of EEG 324 

signals. In particular, two types of analyses were conducted and compared. First, a conventional 325 

spectral analysis was conducted to find spectral band power differences between AD subjects 326 

and healthy controls. The second approach employed a functional connectivity analysis using 327 

phase synchronization across five frequency bands to compare the intra-brain connectivity 328 

(global or local) between healthy brains and the ones affected by AD-induced dementia. The 329 

results indicated that the spectral analysis did not yield any significant differences between the 330 

AD and HC groups, suggesting that it is not an ideal method for diagnosis of AD based on 331 

EEG. On the other hand, the functional connectivity analysis using the PLV measure showed 332 

significant differences between the groups, both in terms of Global Connectivity and 333 

Homotopic Connectivity. Further analysis of homotopic pairs revealed significantly higher 334 

theta-band connectivity localized in the centro-parietal and centro-temporal regions. 335 

The dataset used in this study consisted of bipolar derivations, instead of unipolar 336 

channel values that are more commonly used in the qEEG analysis [24, 29]. The use of bipolar 337 

derivations is seen as a more advantageous method compared to unipolar or average 338 

referencing methods [33], as it can mitigate the issues associated with common active 339 

referencing such as volume conduction [34]. Volume conduction, which refers to the leakage 340 

of electrical potentials to the neighboring electrodes, can complicate the interpretation of 341 

connectivity metrics. Therefore, the use of bipolar derivations in computation of functional 342 

connectivity is highly recommended as it was demonstrated in a recent study in the field of AD 343 

detection [30]. 344 

The results from the spectral analysis could not confirm any differences between the 345 

Alzheimer’s patients recruited in this study and their age-matched healthy controls. This is 346 

inconsistent with previous reports in which the development of AD was associated with an 347 

increase of delta and theta activity as well as a decrease in alpha and beta activity [6, 15]. An 348 

explanation for the lack of evidence in the current study could be that the AD subjects included 349 

in the sample were only moderately affected by this disorder. While this leaves room for future 350 

research to confirm the most suitable computation approach for detection of severe cases, this 351 
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study proposes functional connectivity as a promising tool in detection of early signs of AD 352 

from EEG signals [35].  353 

The two connectivity analyses that were subsequently carried out, namely ‘Global 354 

Connectivity’ and ‘Homotopic Pair Connectivity’, displayed increased communication 355 

between brain networks in the AD subject group when compared to the HCs. These findings 356 

were first identified in the Global Connectivity analysis and subsequently confirmed in the 357 

Homotopic Pair Connectivity analysis. The Global Connectivity analysis gave an overview of 358 

the AD process in the brain. Although it resulted in identifying higher connectivity distributed 359 

in the brains of AD group, it could not localize the effect. Indeed, the effect of Alzheimer's 360 

disease tends to be more prominent in some areas of the brain than others [30, 31], hence 361 

justifying a motive to pursue a further analysis with the Homotopic Pair Connectivity. Similar 362 

to the band division performed to retrieve the PSD in a spectral analysis, in functional 363 

connectivity studies involving AD subjects, electrode pairs can be singled-out and evaluated 364 

separately, instead of combining them all together [36]. The analysis of homotopic pairs 365 

revealed a significant difference of connectivity in the delta band of the pairs in the fronto-366 

central and the parieto-occipital regions whereas these effects were diminished in the Global 367 

Connectivity analysis which only found a significant difference between the groups in the theta 368 

band.  369 

The result indicating a higher functional connectivity for the AD brains conflicts with 370 

the study of Hata et al. [10] who reported a lower lagged phase synchronization in delta and 371 

theta bands of AD patients. Indeed, a decreased connectivity between brain regions can be 372 

expected, as AD is known to cause neuronal loss and damage of neural pathways [1, 8, 20]. 373 

However, other studies suggest that the impact of such damage is only reflected on fast signals 374 

as healthy participants have higher brain connectivity in alpha and beta bands [17, 18] but not 375 

in the lower frequency bands. On the other hand, it has been shown in the past that patients 376 

suffering from neuropsychiatric disorders such as schizophrenia and epilepsy display increased 377 

functional activity between brain networks as a sign of anomaly in information communication 378 

[37, 38]. In the study of Cai et al. [15], similar patterns were reported for AD patients, where 379 

the connectivity within the same frequency band (intra-band connectivity) was stronger in AD 380 

brains than in the healthy brain whereas the connectivity between the frequency bands (inter-381 

band connectivity) was significantly weaker. Observing higher synchronization values in the 382 

lower frequency bands for AD subjects can therefore be interpreted as a sign of brain 383 

dysfunction [15, 18]. More specifically, this study demonstrated that the brains affected by 384 

Alzheimer’s disease seemed to be in a ‘phase-lock’ state, causing a high connectivity in the 385 

low frequency bands; an observation that is well in line with the existing literature [15, 17, 30, 386 

36, 39].  387 

The “Localization of AD” analysis reached the conclusion that there was a significant 388 

difference in the connectivity between the AD and HC groups in the theta band for two out of 389 

four homotopic pairs. The answer to the secondary research question (RQ2) is therefore 390 

positive; it is possible to localize to some extent the differences between a healthy brain and 391 

one suffering from AD-induced dementia. The findings of this study therefore provide further 392 

evidence for damaged neural connections and consequently abnormal network dynamics in 393 

AD-affected brains particularly in the centro-parietal and centro-temporal regions. While older 394 

studies such as [40] suggested that the effects of AD are not situated in one specific area of the 395 
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brain, the regions identified by this study are in line with the report of more recent studies such 396 

as Deng et al. [41] which observed a significant decrease in signal complexity of the AD group 397 

in the occipito-parietal and temporal regions of the brain using ‘multivariate multi-scale 398 

weighted permutation entropy’ (MMSWPE) [41].  399 

Clearly, this study is not without limitations. A first limitation arises from the duration 400 

of the epochs that were available in the dataset (12s per subject). Longer epochs would have 401 

provided more EEG samples for phase synchronization analysis as well as an opportunity to 402 

evaluate the dynamic changes of connectivity over time as it had been previously done in Zhao 403 

et al. [30]. Another limitation involved the number of participants. The dataset used in this 404 

research consisted of 20 AD participants and 20 age-matched HCs. Given the individual 405 

differences inherent to the progress of AD, a larger dataset would have been optimal to yield 406 

more reliable results. Moreover, this study made use of the phase-locking value as an index for 407 

phase synchronization as the data was recorded in a bipolar manner and therefore the analysis 408 

was considered robust to the common source effects [27, 30]. Future research could use other 409 

indices of functional connectivity, such as coherence and phase-lag index (PLI), to investigate 410 

their efficacy is detecting AD impacts on the brain activity. 411 

Finally, it shall be noted that this study applies a neural metric for Alzheimer’s detection 412 

from a data science perspective rather than a neuroscience one. This implies that the 413 

methodology employed in this study strived to find an accurate tool for detection of AD in 414 

EEG signals, rather than attempting to explain the cognitive and neural mechanisms the 415 

underlie the observed effects between AD participants and healthy controls. In this case, the 416 

findings of this research are well in line with the existing literature regarding AD detection and 417 

brain connectivity and show that the combination of bipolar derivations with phase 418 

synchronization can yield comparable results to studies that used other connectivity methods 419 

This qEEG analysis could therefore be considered as secondary tool, to be used alongside the 420 

visual EEG analysis employed by clinicians.  421 

 422 

Conclusion 423 

 424 

This research served to find a promising tool for diagnosis of early signs of Alzheimer’s disease 425 

from brain activity by comparing two quantitative EEG methods, namely spectral analysis and 426 

functional connectivity analysis, in two groups of AD patients and age-matched Healthy 427 

Controls. The results indicated that the old-school spectral analysis failed to yield any 428 

statistically significant results that could help differentiate a brain affected by AD from a 429 

healthy one, whereas the functional connectivity analysis using phase synchronization found a 430 

significantly stronger global ‘phase-locked’ state in theta activity of AD-affected brains. 431 

Moreover, by extracting functional connectivity in four homotopic pairs of electrodes, it was 432 

possible to localize significant differences concerning the theta band in the centro-parietal and 433 

centro-temporal areas of the brain. To conclude, the findings of this research show that 434 

functional connectivity analysis using phase synchronization offers a promising quantitative 435 

method for future research in detection of AD. This method in combination with the standard 436 

cognitive tests that are commonly employed in dementia screening can put forward a more 437 

accurate diagnosis for patients who suffer from early symptoms of AD.  438 
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Data Availability 441 

 442 

The raw dataset used for this study is under a Non-Disclosure Agreement (NDA) and is 443 

therefore not available to the public.  444 

The code used to support the findings of this study have been deposited in the GitHub 445 

repository (https://github.com/SemeliF/AD_paper). 446 
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