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Brain maps, or atlases, are essential tools for studying brain function and organization. The abundance of avail-

able atlases used across the neuroscience literature, however, creates an implicit challenge that may alter the

hypotheses and predictions we make about neurological function and pathophysiology. Here, we demonstrate

how parcellation scale, shape, anatomical coverage, and other atlas features may impact our prediction of the

brain’s function from its underlying structure. We show how network topology, structure-function correlation

(SFC), and the power to test specific hypotheses about epilepsy pathophysiology may change as a result of atlas

choice and atlas features. Through the lens of our disease system, we propose a general framework and algo-

rithm for atlas selection. This framework aims to maximize the descriptive, explanatory, and predictive validity

of an atlas. Broadly, our framework strives to provide empirical guidance to neuroscience research utilizing the

various atlases published over the last century.
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Introduction1

How we define anatomical brain structures and relate those2

structures to the brain’s function can either constrain or en-3

hance our understanding of behavior and neurological dis-4

eases1–4. Discoveries by scientists like Carl Wernicke and5

Pierre Paul Broca, who mapped specific brain regions to speech6

function, in addition to case studies from Phineas Gage and7

H.M., who lost specific brain regions with resultant changes8

in brain function and behavior, exemplify how brain structure9

and function are fundamentally linked5–7. Properly labeling10

brain structures is paramount for enabling scientists to ef-11

fectively communicate about the variability between healthy12

individuals and about the regions involved in neurological13

disorders8. Yet, no consensus has been reached on the most14

appropriate ways to label and delineate these regions, as ev-15

ident by the wide variety of brain maps, or atlases, defining16

neuroanatomical structures9.17

In common usage, an atlas refers to a “collection of maps”10
18

that typically defines geo-political boundaries and may include19

coarse borders (continental), fine borders (city), and anything20

in between (country; Fig. 1a, left). Borders11 are usually con-21

sistent across atlases of the world. In contrast, atlases of the22

brain are not consistent. Four separate atlases (Fig. 1a, right)23

may define the superior temporal gyrus di�erently. For ex-24

ample, approximately ninety percent of the anterior superior25

temporal gyrus in the Harvard-Oxford atlas16 overlaps with26

the posterior superior temporal gyrus in the Hammersmith27

atlas17. Atlases may also di�er in other ways, including parcel- 28

lation size, neuroanatomical coverage, and complexity of brain 29

region shapes. For instance, the Yeo atlas18 contains 7 or 17 30

parcels while the Schaefer atlases19 may have between 100 31

and 1,000 parcels. Complicating matters further, atlases can 32

di�er in their intended use. The MMP atlas20 was intended 33

for surface-based analyses21, yet a volumetric version (without 34

subcortical structures) was independently created and used in 35

connectivity studies22. The plethora of available atlases poses 36

a problem for reproducibility in studying healthy and diseased 37

populations and for metanalyses describing the involvement 38

of di�erent regions of the brain in various diseases. This has 39

been termed the Atlas Concordance Problem4. 40

In the present study, we perform an extensive evaluation of 41

the available atlases in the neuroscience literature (Table 1) by 42

examining the e�ect of varying features such as parcellation 43

size, coverage, and shape (Fig. 1b) on structural connectivity 44

(Fig. 1c). We also examine how atlas choice changes structural 45

network topology by measuring structure-function correlation 46

(SFC) using an atlas-independent measure of functional connec- 47

tivity (Fig. 1d). We utilize a total of 55 brain atlases, including 48

many routinely used in common neuroimaging software. Note 49

the important distinction between the terms atlas, template, 50

and stereotactic space9 (see Fig. S1). We found that di�erent 51

atlases may alter the power to test a hypothesis about epilepsy 52

pathophysiology that seizures propagate through the underly- 53

ing structural connections of the brain. This hypothesis has 54

been previously supported in prior research13,14,23,24. 55
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Fig. 1. Many brain atlases are available in the neuroscience literature. | a, In common usage, an atlas refers to
a “collection of maps”10 that defines geo-political borders at di�erent scales. Although borders11 are usually consistent
across atlases of the world, they are typically not consistent across atlases of the brain. Four separate atlases (left-to-right:
CerebrA, AAL, Hammersmith, Harvard-Oxford) may define the superior temporal gyrus di�erently. The lack of consistency
across these labels poses a problem for reproducibility in cognitive, systems, developmental, and clinical studies, as well as
metanalyses describing the involvement of di�erent regions of the brain in various diseases4. This challenge has been previously
referred to as the Atlas Concordance Problem. b, Atlases can have varying features (see also Table 1). c, Thus, all current
connectivity studies in neuroscience may not accurately reflect some fundamentally “true” architecture. For example, atlases
with either large or small parcels may a�ect the structural connectivity matrices that are used to define the "true" network
architecture of the brain, and subsequently that are used to test hypotheses or make predictions about the brain. d, When
combined with white matter tracts reconstructed from di�usion MRI, atlases can be used to measure how di�erent regions of
the brain are structurally connected (i). Similarly, intracranial EEG (iEEG) implants can record neural activity to measure
how di�erent regions of the brain are functionally connected (ii). Technologies such as fMRI, MEG, and many others can also
measure functional connectivity. The statistical similarity between structural and functional connectivity measurements can be
calculated (e.g., structure-function correlation; SFC). Such estimates have been used to better understand the pathophysiology
of disease. In this study, we evaluate how the varying atlases may alter the power to test a specific hypothesis about the brain’s
structure-function relationship in epilepsy.

In the context of our experimental design, we propose a56

new framework outlining how to appropriately choose an atlas57

when designing a neuroscience experiment. This framework is58

derived from historical foundations for assessing the validity 59

and e�ectiveness of animal models25, network models26, and 60

psychometric tests27, which try to maximize the (1) descrip- 61
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Table 1. Atlases. | Atlas sources are detailed in Table S1 and abbreviations are in the glossary. S: Structurally defined atlas; F:
Functionally defined atlas; M: Multi-modally defined atlas; V: A variably defined atlas that may be structurally, functionally,
or multi-modally defined; ROI: region of interest; HCP: Human connectome project dataset12; MS: multiple sclerosis.

tive, (2) explanatory, and (3) predictive validity26 of a model.62

Atlases are a tool for investigators to test for causality and63

to make predictions about the brain. Thus, this framework64

incorporates a short discussion on explanatory modeling and 65

predictive modeling, each with di�erent goals ("To Explain or 66

to Predict?"15). A one-size-fits-all approach may not exist for 67
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Fig. 2. Atlas morphology: sizes and shapes. | a, Volume distribution of atlas parcellations demonstrating the diversity of
parcellation sizes. b, Parcellation sphericity distributions illustrating how the shapes of di�erent parcellations may not be
uniform. c, Volumes versus sphericity showing how some atlas parcellations may be small and spherical, while others may be
large and non-spherical. This illustrates the non-uniformity in atlas parcellations. d, Volumes and sphericity of random atlases
showing the uniformity of sphericity with changing volumes. Random atlases allow us to study (1) the e�ect of parcellation
scale without the confound of shape e�ects and (2) the need for accurate anatomical boundaries to test a hypothesis about the
structure-function relationship in the brain at seizure onset. Numbers in legend represent the number of parcellations for each
random atlas. Remaining atlases are in Fig. S2.

selecting an atlas, nor should it28; while there is one Planet68

Earth with a single atlas for a particular use (e.g., an atlas69

of the geo-political borders for a given point in time), there70

are many brains, with anatomical and functional variability71

across populations and species28. We hope our framework72

provides empirical guidance to neuroscience research utilizing73

the various atlases published over the last century.74

Results75

Clinical Data. Forty-one individuals (mean age 34 ± 11; 1676

female) underwent High Angular Resolution Di�usion Imaging77

(HARDI), composed of thirteen controls (mean age 35 ± 13; 78

6 female) and twenty-eight drug-resistant epilepsy patients 79

(mean age 34 ± 11; 12 female) evaluated for surgical treatment. 80

Of the twenty-eight patients, twenty-four were implanted with 81

stereoelectroencephalography (SEEG) and four with electro- 82

corticography (ECoG). Ten SEEG patients (mean age 34 ± 8; 83

4 female) had clinical seizure annotations, and the first seizure 84

from each patient (mean duration 81s) without artifacts was 85

selected for SFC analyses. Patient and control demographics 86

are included in Table S2. 87
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Fig. 3. Structural network di�erences between atlases. | a, Density, mean degree, mean clustering coe�cient, charac-
teristic path length, and small worldness were calculated for structural connectivity networks. A subset of atlases is shown.
Remaining atlases studied are shown in Fig. S3. The average parcellation volume was calculated for each atlas and the
corresponding network measure was graphed as the mean of all subjects (N=41; 13 controls, 28 patients). b, Controls and
patients were not significantly di�erent in density for the AAL2 atlas (Mann-Whitney U test), illustrating that global structural
network measures are similar between cohorts. However, specific edge-level connections between cohorts may be di�erent, and
characterizing these di�erences is out of the scope of this manuscript. Controls and patients were separated and shown in
Fig. S4. Network measures using di�erent threshold are shown in Fig. S5.

Atlas Morphology: Sizes and Shapes. We hypothesized that88

atlas morphological properties, including size and shape89

(Fig 2), a�ect SFC. To test this hypothesis, we first quanti-90

fied the distributions of parcellation sizes (Fig 2a) and shapes91

(Fig 2b) in various atlases. These results exemplify the diver-92

sity of atlas parcellation morphology. Fig 2c shows a compari-93

son of individual parcellation volumes and sphericities. The94

remaining atlases are shown in Fig. S2. In contrast to standard95

atlases, random atlases have constant sphericity with respect96

to volume size. Note that the distribution of parcellation97

shapes (i.e. sphericity) is similar across parcellation sizes in98

random atlases and their parcellations may not represent true99

anatomical or functional boundaries. Thus, random atlases al-100

low us to study how parcellation scale a�ects network structure101

and SFC while keeping the e�ect of shape constant. Crucially,102

random atlases also allow us to explore if accurate and pre-103

cise anatomical boundaries are essential in some experimental104

designs29.105

Varying atlases affect structural network topology. Although106

the morphology of atlas parcellations is diverse, we aimed to107

investigate how these morphological characteristics (partic-108

ularly parcellation scale) a�ect structural network topology109

(Fig. 3). Networks are the basis upon which we compute SFC,110

and not necessarily morphological characteristics, therefore, 111

we measured how network density, mean degree, characteristic 112

path length, mean clustering coe�cient, and small worldness 113

change as a function of parcellation scale (Fig. 3a). We found 114

that the change in these network measures are congruent be- 115

tween standard and random atlases and previous studies30. 116

We also show that mean density, a global network measure, 117

is similar between our control (N=13) and patient (N=28) 118

cohorts (Fig. 3b). 119

Varying atlases affect SFC: single subject. Fig. 4 illustrates 120

an overview of how SFC is calculated. Structure is measured 121

with high angular resolution di�usion imaging (HARDI) and 122

function is measured with SEEG electrode contacts. Structural 123

connectivity matrices are generated based on the atlas chosen 124

(Fig. 4a) and functional connectivity matrices are generated 125

based on broadband (1 – 127 Hz) cross-correlation of neural 126

activity between the electrode contacts in widows of time 127

(Fig. 4b, see Methods section on "Functional Connectivity 128

Network Generation"). Thus, the structural network is static 129

while the functional network is computed across time. The 130

connectivity matrices shown are example data from a single 131

patient, sub-patient07. Functional connectivity matrices are 132

shown for 6 hours before seizure onset, 90 seconds before 133
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Fig. 4. Structure-Function correlation in a single patient using di�erent atlases. | a, Example atlases and structural
connectivity matrices. b, Functional connectivity matrices are computed from SEEG recordings during the interictal, preictal,
ictal, and postictal periods. During each period, the SEEG data is binned into non-overlapping windows (the vertically stacked
matrices) to create time varying representations of functional connectivity. Broadband cross correlation matrices are shown
for sub-patient07 at 6 hours before seizure onset, 90 seconds before seizure onset, 40 seconds after seizure onset (t = 40), 88
seconds after seizure onset (seizure duration = 89 seconds), and 180 seconds after seizure onset (or 91 seconds after seizure
termination). c, Each functional connectivity matrix is correlated to a structural connectivity matrix of a given atlas. Spearman
Rank Correlation is measured between all time points and all atlases for each patient. Lines of best fit are for visualization
purposes only. d, SFC is graphed at each time point for four example standard atlases (Hammersmith, Craddock400, AAL2,
and CerebrA), and four example random atlases (30, 100, 1k, and 10k parcellations). SFC increases during seizure state
for some standard atlases (Craddock 400, AAL2, and CerebrA atlases). This result follows previous SFC publications with
ECoG13,14. However, SFC does not increase for the Hammersmith atlas. These findings highlight that the power to detect a
change in the structure-function correlation at seizure onset, and thus the ability to probe the hypothesis that seizure activity is
correlated to brain structure, may be reduced using some atlases. The use of di�erent atlases may contradict previous studies.

seizure onset (t = -90), 40 seconds after seizure onset (t =134

40), 88 seconds after seizure onset (seizure duration = 89135

seconds), and 180 seconds after seizure onset (91 seconds after136

seizure termination). Each functional connectivity matrix137

time window was correlated to each structural connectivity 138

matrix, yielding a SFC at each time window (Fig. 4c). Each 139

point represents the structural edge weight between two brain 140

regions and their corresponding functional connectivity edge 141
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Fig. 5. Structure-Function Correlation in multiple patients using di�erent atlases. | SFC for ten standard atlases
and five random atlases using SEEG broadband cross-correlation matrices averaged across all patients with clinically annotated
seizures (N = 10). Resting state SFC (rsSFC) is the SFC during the interictal period. The change from preictal to ictal SFC
is �SFC. SFC was similarly calculated for random atlases and shows that rsSFC and �SFC may change with parcellation
scale. These findings may be concerning given that the inherent structure-function relationship in the brain is not necessarily
changing at resting state, but its measurement is greatly a�ected by atlas choice alone.

weight in broadband cross-correlation. A line of best fit is142

shown for visualization, and r values represent Spearman rank143

correlation for that time point. SFC was graphed for all144

time points during the interictal, preictal, ictal, and postictal145

periods for this patient in Fig. 4d.146

Four example standard and random atlases are graphed.147

We show that SFC increases during the ictal state for many148

atlases (CerebrA, AAL2, Craddock 400), but not all atlases149

(Hammersmith). The increase in SFC during seizures follows150

previous SFC studies using ECoG13,14. Similarly, SFC in-151

creases for a subset of random whole-brain atlases. While152

parcellation scale may a�ect SFC, it is not the only feature153

a�ecting SFC – the Hammersmith and AAL2 atlases have154

similar parcellation scales yet diverging neuroanatomical prop-155

erties and SFC dynamics. These findings highlight inference156

from one type of atlas may suggest that seizure activity is not157

correlated to brain structure, contradicting previous studies13.158

Varying atlases affect SFC: multiple subjects. Fig. 5 shows159

SFC for ten standard atlases and five random atlases using160

SEEG broadband cross-correlation metrics averaged across 161

all patients with clinically annotated seizures (N = 10). The 162

AAL2 atlas shows a statistically significant increase in SFC 163

from preictal to ictal periods (p < 0.05 by Wilcoxon signed 164

rank test after Bonferroni correction for 55 tests). This change 165

from preictal to ictal SFC is denoted DSFC. Using the AAL2 166

atlas, this finding supports the hypothesis that seizure activity 167

propagates and spreads via axon tracts making up the underly- 168

ing structural connectivity of the brain13,14. SFC was similarly 169

calculated for random whole-brain atlases. A notable finding 170

is that during the interictal period, resting state SFC (rsSFC) 171

increases at larger number of parcellations (i.e. smaller parcel- 172

lation volumes). We show that rsSFC is observably a�ected by 173

parcellation scale when plotting the random atlases in Fig. 5 174

(bottom row). These findings may be concerning given that 175

the inherent structure-function relationship in the brain is not 176

necessarily changing at resting state, but its measurement is 177

greatly a�ected by atlas choice alone. 178
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Fig. 6. The power to test a hypothesis about epilepsy pathophysiology changes depending on atlas choice | a,
Resting state SFC (rsSFC) decreases with larger parcellation volumes (moving left to right). Random atlases are shown in
blue, and select standard atlases are shown in red. Points represent the average across all patients, and bands represent 95%
confidence intervals. b, �SFC increases with larger parcellation volume (moving left to right). Broadly, |DeltaSFC may be
interpreted as the change in SFC with respect to disease (e.g. a seizure) and non-disease states, and this change has been used
to characterize and make inferences on many neurological diseases. These results exemplify that parcellations that are either
too coarse (large volumes) or too fine (small volumes) may not adequately capture the underlying SFC of the brain or its
dynamics with relation to a neurological disease. c, A subset of atlases show a di�erence in preictal and ictal SFC. d, The
e�ect size between preictal and ictal SFC is calculated for all 55 atlases used in this study. Many atlases commonly used in the
neuroscience literature have comparable e�ect sizes to random atlases. The standard atlases with the greatest e�ect size (and
thus power) are the Harvard-Oxford and AAL3 atlases. These atlases outperform many random atlases (where anatomical
boundaries are not followed) and may indicate that their parcellation scheme captures the structure-function relationship in
the brain at seizure onset with DTI and iEEG.

Varying atlases affect resting state SFC and �SFC. Resting179

state SFC (rsSFC) and the change in SFC (�SFC) from180

preictal to ictal periods are a�ected by parcellation scale181

(Fig. 6). Fig. 6a shows how rsSFC decreases with larger average182

parcellation volumes (moving left to right). A large average183

parcellation volume for a given atlas generally means there is184

a fewer number of total parcellations (e.g. the MNI structural185

atlas has a large average parcellation volume given only nine186

parcellations). In contrast, Fig. 6b shows �SFC increases with187

larger parcellation volumes (moving left to right). Broadly,188

�SFC may be interpreted as the change in SFC with respect to189

a disease (e.g. a seizure) and non-disease states. This change190

metric has been used to characterize and make inferences in191

many neurological disorders31,32. Only a subset of atlases192

show a change in SFC at seizure onset (Fig. 6c). These results193

exemplify that either overly coarse or fine parcellations may194

not adequately capture the underlying SFC of the brain or its195

dynamics with relation to a neurological disease.196

Atlas choice affects the power to test a hypothesis. The e�ect197

size between preictal and ictal SFC is calculated for all 55198

atlases used in this study (Fig. 6d). Cohen’s d and the dif-199

ference between the mean ictal and mean preictal SFC are200

shown. Atlases are ordered by Cohen’s d.201

We found that di�erent atlases may alter the power to test202

the hypothesis about epilepsy pathophysiology that seizures203

propagate through the underlying structural tracts of the204

brain, measured with di�usion MRI. This hypothesis has been205

previously supported in prior studies13,14,23,24
206

Many atlases commonly used in the neuroscience literature 207

have comparable e�ect sizes to random atlases (where anatom- 208

ical boundaries are not followed). The standard atlases with 209

the greatest e�ect size (and thus power, given equal signifi- 210

cance levels and sample sizes) are the Harvard-Oxford and 211

AAL3 atlases. These atlases outperform many random atlases 212

and may indicate that their parcellations may adequately cap- 213

ture the structure-function relationship in the brain. These 214

atlases may capture the "true" structural network architecture 215

(see Fig. 1c) because these network architectures better di�er- 216

entiate and are more correlated to functional changes seen at 217

seizure onset. 218

Despite the e�ect sizes of the Harvard-Oxford and AAL3 219

atlases, however, there may not be a "true gold standard" atlas 220

or parcellation scheme given that resolution is more critical 221

than the exact border location of parcels29, there may be 222

no single functional atlas for an individual across all brain 223

states28, and many standard atlases yield similar e�ect sizes 224

to randomly generated atlases (this study). 225

Discussion 226

In this study, we performed an extensive evaluation of the 227

available structural, functional, random, and multi-modal at- 228

lases in the neuroscience literature (Table 1). We detailed 229

morphological (Fig. 2) and network (Fig. 3) di�erences be- 230

tween these atlases. We showed the e�ect of atlas choice on 231
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Fig. 7. A Framework for brain atlases. | a, Which atlas should be chosen for a study? We propose a framework that
helps select an atlas in the context of its descriptive, explanatory, and predictive validity. Descriptive validity means the
features of an atlas appropriately resembles the experimental system. An atlas is also a tool to solve a variety of problems in
neuroscience. It may be used as part of a methodology to explain causality (explanatory validity), or it may be used to make
predictions (predictive validity). These two goals are distinct, and the di�erences between explanation and prediction "must
be understood for progressing scientific knowledge"15. These aspects (to explain or to predict) should be considered when
selecting an atlas. b, Non-mutually exclusive atlas features related to descriptive validity. c, A list of questions to consider
when choosing an atlas. Gray lines connect related questions. d, An algorithm for atlases selection a priori and post hoc.
Please see the main text for further details.
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the measurement of structure-function correlation (SFC) in232

epilepsy patients (Fig. 4 and Fig. 5). We also showed how233

various atlases may a�ect the power to test a hypothesis about234

seizure propagation (Fig. 6). This work has implications for235

investigators because the ability to test hypotheses and make236

predictions about the brain’s function may depend on atlas237

choice. In light of our study using an extensive list of avail-238

able brain atlases, we propose a general framework below for239

evaluating and selecting an atlas (Fig. 7).240

A Framework for Brain Atlases. Various publications have241

highlighted the Atlas Concordance Problem2–4,9, curated sev-242

eral atlases in freely accessible databases33,34, and made argu-243

ments for why specific atlas features (Fig. 7b) may be superior244

in certain situations21,28,35–39. There have been great e�orts245

to publish accurate and precise parcellations as seen with246

an exponential rise in atlas-related publications over the last247

three decades (Fig. S8). However, none have found a general248

solution to the underlying problem: Does atlas choice matter?249

We provide a framework that allows us to determine if250

the choice of an atlas is appropriate in the context of its (1)251

descriptive, (2) explanatory, and (3) predictive validity26. This252

framework is borrowed from the logic for assessing network253

models26, animal models,25,40, and psychometric tests27,41,254

where assessment of these models with standard statistical255

model-selection methods is particularly challenging. Thus,256

theoretical constructs already formulated in other fields may257

provide guidance.258

Descriptive validity of an atlas refers to an atlas that259

appropriately resembles the system in which we work. In other260

words, it has “face value”25. An atlas should include features261

(Fig. 7b) relevant to the study (e.g., parcellations containing262

subcortical structures relevant to epilepsy). Importantly, the263

descriptive validity of an atlas also relates to the modality scale264

we use to measure the brain – for example, DWI and fMRI265

at the macroscale42, iEEG and tracers at the meso scale43,266

and microscopy at the microscale44. It is important to select267

a parcellation scale that resembles the measurement modality268

resolution (Fig. 6a). When correlating DWI with iEEG in269

our study at larger parcellation sizes, we lose our ability to270

discern precise anatomical locations that are structurally and271

functionally related (Fig. 6b). Similarly at smaller parcella-272

tion sizes (tending to voxel resolution), we may not capture273

the "true" structural network architecture (Fig. 1c), and thus274

we lose our ability to capture structure-function relationship275

changes at seizure onset.276

An atlas is a tool to tackle a wide variety of problems in neu-277

roscience. It may be part of a methodology to explain causality278

(explanatory validity) or it may be part of a methodology to279

make predictions (predictive validity). These two goals are280

distinct, and the di�erences between explanation and predic-281

tion "must be understood for progressing scientific knowledge"282

as described in "To Explain or Predict?" by Shmueli, 201015.283

In the context of building scientific models, a model with a284

high explanatory ability may not have a high predictive ability.285

Similar to models, atlases are also part of a scientific method-286

ology to (1) explain how the brain functions or (2) predict new287

observations (i.e., they are one part of the overall method-288

ological pipeline to test hypotheses or make predictions about289

the brain - for studies using atlases). Thus, atlases are tools.290

An atlas may be suitable for hypothesis testing, for example,291

because it includes subcortical structures like the hippocampus 292

(also high descriptive validity) to support a hypothesis about 293

seizure propagation through subcortical structures. Intuitively, 294

without subcortical structures, it would be impossible to test 295

hypotheses about subcortical structures. Less intuitively, ex- 296

planatory validity of an atlas may also relate to the power to 297

test hypotheses, which we show in our study. Some atlases 298

may not be suitable for scientific inquiry because they provide 299

little statistical power to detect di�erences in disease states, for 300

example, to detect changes in SFC at seizure onset (Fig. 6b). 301

It may be impossible to accurately predict power using an 302

atlas before conducting a study, however, other studies asking 303

similar questions using similar atlases may provide reasonable 304

estimates of e�ect sizes (our study has similar e�ect sizes to a 305

previous study13). Power may also depend on the accuracy of 306

anatomical boundaries, or in our study, other atlas features 307

such as parcellation scale and configuration (Fig. 6d). For 308

example, the Harvard-Oxford and AAL3 atlases have similar 309

parcellation configurations and similar power. 310

Some atlases may or may not be not be suitable for mak- 311

ing predictions about new or future observations about the 312

brain. For example, many network properties change with 313

atlas choice (Fig. 3), and thus it is reasonable to suspect model 314

prediction outputs may change with respect to the atlas used 315

to build and train such models. Importantly, the exclusion 316

of some anatomical structures, like white matter or the cere- 317

bellum in some atlases, may a�ect the training data used to 318

build predictive models. In our study, a translational goal 319

is to predict functional seizure activity from structural data. 320

SEEG records activity from both gray matter and white mat- 321

ter; however, recent studies have shown that white matter 322

functional recordings may provide di�erent information than 323

gray matter45–48. Thus, excluding some anatomical labels may 324

a�ect model predictions. Another example is the use of net- 325

work models to predict spread, such as –-synuclein across the 326

brain connectome49. Without the incorporation of all brain 327

structures related to –-synuclein spread, models to predict 328

and monitor spread may be inaccurate. 329

Are accurate anatomical or functional parcellations needed? 330

During the course of conducting this study, and while undergo- 331

ing peer review, other atlases with more accurate or relevant 332

parcellations to the study’s population were published in dif- 333

ferent areas of neuroscience50–58. Here, we cautiously propose 334

a question: Are e�orts to publish more atlases created with 335

di�erent algorithms or slightly modified parcellations from 336

existing atlases providing any advantages over already exist- 337

ing atlases? Naturally, accurate and precise parcellations are 338

needed when probing specific hypotheses about exact struc- 339

tures that depend on accurate segmentation of such structures 340

(particularly at the sub-field or cellular level); however, few 341

studies compare an atlas to a null atlas (one with randomly 342

generated parcellations). Studies that do are Gordon et al. 343

201659and Lewis et al. 202158. 344

In this study, we show that random atlases provide similar 345

power to detect di�erences in SFC between preictal and ictal 346

states (Fig. 6d). Indeed, it is di�cult or nearly impossible to 347

evaluate a newly proposed atlas, given that the performance 348

metrics to evaluate an atlas may be infinite (given infinite 349

experimental designs). Only one such metric, SFC, was used 350

in this study. But given new deep learning methods and other 351
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computationally expensive methods using trained classifiers for352

segmentation, existing atlases may be adequate for labs with353

limited funding resources, trained personnel, and access to354

GPUs. These labs may still be capable of answering important355

questions in neuroscience.356

Which atlas should be used for my study? One of the most357

di�cult challenges as scientific investigators is to make optimal358

methodological decisions to discover useful findings for the359

scientific community. Selecting an atlas is one such decision we360

may make in some of our studies. We realize the framework361

provided above may be abstract to some readers; we also362

provide a concrete list of questions to consider when choosing363

an atlas (Fig. 7c) for a neuroimaging study. However, in364

conducting this study, we also found that researchers may face365

three problems when choosing an atlas (Fig. 7d) and these366

problems are worth further discussion. The first two problems367

are in selecting an atlas a priori, or before conducting a study.368

They deal with selecting one or a few atlases to preserve power,369

or in selecting a standard set of atlas to publish public data370

for other researchers to use. The third problem is the issue of371

conflicting results between two atlases and what to do after a372

study is conducted (post hoc). We provide a further discussion373

on these problems below.374

Considerations in selecting one or a few atlases. Selecting375

one atlas may preserve power and avoid a multiple comparisons376

problem by testing every atlas. Selecting an additional atlas377

may also be chosen to confirm the robustness of results. In378

these cases, a balance of time, availability of tools, and atlas379

features logical for your study as outlined in Fig. 7a-c need to380

be considered. For example, if a custom atlas is used, how will381

that a�ect replicability and meta analysis in the long-run for382

the field? What are the atlas features needed (such as scale383

and coverage of regions)? What are the computational costs384

and personnel training needed to use particular atlases? (See385

questions in Fig. 7c).386

Considerations in selecting a standard set of atlases. When387

publishing results and/or making data publicly available for388

other investigators to use, another approach is to select a set389

of atlases based on the perceived needs of other investigators,390

atlas features covered, prevalence of atlases used in the litera-391

ture (Fig. S9a), and the prevalence of "turn-key" neuroimaging392

software that incorporate these atlases (Fig. S9b). Studies are393

emerging with data publicly available for use based on one or a394

few select atlases60,61. Many turn-key neuroimaging software395

also inevitably have to make the decision to employ a set of396

atlases to meet the needs of many researchers. A problem may397

arise, however, when other researchers need the published data398

at other atlas resolutions or with other structures. And unfor-399

tunately, the value of the data may be lessened and the e�ort400

put in by the publishing researchers may be in waste if this401

happens. What may help with the atlas concordance problem402

is perhaps a “standard set” of atlases – a set to benchmark403

studies across the neuroimaging field. Furthermore, turn-key404

tools like FreeSurfer, QSIprep, DSI-studio, FSL, and many405

others may benefit from a standard set of incorporated atlases406

that captures enough features useful to the majority of the407

neuroscience community, even if not every available atlas is408

included. Based on our exhaustive search of atlases in the409

neuroimaging literature, the ability to collect them for use 410

in a single study, the prevalence of certain atlases already 411

in-use (Fig. S9a), and the prevalence of neuroimaging software 412

(Fig. S9b) we propose an initial set of atlases (Fig. 7d). 413

The AAL atlas is one of the most commonly used volu- 414

metric atlases (Fig. S9a), and along with the Harvard-Oxford 415

atlas, may provide complimentary results when published 416

together. The Brainnetome atlas62 is another structural at- 417

las at a finer resolution, having gained popularity since its 418

introduction in 2016. The Destrieux and DKT atlases are 419

also structural atlases, and already incorporated into one of 420

the most commonly used neuroimaging software, FreeSurfer 421

(https://surfer.nmr.mgh.harvard.edu). FreeSurfer provides 422

surface-based registration, which may more accurately label 423

cortical structures than volumetric registration (Fig. S6). Ac- 424

curate segmentation of sub-cortical structures may also be 425

acquired from FSL63 (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki). 426

In addition, the MMP, or "Glasser" atlas was created from 427

multi-modal imaging data. A commonly used atlas provided 428

at di�erent scales is Schaefer atlases provide, however, it does 429

not include subcortical structures. 430

Random atlases may also provide robust conclusions by 431

allowing researchers to manipulate the resolution, size, and 432

shape of parcellations and iterate over many atlases. Although 433

random parcellations may forgo accuracy because they do 434

not follow true anatomical boundaries, these atlases may still 435

provide similar conclusions to other standard atlases with the 436

added benefit of permuting results over many atlases (Fig. 6). 437

An alternative to random atlases is to divide or combine the 438

parcellations of another standard atlas (a "derived" atlas in 439

Fig. 7d. For example, the AAL 600 is derived from the AAL 440

atlas in which its parcellations are further sub-divided using 441

a specified algorithm. Parcellations may also be sub-divided 442

randomly. 443

Considerations in conflicting results between atlases. When 444

more than one atlas is used, results may conflict. We define 445

conflicting results as two di�erent atlases giving alternating 446

predictions (e.g., good vs poor outcomes, increase in SFC 447

rather than decrease in SFC) or support alternating working 448

hypotheses (e.g., the temporal lobe is involved in one atlas, 449

but another atlas highlights the involvement of the frontal 450

lobe in the pathophysiology of a disease). We do not mean 451

that conflicting results arise due to lack of statistical power 452

(e.g., one atlas gives a p-value of 0.06 and another atlas 0.04). 453

One way to understand if the observed e�ect is not an 454

artifact of the atlas choice is to select a few atlases with 455

varying features and figure out what is causing the conflict. 456

Unfortunately, there may be no other way given that every 457

study will have di�erent parameters and measurements to know 458

what gives rise to conflicting results. In the matter where 459

conflicting results arise due to atlas selection, then it may 460

troubleshooting may be needed to understand what gives rise 461

to the conflict (surface vs volumetric registration, parcellation 462

scale, missing relevant structures, etc.). Fortunately, however, 463

most atlases in this study a�ect power rather than conflicting 464

results (Fig. 6d. We hope this discussion, our study, and our 465

figures provide insight to others. 466

Limitations. Our study is not without limitations. A major 467

limitation is that we did not evaluate atlases in a diverse set 468
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of experimental systems, but rather limited our analysis to a469

contemporary topic in epilepsy using SEEG implantations and470

to a study of the structure-function of the brain, potentially471

appealing to a wider audience. The question we were trying to472

answer ("Which atlas should we use?") is a di�cult problem to473

solve, given that it would be impossible to evaluate all atlases474

in all experimental designs. We attempted to generalize a475

framework given our findings after an extensive search for, and476

curation of, available neuroimaging atlases.477

We also did not perform a feature selection analysis post-478

hoc to maximize DSFC at seizure onset; rather, we performed479

a comprehensive evaluation of many atlases to set a general480

framework and describe the nuances between the di�erent481

atlases and their features. Ideally in our study, we required482

a whole-brain, volumetric atlas that covered the implanted483

SEEG electrode contacts. No such atlas existed. We opted for484

combining di�erent atlases or developing randomly parcellated485

atlases used in previous publications30,64. However, no general486

framework existed to determine which atlas should be used487

or clearly outlined the feature space of these atlases. We had488

no formal basis for how changing an atlas could change our489

results and eventual goal for translating network models to490

better treat epilepsy patients.491

Another limitation, we assume a change in SFC supports492

the hypothesis that seizures harness the underlying structural493

connectome of the brain (along with support from prior lit-494

erature13,14,65). We may be biasing our results to select an495

atlas that maximizes DSFC. However, we wish to select a496

methodology that allows us to measure any change in brain497

state that accompanies seizure onset (explanatory validity),498

permitting us to probe epilepsy biology and understand the499

processes that govern seizure spread.500

An additional limitation concerns the e�ect of parcellation501

volume on SFC. In probing this e�ect across our random at-502

lases and atlases used in the literature, we did not perform503

controlled experiments to separate the e�ects of parcellation504

size from parcellation N (number of parcellations). A future505

experiment could fix the number of parcellations while chang-506

ing parcellation volume (or vice versa). This would allow us507

to test whether parcellation volume or N drives changes in508

SFC. However, this was outside the scope of our study.509

Our goal was to highlight the importance of selecting an510

appropriate atlas from an array of possibilities, using a data-511

driven, validated experimental paradigm13. We acknowledge512

new studies that show that streamline counts may not com-513

pletely reflect the underlying di�usion data66; however, com-514

paring such techniques were outside the scope and goal of our515

focused study. We also note that few patients had lesions516

on imaging. Misalignment due to non-linear distortion may517

add noise to our data; however, few patients had lesions. Our518

study was not conducted to necessarily make the claim that519

SFC changes exist in the brain at seizure onset, but rather to520

show how varying atlases may change SFC.521

Finally, our analysis relies on the assumption that an atlas522

approach must be used to quantify SFC and does not consider523

an atlas-agnostic approach nor if such an approach is appro-524

priate. To study SFC using networks, both structural and525

functional networks must have nodes representing the same526

entity – neuroanatomical structures. The atlases defining527

anatomical structures (whether they are functionally, histolog-528

ically, genetically, procedurally, multi-modally, or randomly 529

defined) are the link between structural connectivity and func- 530

tional connectivity measurements of the brain. To study SFC, 531

we must rely on the neuroanatomical structures defined by 532

an atlas, then localize electrodes to these regions and corre- 533

late the structural measurements (e.g., streamlines, fractional 534

anisotropy, mean di�usivity) with functional measurements 535

(e.g., cross-correlation, coherence, mutual information). Fun- 536

damentally, we are defining the nodes of the brain in advance, 537

which can alter our results; a more comprehensive discussion 538

on defining the nodes of the brain are in Fornito et al., 2016 539

and Bijsterbosh et al., 201743,67. 540

Conclusion. The publication of atlases and their distribution 541

across neuroimaging software platforms has risen exponen- 542

tially over the last three decades. Our study illustrates the 543

critical need to evaluate the reproducibility of neuroscience 544

research using atlases published alongside tools and analysis 545

pipelines already established in the neuroscience community 546

(e.g., FreeSurfer, DSI studio, FSL, SPM, QSIprep, fMRIprep, 547

MRIcron, ANTs, and others). 548

549

References 550

[1] Klein, A. & Tourville, J. 101 Labeled Brain Images and a Consistent Human Cortical Labeling 551

Protocol. Frontiers in Neuroscience 6 (2012). 552

[2] Mandal, P. K., Mahajan, R. & Dinov, I. D. Structural brain atlases: design, rationale, and 553

applications in normal and pathological cohorts. Journal of Alzheimer’s disease : JAD 31 554

Suppl 3, S169–88 (2012). 555

[3] Dickie, D. A. et al. Whole Brain Magnetic Resonance Image Atlases: A Systematic Review of 556

Existing Atlases and Caveats for Use in Population Imaging. Front Neuroinform 11, 1 (2017). 557

[4] Bohland, J. W., Bokil, H., Allen, C. B. & Mitra, P. P. The Brain Atlas Concordance Problem: 558

Quantitative Comparison of Anatomical Parcellations. PLoS ONE 4, e7200 (2009). 559

[5] Beal, D. S. et al. The trajectory of gray matter development in Broca’s area is abnormal in 560

people who stutter. Frontiers in Human Neuroscience 9 (2015). 561

[6] Van Horn, J. D. et al. Mapping Connectivity Damage in the Case of Phineas Gage. PLoS 562

ONE 7, e37454 (2012). 563

[7] Barker, F. G. Phineas among the phrenologists: the American crowbar case and nineteenth- 564

century theories of cerebral localization. Journal of Neurosurgery 82, 672–682 (1995). 565

[8] Mazziotta, J. et al. A probabilistic atlas and reference system for the human brain: Interna- 566

tional Consortium for Brain Mapping (ICBM). Philosophical Transactions of the Royal Society 567

of London. Series B: Biological Sciences 356, 1293–1322 (2001). 568

[9] Evans, A. C., Janke, A. L., Collins, D. L. & Baillet, S. Brain templates and atlases. NeuroImage 569

62, 911–22 (2012). 570

[10] National Geographic Society Encyclopedic entry. Atlas (2022). URL https://www. 571

nationalgeographic.org/encyclopedia/atlas/. 572

[11] National Geographic Society Encyclopedic entry. Border (2022). URL https://www. 573

nationalgeographic.org/encyclopedia/border/. 574

[12] Van Essen, D. C. et al. The WU-Minn Human Connectome Project: an overview. NeuroImage 575

80, 62–79 (2013). 576

[13] Shah, P. et al. Characterizing the role of the structural connectome in seizure dynamics. 577

Brain: A Journal of Neurology (2019). 578

[14] Ashourvan, A. et al. Pairwise maximum entropy model explains the role of white matter 579

structure in shaping emergent co-activation states. Commun Biol 4 (2021). 580

[15] Shmueli, G. To Explain or to Predict. Statistical Science 25 (2010). 581

[16] Makris, N. et al. Decreased volume of left and total anterior insular lobule in schizophrenia. 582

Schizophrenia Research 83, 155–171 (2006). 583

[17] Hammers, A. et al. Three-dimensional maximum probability atlas of the human brain, with 584

particular reference to the temporal lobe. Human Brain Mapping 19, 224–247 (2003). 585

[18] Thomas Yeo, B. T. et al. The organization of the human cerebral cortex estimated by intrinsic 586

functional connectivity. J Neurophysiol 106, 1125–65 (2011). 587

[19] Schaefer, A. et al. Local-Global Parcellation of the Human Cerebral Cortex from Intrinsic 588

Functional Connectivity MRI. Cerebral Cortex 28, 3095–3114 (2018). 589

[20] Glasser, M. F. et al. A multi-modal parcellation of human cerebral cortex. Nature 536, 171– 590

178 (2016). 591

[21] Coalson, T. S., Van Essen, D. C. & Glasser, M. F. The impact of traditional neuroimaging 592

methods on the spatial localization of cortical areas. Proceedings of the National Academy 593

of Sciences 115, E6356–E6365 (2018). 594

[22] Wu, Z., Xu, D., Potter, T., Zhang, Y. & The, A. D. N. I. Effects of Brain Parcellation on 595

the Characterization of Topological Deterioration in Alzheimer’s Disease. Frontiers in Aging 596

Neuroscience 11, 113 (2019). 597

[23] Proix, T., Bartolomei, F., Guye, M. & Jirsa, V. K. Individual brain structure and modelling 598

predict seizure propagation. Brain : a journal of neurology 140, 641–654 (2017). 599

This Manuscript was compiled on March 12, 2022 13 Revell and Silva et al.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 12, 2022. ; https://doi.org/10.1101/2021.06.11.448063doi: bioRxiv preprint 

https://www.nationalgeographic.org/encyclopedia/atlas/
https://www.nationalgeographic.org/encyclopedia/atlas/
https://www.nationalgeographic.org/encyclopedia/atlas/
https://www.nationalgeographic.org/encyclopedia/border/
https://www.nationalgeographic.org/encyclopedia/border/
https://www.nationalgeographic.org/encyclopedia/border/
https://doi.org/10.1101/2021.06.11.448063
http://creativecommons.org/licenses/by-nc/4.0/


[24] Wirsich, J. et al. Whole-brain analytic measures of network communication reveal increased600

structure-function correlation in right temporal lobe epilepsy. NeuroImage. Clinical 11, 707–601

718 (2016).602

[25] Willner, P. The validity of animal models of depression. Psychopharmacology 83, 1–16603

(1984).604

[26] Bassett, D. S., Zurn, P. & Gold, J. I. On the nature and use of models in network neuroscience.605

Nature Reviews Neuroscience 19, 566–578 (2018).606

[27] Association, A. P. Technical recommendations for psychological tests and diagnostic tech-607

niques. Psychological bulletin 51, 1–38 (1954).608

[28] Salehi, M. et al. There is no single functional atlas even for a single individual: Functional609

parcel definitions change with task. NeuroImage 208, 116366 (2020).610

[29] Albers, K. J. et al. Using connectomics for predictive assessment of brain parcellations. Neu-611

roImage 238, 118170 (2021).612

[30] Zalesky, A. et al. Whole-brain anatomical networks: does the choice of nodes matter? Neu-613

roimage 50, 970–83 (2010).614

[31] Cocchi, L. et al. Disruption of structure-function coupling in the schizophrenia connectome.615

NeuroImage. Clinical 4, 779–87 (2014).616

[32] Sathian, K. & Crosson, B. Structure-function correlations in stroke. Neuron 85, 887–9 (2015).617

[33] Gorgolewski, K. J. et al. NeuroVault.org: a web-based repository for collecting and sharing618

unthresholded statistical maps of the human brain. Frontiers in neuroinformatics 9, 8 (2015).619

[34] Lawrence, R. M. et al. Standardizing human brain parcellations. Scientific data 8, 78 (2021).620

[35] Alexander, B. et al. A new neonatal cortical and subcortical brain atlas: the Melbourne621

Children’s Regional Infant Brain (M-CRIB) atlas. NeuroImage 147, 841–851 (2017).622

[36] Brennan, B. P. et al. Use of an Individual-Level Approach to Identify Cortical Connectivity623

Biomarkers in Obsessive-Compulsive Disorder. Biological psychiatry. Cognitive neuroscience624

and neuroimaging 4, 27–38 (2019).625

[37] Cabezas, M., Oliver, A., Lladó, X., Freixenet, J. & Cuadra, M. B. A review of atlas-based626

segmentation for magnetic resonance brain images. Computer methods and programs in627

biomedicine 104, e158–77 (2011).628

[38] Caspers, S., Eickhoff, S. B., Zilles, K. & Amunts, K. Microstructural grey matter parcellation629

and its relevance for connectome analyses. NeuroImage 80, 18–26 (2013).630

[39] Diedrichsen, J., Balsters, J. H., Flavell, J., Cussans, E. & Ramnani, N. A probabilistic MR631

atlas of the human cerebellum. NeuroImage 46, 39–46 (2009).632

[40] Belzung, C. & Lemoine, M. Criteria of validity for animal models of psychiatric disorders:633

focus on anxiety disorders and depression. Biology of mood & anxiety disorders 1, 9 (2011).634

[41] Association, A. E. R. (ed.) Standards for Educational and Psychological Testing (American635

Educational Research Association, Lanham, MD, 2014).636

[42] Sporns, O., Tononi, G. & Kötter, R. The human connectome: A structural description of the637

human brain. PLoS computational biology 1, e42 (2005).638

[43] Fornito, A., Zalesky, A. & Bullmore, E. Fundamentals of Brain Network Analysis (Academic639

Press, 2016).640

[44] Sporns, O. The human connectome: a complex network. Annals of the New York Academy641

of Sciences 1224, 109–125 (2011).642

[45] Greene, P., Li, A., González-Martínez, J. & Sarma, S. V. Classification of Stereo-EEG Con-643

tacts in White Matter vs. Gray Matter Using Recorded Activity. Frontiers in Neurology 11644

(2021).645

[46] Mercier, M. R. et al. Evaluation of cortical local field potential diffusion in stereotactic electro-646

encephalography recordings: A glimpse on white matter signal. NeuroImage 147, 219–232647

(2017).648

[47] Young, J. J. et al. Quantitative Signal Characteristics of Electrocorticography and Stereo-649

electroencephalography: The Effect of Contact Depth. Journal of clinical neurophysiology :650

official publication of the American Electroencephalographic Society 36, 195–203 (2019).651

[48] Revell, A. Y. et al. White Matter Signals Reflect Information Transmission Between Brain652

Regions During Seizures. bioRxiv (2021).653

[49] Henderson, M. X. et al. Spread of a-synuclein pathology through the brain connectome is654

modulated by selective vulnerability and predicted by network analysis. Nat Neurosci 22,655

1248–1257 (2019).656

[50] Wang, H. E. et al. VEP atlas: An anatomic and functional human brain atlas dedicated to657

epilepsy patients. J Neurosci Methods 348, 108983 (2021).658

[51] Doucet, G. E. et al. Atlas55+: Brain Functional Atlas of Resting-State Networks for Late659

Adulthood. Cereb Cortex 31, 1719–1731 (2021).660

[52] Muñoz-Castañeda, R. et al. Cellular anatomy of the mouse primary motor cortex. Nature661

598, 159–166 (2021).662

[53] Huang, C.-C., Rolls, E. T., Feng, J. & Lin, C.-P. An extended Human Connectome Project663

multimodal parcellation atlas of the human cortex and subcortical areas. Brain Structure and664

Function (2021).665

[54] Syversen, I. F. et al. Structural connectivity-based segmentation of the human entorhinal666

cortex. NeuroImage 245, 118723 (2021).667

[55] Zhu, J. et al. Integrated structural and functional atlases of Asian children from infancy to668

childhood. NeuroImage 245, 118716 (2021).669

[56] Joglekar, A. et al. A spatially resolved brain region- and cell type-specific isoform atlas of the670

postnatal mouse brain. Nat Commun 12, 463 (2021).671

[57] Callaway, E. M. et al. A multimodal cell census and atlas of the mammalian primary motor672

cortex. Nature 598, 86–102 (2021).673

[58] Lewis, J. D., Bezgin, G., Fonov, V. S., Collins, D. L. & Evans, A. C. A sub+cortical fMRI-based674

surface parcellation. Human Brain Mapping (2021).675

[59] Gordon, E. M. et al. Generation and Evaluation of a Cortical Area Parcellation from Resting-676

State Correlations. Cerebral Cortex Cereb. Cortex 26, 288–303 (2016).677

[60] Sinha, N. et al. Focal to bilateral tonic–clonic seizures are associated with widespread678

network abnormality in temporal lobe epilepsy. Epilepsia 62, 729–741 (2021). URL https:679

//onlinelibrary.wiley.com/doi/10.1111/epi.16819.680

[61] Royer, J. et al. An Open MRI Dataset for Multiscale Neuroscience. preprint, Neuroscience681

(2021). URL http://biorxiv.org/lookup/doi/10.1101/2021.08.04.454795. 682

[62] Fan, L. et al. The Human Brainnetome Atlas: A New Brain Atlas Based on Connectional 683

Architecture. Cerebral cortex (New York, N.Y. : 1991) 26, 3508–26 (2016). 684

[63] Perlaki, G. et al. Comparison of accuracy between FSL’s FIRST and Freesurfer for caudate 685

nucleus and putamen segmentation. Scientific Reports 7, 2418 (2017). URL http://www. 686

nature.com/articles/s41598-017-02584-5. 687
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Materials and Methods 746
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including thirteen healthy controls and twenty-eight drug-resistant 748

epilepsy patients at the Hospital of the University of Pennsylva- 749

nia. Twenty-four patients underwent stereoelectroencephalogra- 750

phy (SEEG) implantation and four underwent electrocorticography 751

(ECoG) implantation. Ten of the SEEG patients had clinically an- 752

notated seizures and were used for SFC analyses. Inclusion criteria 753

consisted of all individuals who agreed to participate in our research 754

scanning protocol, and (if they had implantations) allowed their 755

de-identified intracranial EEG (iEEG) data to be publicly available 756

for research purposes on the International Epilepsy Electrophysi- 757

ology Portal (https://www.ieeg.org) 68,69. Seizure evaluation was 758

determined via comprehensive clinical assessment, which included 759
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multimodal imaging, scalp and intracranial video-EEG monitoring,760

and neuropsychological testing. This study was approved by the761

Institutional Review Board of the University of Pennsylvania, and762

all subjects provided written informed consent prior to participating.763

See Table S2 for subject demographics.764

Structure Methods and pipelines for structural connectivity genera-765

tion and analysis are described in the following sections. Specific766

GitHub files and code are included where applicable.767

Imaging Protocol Prior to electrode implantation, MRI data were768

collected on a 3T Siemens Magnetom Trio scanner using a 32-769

channel phased-array head coil. High-resolution anatomical images770

were acquired using a magnetization prepared rapid gradient echo771

(MPRAGE) T1-weighted sequence (repetition time = 1810 ms, echo772

time = 3.51m, flip angle = 9, field of view = 240mm, resolution =773

0.94x0.94x1.0 mm3). High Angular Resolution Di�usion Imaging774

(HARDI) was acquired with a single-shot EPI multi-shell di�usion-775

weighted imaging (DWI) sequence (116 di�usion sampling directions,776

b-values of 0, 300, 700, and 2000s/mm2, resolution = 2.5x2.5x2.5777

mm3, field of view = 240mm). Following electrode implantation,778

spiral CT images (Siemens) were obtained clinically for the pur-779

poses of electrode localization. Both bone and tissue windows were780

obtained (120kV, 300mA, axial slice thickness = 1.0mm)781

Diffusion Weighted Imaging (DWI) Preprocessing HARDI images782

were subject to the preprocessing pipeline, QSIPrep, to ensure783

reproducibility and implementation of the best practices for pro-784

cessing of di�usion images 70. Briefly, QSIPrep performs advanced785

reconstruction and tractography methods in curated workflows us-786

ing tools from leading software packages, including FSL, ANTs, and787

DSI Studio with input data specified in the Brain Imaging Data788

Structure (BIDS) layout.789

Structural Network Generation DSI-Studio (http://dsi-790

studio.labsolver.org, version: December 2020) was used to791

reconstruct the orientation density functions within each voxel792

using generalized q-sample imaging with a di�usion sampling793

length ratio of 1.25 71. Deterministic whole-brain fiber tracking794

was performed using an angular threshold of 35 degrees, step size795

of 1mm, and quantitative anisotropy threshold based on Otsu’s796

threshold 72. Tracks with length shorter than 10mm or longer than797

800mm were discarded, and a total of 1,000,000 tracts were gener-798

ated per brain. Deterministic tractography was chosen based upon799

prior work indicating that deterministic tractography generates800

fewer false positive connections than probabilistic approaches, and801

that network-based estimations are substantially less accurate802

when false positives are introduced into the network compared803

with false negatives30. To calculate structural connectivity,804

atlases listed in Table 1 were used. Structural networks were805

generated by computing the number of streamlines passing through806

each pair of structural regions in each specific atlas. Streamline807

counts were log-transformed and normalized to the maximum808

streamline count, as is common in prior studies 24,73–75. GitHub:809

packages/imaging/tractography/tractography.py810

Atlases Atlas descriptions and sources used in this study are found811

in Table S1. The 55 atlases used are listed explicitly in the reporting812

of e�ect sizes in Fig. 7d. All atlases were sourced in MNI space813

and if not already, resliced to dimensions 182x218x182. Atlases814

were linear and non-linear registered to T1w subject space using815

the ICBM 2009c Nonlinear Asymmetric template 76 and FSL flirt816

and fnirt 77.817

We also included three atlases registered using surface-based818

approaches. These atlases (the DKT, DK, and Destrieux atlases) are819

output from FreeSurfer’s recon-all pipeline 78. Many neuroimaging820

studies and software use volumetric approaches for registration 21,821

yet surface-based approaches may yield more accurate labeling of822

the cortical surface (Fig. S6). The DKT40 atlas referred in this823

study is the surface version, while the DKT31 OASIS is the publicly824

available volumetric version (see Table S1).825

In addition to published standard atlases above, we used whole-826

brain random atlases. A limitation of standard atlases is that they827

may not have anatomical definitions for all regions of the brain, and828

therefore, implanted electrodes may not be assigned properly to a 829

region. This limitation was the impetus of our study (i.e., selecting 830

an appropriate atlas for SEEG electrode localization and quantifying 831

SFC). Whole-brain random atlases, in contrast, provide coverage to 832

all implanted electrodes. They allow for the ability to change some 833

morphological properties (i.e. parcellation size), while keeping other 834

morphologies the same (e.g., parcellation shape; Fig. 2d). However, 835

a limitation of random atlases is that their regions may not represent 836

true anatomical or functional boundaries. Random atlases were 837

built in the ICBM 2009c Nonlinear Asymmetric template space 838

and covered all voxels, excluding those labeled as CSF or outside 839

the brain. To fill these points, a pseudo grassfire algorithm was 840

applied 30. Briefly, N points representing the number of parcels of 841

the atlas were randomly chosen as seed points. These seed points 842

were iteratively expanded in all six Cartesian directions until all 843

points were covered by one of the initial N seeds. After each iterative 844

step, the smallest volume region expanded first. Random atlases 845

created were of N equal to 10, 30, 50, 75, 100, 200, 300, 400, 500, 846

750, 1000, 2000, 5000, and 10000 parcels. Five permutations for 847

each N were created. GitHub code to generate random atlases: 848

packages/imaging/randomAtlas/randomAtlasGeneration.py 849

Atlas Morphology: Volume and Sphericity Atlas morphological mea- 850

surements included parcellation size (volume) and shape (sphericity) 851

(Fig. 2). Parcellation volume was calculated as the number of voxels 852

in an parcel and log10 transformed. Parcellation sphericity was 853

calculated as the ratio of the surface area of a sphere with an equal 854

volume of the parcellation to the actual surface area of the atlas 855

parcellation. Under this definition, sphericity is bounded from 0 to 856

1 where 1 is a perfect sphere. For reference, a perfect cube and a 857

hemi-sphere have a sphericity of 0.8 and 0.7 respectively. GitHub: 858

packages/imaging/regionMorphology/regionMorphology.py 859

Structural Network Measures We characterized the structural net- 860

work topology of 52 atlases (Fig. 3 and Fig. S3). The three surface- 861

based atlases (DKT40, DK, and Destrieux atlases output from 862

the FreeSurfer recon-all pipeline 78) were excluded from analyses of 863

Fig. 2 and Fig. 3 because they were individually registered to each 864

subjects’ T1w image. To quantify network topology, we examined 865

density, mean degree, mean clustering coe�cient, characteristic 866

path length, and small worldness. Connectivity matrices were 867

first binarized, using a threshold of 0, and a distance matrix was 868

computed. The same binarization process and threshold was used 869

across all atlases. The distance of any nodes that were discon- 870

nected from the main graph was set to the maximum distance 871

between any pair of nodes in the main graph. Density, mean de- 872

gree, clustering coe�cient, and characteristic path length were then 873

calculated on the binary, undirected graphs. Small worldness was 874

calculated as the s-ratio where s = g/l and is the ratio of the 875

average, normalized clustering coe�cient, C, to the normalized 876

characteristic path length, I. g = CG/CR and l = lG/lR where G 877

is the graph of interest and R represents a ‘random’ graph that is 878

equivalent to G. To approximate the equivalent random graph R 879

due to intractable computational costs79, a well-known analytical 880

equivalent CR = d/N and IR = log N/log d were used, where d 881

denotes average nodal degree. All network measures were calculated 882

using the Brain Connectivity Toolbox for Python. GitHub: pa- 883

pers/brainAtlas/Script_05_structure_02_network_measures.py 884

Function Methods and pipelines for functional connectivity genera- 885

tion and analysis are described in the following sections. Specific 886

GitHub files and code are included where applicable. 887

Intracranial EEG Acquisition Stereotactic Depth Electrodes were im- 888

planted in patients based on clinical necessity. Continuous SEEG 889

signals were obtained for the duration of each patient’s stay in 890

the epilepsy monitoring unit. Intracranial data was recorded at 891

either 512 or 1024 Hz for each patient. Seizure onset times were 892

defined by the unequivocal onset 80. All annotations were verified 893

and consistent with detailed clinical documentation. If a patient 894

had more than one seizure annotated, the first seizure longer than 895

30 seconds without artifacts was used. 896
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Electrode Localization In-house software81 was used to assist in897

localizing electrodes after registration of pre-implant and post-898

implant neuroimaging data. All electrode coordinates and labels899

were saved and matched with the electrode names on IEEG.org.900

All electrode localizations were verified by a board-certified neu-901

roradiologist (J.S.). Electrode contact assignment to atlas region902

assignment was performed by rounding electrode coordinates (x,y,z)903

to the nearest voxel and indexing the given atlas at that voxel in904

the same space as the patient’s T1w image. Electrodes that fell905

outside the atlas of interest were excluded from subsequent analysis.906

Please see Fig. S10 for visualization. We also show the percent-907

age of contacts assigned a region given an atlas (Fig. S7) GitHub:908

packages/atlasLocalization/atlasLocalization.py909

Functional Connectivity Network Generation Functional connectivity910

networks were generated from four periods: interictal, preictal, ictal,911

and postictal. (1) The interictal period consisted of the time ap-912

proximately 6 hours before the ictal period. (2) The preictal period913

consisted of the time immediately before the ictal period. (3) The914

ictal period consisted of the time between the seizure unequivocal915

onset and seizure termination. (4) The postictal period consisted of916

the time immediately after the ictal period. Interictal, preictal, and917

postictal periods were 180 seconds in duration. Following removal918

of artifact-ridden electrodes, SEEG signals inside either GM or WM919

for each period were common-average referenced to reduce potential920

sources of correlated noise 82. Next, each period was divided into921

2s time windows with 1s overlap83–86. To generate a functional922

network representing broadband functional interactions between923

SEEG signals (Fig. 4b), we carried out a method described in detail924

previously 13,85. Namely, signals were notch-filtered at 60 Hz to925

remove power line noise, low-pass and high-pass filtered at 127 Hz926

and 1Hz to account for noise and drift, and pre-whitened using a927

first-order autoregressive model to account for slow dynamics. Func-928

tional networks were then generated by applying a normalized cross929

correlation function fl between the signals of each pair of electrodes930

within each time window, using the formula:931

flxy = max
·

Ë 1
T

Tÿ

t=1

[xk(t) ≠ x̄k] ú [yk(t + ·) ≠ ȳk]
‡xk ‡yk

È
932

where x and y are signals from two electrodes, k is the 2s time933

window, t is one of the T samples during the time window, and934

· is the time lag between signals, with a maximum lag of 0.5935

s. Here, ‡ represents the standard deviation of the signal. Note936

that functional connectivity measurements were also calculated for937

coherence and zero time-lag Pearson and Spearman rank correlations938

with associated p-values in defined frequency bands reviewed in939

Newson and Thiagarajan 2019 87, but were not analyzed or used in940

hypothesis testing in the study. For data, available data, please see941

"Data availability and Reproducibility" section below. Networks are942

represented as fully-weighted connectivity matrices. GitHub Code:943

GitHub: code/tools/echobase.py944

Structure-Function Correlation To quantify the relationship between945

structure and function in the epileptic brain, we computed the Spear-946

man rank correlation coe�cient between the edges of the structural947

connectivity network and the edges of the functional connectivity948

networks (Fig. 4c). To avoid redundancy given the symmetric nature949

of the matrices, only the upper triangle was analyzed. In brief, the950

structural connectivity network, representing normalized streamline951

counts between each atlas region, was first down sampled to only952

include regions that contained at least one SEEG contact Fig. S10.953

This gave one static representation of structural connectivity. In954

the case where multiple electrodes fell in the same atlas region, a955

random electrode was selected to represent the functional activity of956

that neuroanatomically defined region. Next, for every time-window957

of the functional network, the functional network edges were corre-958

lated with the down sampled, static structural network edges. This959

resulted in a structure-function correlation time series. Note that960

atlases with very small region volumes included more electrodes for961

SFC calculation. Electrodes that did not localize to an atlas were962

excluded from analysis. To average the SFC for all patients and963

each atlas (Fig. 5), SFC time-series was resampled to 100 seconds964

for each period and each sample was averaged together. GitHub 965

code: packages/eeg/echobase/echobase.py 966

rsSFC and DSFC Resting-state SFC (rsSFC) was defined as the SFC 967

during the interictal period, approximately 6 hours before the ictal 968

period. The mean SFC of that period was computed. DSFC was 969

defined as the change in the mean SFC from the preictal to the ictal 970

period (Fig. 5 top left panel). rsSFC and DSFC was calculated for 971

each atlas (Fig. 6). 972

Statistics Preictal and ictal SFC for each atlas were compared using 973

e�ect sizes across the 55 atlases shown in Fig. 6d. Cohen’s d and 974

the di�erence between preictal and ictal SFC was calculated. 975

Data availability and Reproducibility All code 976

files used in this manuscript are available at 977

https://github.com/andyrevell/revellLab. All de-identified 978

raw and processed data (except for patient MRI imaging) are 979

available for download by following the links on the GitHub. 980

Raw imaging data is available upon reasonable request from 981

Principal Investigator K.A.D. iEEG snippets used specifically in 982

this manuscript are also available, while full iEEG recordings 983

are publicly available at https://www.ieeg.org. The Python 984

environment for the exact packages and versions used in this study 985

in contained in the environment directory within the GitHub. The 986

QSIPrep docker container was used for DWI preprocessing. 987
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Supplementary Material1004

Please see supplemental figures and tables contained below.1005
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– Fig. S3: Network measures for remaining atlases1010
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– Fig. S8: "Brain Atlas" Search in PubMed1017
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– Fig. S10: Electrode localization and region selection1020
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– Table. S1: Atlas Sources and References (3 pages).1022

– Table. S2: Patient and Control Demographics1023

• Other materials1024

– Glossary1025

Glossary1026

1. Atlas abbreviations and definitions. For further details,1027

see Table. S1.1028

(a) AAL. Automated anatomical labeling atlas.1029

(b) AAL1, AAL2, AAL3. AAL atlas versions 1, 2, and 3,1030

respectively.1031

(c) AAL-JHU. The AAL atlas and the JHU labels atlas1032

combined. For overlapping regions, the JHU atlas takes1033

precedence.1034

(d) AAL600. AAL atlas with 600 parcels.1035

(e) AICHA. Atlas of Intrinsic Connectivity of Homotopic1036

Areas.1037

(f) BNA. Brainnetome atlas.1038

(g) Craddock 200-400. Craddock atlases with a specified1039

number of parcels (e.g. Craddock 200 will have 2001040

parcels). There are two atlas sizes publicly available -1041

the Craddock 200 and Craddock 400 atlases.1042

(h) DKT31 OASIS. The DKT atlas from the OASIS1043

dataset. See Table. S1 sources for more details. It is1044

the volumetric version.1045

(i) DKT40. The DKT atlas used as part of FreeSurfer.1046

See Table. S1 sources for more details. It is the surface1047

version.1048

(j) DK. The Desikan-Killiany atlas. Surface atlas from1049

FreeSurfer.1050

(k) HO. Harvard-Oxford atlas.1051

(l) HO cortical-only. HO atlas with only cortical regions.1052

The symmetrical regions (the same region name on the1053

contralateral hemisphere) are labeled with di�erent iden-1054

tifications. Thus, this atlas has non-symmetrical labels1055

(e.g. both temporal pole regions are labeled with a di�er-1056

ent identification number). Left and right structures were1057

re-labeled with di�erent identification numbers using the1058

sagittal mid-line (in MNI space, x coordinate at zero) as1059

a separator.1060

(m) HO cort-only. Same as the HO cortical-only atlas.1061

(n) HO sym. cortical only. HO atlas with only cortical 1062

regions. The symmetrical regions (the same region name 1063

on the contralateral hemisphere) are labeled with the 1064

same identification. Thus, this atlas is has symmetrical 1065

labels (e.g. both temporal pole regions are labeled with 1066

the same identification number). The default atlases 1067

given by FSL are symmetrical atlases. 1068

(o) HO subcortical-only. HO atlas with only subcortical 1069

regions. 1070

(p) HO subcort-only. Same as the HO subcortical-only 1071

atlas. 1072

(q) HO combined. HO atlas with both cortical and sub- 1073

cortical regions. This atlas has non-symmetrical labeling 1074

(e.g. both temporal pole regions are labeled with a di�er- 1075

ent identification number). 1076

(r) HO cortical + subcortical. Same as the HO combined 1077

atlas. 1078

(s) JHU. The Johns Hopkins University atlases. There are 1079

two white matter atlases: thee JHU labels and JHU 1080

tracts atlases. 1081

(t) MMP. Multi-modal parcellation atlas. Sometimes re- 1082

ferred to as the "Glasser Atlas" after the first author of 1083

the original publication. 1084

(u) Random atlas 10-10,000. Atlases created with ran- 1085

dom parcels with a specified number of parcels (e.g. Ran- 1086

dom atlas 1,000 will have 1,000 parcels). These atlases 1087

were built in the ICBM 2009c Nonlinear Asymmetric 1088

template. Thus, these atlases are whole-brain atlases 1089

(includes cortical gray matter, subcortical gray matter, 1090

and white matter). See the ’Atlases’ Methods section for 1091

more details. 1092

(v) Schaefer 100-1,000. The Schaefer atlases with a speci- 1093

fied number of parcels (e.g. Schaefer 100 will have 100 1094

parcels). There are ten atlases of 100, 200, 300, 400, 500, 1095

600, 700, 800, 900, and 1,000 parcels. 1096

(w) Yeo liberal. The Yeo atlases where the boundaries of 1097

each parcel is extended slightly into the white matter, 1098

past the cortical boundary. 1099

(x) Yeo conservative. The Yeo atlases where the bound- 1100

aries of each parcel is extended slightly into the white 1101

matter, past the cortical boundary. 1102

2. � SFC. The change in SFC between ictal and preictal stats 1103

(SF Cictal ≠ SF Cpreictal). This indicates whether or not the 1104

change in functional connectivity is congruent with the under- 1105

lying structural connectivity. 1106

3. Contact. A single sensor on an electrode that records LFP. 1107

Not to be confused with an electrode. See Fig. S7, bottom. 1108

4. ECoG: Electrocorticography. 1109

5. Electrode. Not to be confused with contact. See Fig. S7, 1110

bottom. 1111

6. Derived atlas: An atlas which was derived from another 1112

atlas. For example, the AAL 600 is derived from the AAL 1113

atlas in which its parcellations are further sub-divided using a 1114

specified algorithm. Derived atlases may also be sub-divided 1115

randomly so that it is both considered a random and derived 1116

atlas (a quasi-random atlas). The BNA is also a derived atlas 1117

in which it initially used the parcellations of the DK atlas. 1118

7. Functional connectivity (FC). The statistical relationship 1119

between two signals (two contacts in this study). 1120

8. grayordinate. Atlas that includes gray matter structures, 1121

including cortical and subcortical gray matter regions. 1122

9. ROI. Region of interest 1123

10. ROI, parcel, parcellation, region. These terms may be 1124

used interchangeably in the literature. They refer to discrete 1125

areas of a brain. These regions are labeled with a categorical 1126

identification (rather than a continuous variable seen in tem- 1127

plates - see Fig. S1), and all voxels or surface vertices with the 1128

same identification are part of thee same region. 1129
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11. SEEG: Stereoelectroeenccephalography.1130

12. Structural connectivity (SC). The physical relationship1131

between two brain regions. We use streamline counts in this1132

manuscript from High Angular Resolution Di�usion Imaging.1133

13. T1w. T1-weighted MRI image.1134
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Fig. S1. Atlas, Template, and Coordinate (Stereotactic) Space. | These three terms are commonly confused in
the neuroscience literature because they all relate to the "map" of the brain. "Atlas" and "template" are sometimes used
interchangeably3, however, they are distinct. Here, we define them more formally. a, A brain atlas refers to a neurological map
that defines brain region labels. We use this definition throughout the main text. b, An atlas is distinct from a brain template,
which refers to a brain pattern. Similar in common usage, a template is a mold, gauge, or starting point representation of the
brain. Usually it is composed of multiple individuals’ brain representing an average of a population. Many templates exist
and are reviewed in various publications2,9, The templates illustrated here are the MNI152 Nonlinear asymmetric 2009c T1w
template (http://www.bic.mni.mcgill.ca), the OASIS brain template https://www.oasis-brains.org/ created and used by ANTs
(http://stnava.github.io/ANTs/ with templates linked here), a gray matter probability map, a PET template, and a b0 DTI
template. c, The coordinate system, or the stereotactic space, of the brain describes the physical positioning of the brain,
similar to the geographical coordinate system of longitude and latitude of the Earth. Historically, a common stereotactic space
was the Talairach space, and more recently, the MNI spaces. The analogy between the geographical terms of the Earth and the
geographical terms of the brain is not exact. The analogy falls apart in that while there in one world, there are many brains.
There is variability across populations and a spectrum of di�erences between species, therefore, it is challenging to represent
one brain for use in every scientific study appropriately. MNI, Montreal Neurological Institute; OASIS, Open Access Series of
Imaging Studies; GM, Gray Matter probability map; PET, Positron Emission Tomography; DTI, Di�usion Tensor Imaging.
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Table S1. Atlas sources and references. | This table provides a short note and references to the source material of common
atlases in the neuroscience literature. See also Table 1.
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Table S1. (cont.) Atlas sources and references. | This table provides a short note and references to the source material of
common atlases in the neuroscience literature. See also Table 1.
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Table S1. (cont.) Atlas sources and references. | This table provides a short note and references to the source material of
common atlases in the neuroscience literature. See also Table 1.
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Fig. S2. Atlas Morphology: Sizes and Shapes. | All standard atlases and one permutation for each of the standard atlases
are shown here. Volume means and sphericity means are in parentheses at the bottom of each graph. See Table S1 for atlas
abbreviations, descriptions, and sources.
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Fig. S3. Structure-Function Correlation (SFC) for All Atlases. | We show network measures the remaining atlases
illustrated in Table 2. See Table S1 for atlas descriptions. HO, Harvard-Oxford; Sub, subcortical; Cort, cortical
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Fig. S4. Network Measures: Controls vs Patients. | We replicate Fig. 2 (N=41) in the manuscript by separating out
controls (N=13) and patients (N=28). All global network measures above are similar between patients and controls, with
patients having slightly lower (but not significant, Fig. 2 bottom right panel) measurements for the di�erent network properties.
Specific connectivity di�erences between controls and patients were not explored (e.g. to explore if connections from the
hippocampus to the anterior cingulate are changed in temporal lobe epilepsy) and out of the scope of this manuscript. See
Table S1 for atlas descriptions.
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Fig. S5. Network Measures: di�erent thresholds. | We replicate Fig. 2 (N=41) in the manuscript by calculating network
measures using di�erent thresholds. The main text figure includes all weights with no threshold (threshold = 0). We set
thresholds at 01., 0.2, 0.3, and 0.4. This was done to show how various network measures may also change when eliminating
low-level connections at di�erent thresholds.
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Fig. S6. E�ects of Registration: Volumetric- and Surface-based approaches | Volumetric-based analyses, as opposed
to surface-based analyses, have been more prevalent in human neuroimaging studies for the last few decades21. Volumetric-based
approaches to map the neocortex have been shown to be inaccurate in some cases. For example, the top row shows a single
subject’s T1w image and the resulting labels of three atlases registered using a surface-based approach and two atlases using a
volumetric-based approach. The DKT atlas using a surface-based approach follows the cortical folds of the T1w image closely,
but the DKT atlas registered using a volumetric-based approach may have many mis-aligned areas. These images show the
improved accuracy in mapping and labeling brain structures using surface-based analyses, but the adoption of surface-based
analyses has been slow and attributed to five main reasons discussed in Coalson et. al 201821. Briefly, it is due to (1) the
need to compare results with existing volumetric-based studies, (2) the prevalence of volumetric-based tools compared to
surface-based tools, (3) the learning curve of surface-based approaches; (4) an unawareness of the problems and benefits of each
approach; (5) and uncertainty or skepticism as to how much of a di�erence these methodological choices make. In some cases,
it may make a di�erence, however, it does not make a di�erence in this study. Here, we used a surface-based approach to
register three di�erent atlases to each patient. The atlases were outputs of FreeSurfer’s recon-all pipelinee78 - the DKT40,
Desikan-Killiany (DK), and Destrieux atlases. The DKT atlas has a modified parcellations of the DK atlas, and the Destrieux
atlas is an alternative atlas o�ered by the FreeSurfer piepline. The Destrieux atlas has a finer parcellation scheme (i.e., more
number of regions). We repeat analyses of Fig. 5 and Fig. 6 of the main text, along with results from two volumetric-based
atlases for side-by-side comparison. The volumetric-based atlases include the DKT (DKT31 OASIS) and AAL3 atlases. While
the volumetric DKT atlas does not properly align and label the entire cortical gray matter regions, the AAL atlas extends
deeply into the white matter and does label much of these gray matter regions. For the experimental design of this study in
localizing electrode contacts and measuring structural connectivity, the AAL3 atlas provides the most power out of all these
atlases in detecting a change in SFC. In the original AAL manuscript88, the authors “chose to extend the internal limit of the
regions beyond the gray matter layer [to account for] anatomical variability”. This extension past the internal gray matter
boundary may be optimal in our case for measuring SFC because the parcellations may capture streamlines that otherwise
would have ended prematurely before reaching gray matter.
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Fig. S7. Coverage of electrode contacts. | Top: We show the percentage of contacts assigned a region given an atlas. If a
contact fell outside an atlas, it would not be assigned a location and would not be used in SFC analysis. We also show the
Harvard-Oxford atlas regions (cortical and subcortical combined) that contain electrode contacts (middle and bottom figures).
The middle figure shows the number of patients with at least one contact in an atlas region (at least one of the regions on both
hemispheres). The bottom figure shows the total number of contacts in each listed region. Note that 1792 out of 2474 contacts
(72%) contained within the brain parenchyma (gray matter or white matter) is higher than the mean percent coverage listed in
the top figure (65% for the HO combined) because some patients with fewer contacts may have lower coverage by the atlas,
thus bringing the mean percent down. Also note the larger number of contacts in the frontal pole because this region in the
Harvard-Oxford atlas is large. We chose to show the Harvard-Oxford atlas because it has the largest e�ect size in Fig. 6.
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Fig. S8. The increase in publications related to brain atlases. | We searched for any publications since 1945 using the
term “Brain Atlas” on PubMed. We note that since the introduction of BOLD fMRI in 1990, the need for neuroanatomical
maps of the brain has increased, especially in the neuroimaging community. Many atlases have been published over the last 30
years, and many publications across the neuroscience literature have used these atlases. However, no comprehensive study
exists evaluating, in any regard, to the suitability and nuances related to these atlases. We hope our work provides a valuable
resource to others in our field, launches a larger discussion to critically evaluating the neuroanatomy of the brain, and direct
future reproducible research for other scientists and clinician investigators.
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Fig. S9. Prevalence of select brain atlases and neuroimaging software | a, We searched on PubMed for any publications
since 1945 using the verbatim terms shown in each line graph legend. The tool used is from https://esperr.github.io/pubmed-
by-year/89. This search was done to gain a better understanding how often the field is using di�erent tools, and thus to make
some recommendations as to which atlases to use and facilitating the comparison of results. Note that due to the prevalence of
the term "AAL" which may not relate to the AAL atlas, we opted for the term "AAL atlas". Another example is the use of
"Multimodal Parcellation" rather than "MMP". The search for "AAL" is shown at the bottom right, where articles appear
before the original AAL manuscript in 200288, most likely not relating to the AAL atlas. However, the prevalence of "AAL"
increases substantially after 2002, more than other atlases. These search terms serves as a rough estimate of the prevalence of
atlases, and may not reflect the true prevalence of each term. b, We show to prevalence of select neuroimaging software. Again,
due to the ambiguity of search terms such as "ANTs", we opted for the full name of the software, despite some manuscripts
only having used the abbreviated terms. "Advanced normalization tools" searched in quotes is shown at the bottom right,
having first appeared formally in the literature in 200990.
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Fig. S10. Electrode localization and region selection | Assignment of each electrode contact to an atlas regions was
performed by rounding electrode coordinates (x,y,z) to the nearest voxel and indexing the given atlas at that voxel. Electrodes
that fell outside the atlas of interest were excluded from subsequent analysis. The structural connectivity network, representing
normalized streamline counts between each atlas region, was also down sampled to only include regions that contained at least
one SEEG contact. This gave one static representation of structural connectivity. In the case where multiple electrodes fell in
the same atlas ROI, a random electrode was selected to represent the functional activity of that neuroanatomically defined
region.
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Table S2. Patient and control demographics.| Patient IDs with asterisk have clinically annotated seizures for structure-
function calculation. Localization of the seizure onset zone was pulled from patient charts, either from the clinically hypothesized
brain regions if the patient did not undergo surgery, or if the patient underwent surgery, the targeted location for resection or
ablation. One control did not have age or sex information. M, Male; F: Female; L, left; R, Right; NR, Not reported
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Atlas [regions] Sources 3D Render Description Variations

AAL
[116;120;166]

1-7
SPM

Structural atlas. Manual identification using a defined labeling protocol 
on single subject template (Collin-27). Three versions. Version 2: updat-
ed boundaries. Version 3: further parcellations. Successor to Talairach.

AAL: AAL1, AAL2, AAL3, AAL600, AAL-JHU

AICHA
[384]

8 Functional atlas based on rsfMRI; 281 subjects. Each ROI has (1) homo-
geneity in its functional activity (2) a homotopic contralateral counterpart 
with which it has maximal connectivity.

Brainnetome
[246]

9-10
DSIstudio

Connectivity-based parcellation. Based on idea that clustered regions of 
a brain region should share similar connectivity profiles; 40 subjects from 
HCP dataset. 210 cortical; 36 subcortical.

Brodmann
[48]

11-13
MRIcron

Developed by independent group at Washington University in St. Louis. 
Published with MRIcron software. Warned by developer to be used with 
caution - not validated, nor based on multiple individuals. 

CerebrA
[102]

14 Structural atlas. Non-linear registration of cortical and subcortical label-
ling from Mindboggle-101 dataset (see DKT below) to the symmetric 
MNI-ICBM2009c template, followed by manual editing.

Craddock: N parcellations

Craddock
[N]

15-17 Functional atlas;  rsfMRI; 41 subjects. ROIs are spatially clustered into 
regions of homogeneous functional connectivity. May be N regions. 
200/400 regions publicly available. 4x4x4 mm3 resolution fMRI. Resliced.

DKT
[109]

18-23
FreeSurfer

DKT is a labelling protocol. DK is old protocol. Used on Mindboggle-101 
dataset (101 brains). Probabilistic atlas using joint fusion algorithm. 
Surface version in FreeSurfer (40 brains). Volumetric version, 20 brain 
subset. Non-cortical: Neuromorphometrics BrainCOLOR atlas (aseg).

DKT: Surface (probabilistic labeling 
of individual with surface-based 
registration), Volumetric (labeling
with volumetric-registration)

Destrieux
[189]

24-25
FreeSurfer

Probabilistic atlas of surface anatomy created from: (1) Manual labeling, 
(2) surface geometry, (3) spatial relationship of neighboring structures. 
Avaliable in FreeSurfer with subcortical structures added.

Harvard-Oxford: Cortical/subcortical only, combined, symmetric, nonsymmeric

Gordon-Petersen 
[333]

26-27 Identification of abrupt transitions in resting-state functional connectivity 
to identify parcellations. Based on rsFMRI. 108 subjects. Intended for 
surface-based analyses. 

Hammersmith
[83]

28-30 Manually identified 83 structures using defined labelling protocol; 30 sub-
jects. Maximum probability map. First version in 2003 with 49 structures. 
Named after London hospital, Hammersmith. Hammers is author.

Harvard-Oxford
[48 + 21]

31-32
FSL

Manual segmentation using defined labelling protocol; 37 subjects. Corti-
cal and subcortical atlases provided separately. Left and right structures 
have same labels (symmetry). Must preprocess. 

JHU
[48; 20]

33-35
FSL

White matter atlas. Two versions. (1) Labels: Hand segmentation aver-
age of diffusion MRI; 81 subjects. (2) Tracts: probabilistic identification 
from deterministic tractography; 28 subjects.

JHU: Labels, tracts

Julich
[121]

36-37
FSL

Cytoarchitecture atlas. Successor to Brodmann. Average of 10-subject 
post-mortem cyto- and myelo-architectonic segmentations. Update to the 
Eickhoff SPM Anatomy Toolbox v1.5. Whole brain is not covered. 

MMP
[380]

38-40
DSIstudio

Multi-modal parcellation: (1) Architecture - T1w/T2w myelin maps + cor-
tical thickness, (2) function - task-fMRI, (3) connectivity, (4) topography. 
210 subjects. Cortical ONLY. Originally intended for surface analysis. 
Volumetric version independently created and used. 

Random: N parcellations, cortical, whole-brain, subparcellated

Random
[N]

41-42 Brain is randomly parcellated into N regions. Variations used in studies 
include cortical and whole-brain. Other atlases (e.g. AAL) and their 
regions may be further randomly divided, or subparcellated.

MNI Structural
[9]

43
FSL

9 regions, including lobar and some subcortical regions. Hand 
segmented 50 subjects. Transformed into MNI152 space, averaged, 
probability maps produced. 25% max probability is shown.

Schaefer: 100 to 1,000 parcellations (by 100), named to Yeo 7 and 17

Schaefer
[100-1000]

44-45
GitHub

Based on rsfMRI. Clusters found with gradient-weighted Markov 
Random Field model. 1489 subjects. Cortical only. Spatial resolutions 
provided: 100 - 1000 parcellations (by 100). Well documented. 

Talairach
[1105]

46-50
FSL

Conversion of original Talairach labeling. Digitized version of the original 
(coarsely sliced) Talairach atlas and registration to MNI 152 space. Atlas 
provided in FSL.

Yeo: 7/17 parcellations; Cortically bounded or liberal

Yeo
[7; 17]

51-52
FreeSurfer

1000 subjects; rsfMRI. Clustered cortical regions by pattern of functional 
connectivity. Results in non-spatially continuous clusters. 7 and 17 
clusters based on stability of clustering algorithm.

Region-specific 53-56
FSL

Atlases created for specific regions, usually high quality + high degree 
of accuracy (e.g. post-mortem histological verification). Examples: 
Thalamus nuclei, hippocampus, and other specific structures.  

Thalamus, 
Hippocampus, 
Cerebellum

Population-specific 57-58 Atlases created from a specific population (e.g. elderly, pediatric, 
non-human). Disease-specific defines regions specific for disease (e.g. 
MS lesion probabilistic locations).

Pediatric, 
Elderly,  
Disease specific

Cortically bounded liberal discontinuous
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Atlas Source Note Reference(s)

AAL 1 AAL1. The successor to the Talairach atlas. The goal was to 
reduce confusion in relating stereotaxic space (a set of brain 
coordinates) and anatomical labels. It is based on a single indi-
vidual (the Collin-27 template) and it is not a probabilistic map. 
The Collin-27 template was intended for segmentation, and not 
stereotaxy; it did not capture anatomical variability. However, 
the high resolution in 1998 proved attractive to research groups.

(1) Tzourio-Mazoyer, N. et al. Automated Anatomical Labeling of Activations in SPM 
Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain. 
NeuroImage 15, 273–289 (2002).
(2) Collin-27 template: Holmes, C. J. et al. Enhancement of MR Images Using 
Registration for Signal Averaging: Journal of Computer Assisted Tomography 22, 
324–333 (1998).
(3) Website about Collin-27: https://www.bic.mni.mcgill.ca/ServicesAtlases/Colin27

2 AAL2: new parcellation of orbitofrontal cortex. AAL1 orbitofron-
tal cortex was parcellated according to a French publication 
by Jules Déjerine in 1895. Chiavaras and Petrides (2000) 
proposed another parcellation of the orbital surface allowing 
for the comparison of human frontal lobe anatomy with that of 
macaques.

(1) Rolls, E. T., Joliot, M. & Tzourio-Mazoyer, N. Implementation of a new 
parcellation of the orbitofrontal cortex in the automated anatomical labeling atlas. 
NeuroImage 122, 1–5 (2015).
(2) Chiavaras, M. M. & Petrides, M. Orbitofrontal sulci of the human and macaque 
monkey brain. The Journal of Comparative Neurology 422, 35–54
(3) Dejerine, J. Anatomie des centres nerveux. (Rueff Paris, 1895).

3 AAL3: new parcellations - anterior cingulate, thalamus, nucleus 
accumbens, substantia nigra, ventral tegmental area, red 
nucleus, locus coeruleus, and raphe nuclei. 2019.
AAL3v1: changes of thalamus in line with FreeSurfer 7. 2020.

Rolls, E. T., Huang, C.-C., Lin, C.-P., Feng, J. & Joliot, M. Automated anatomical 
labelling atlas 3. NeuroImage 206, 116189 (2020).

4 Website for download - group that made AAL toolbox and user 
guides.

https://www.gin.cnrs.fr/en/tools/aal/

5 SPM - software compatible with AAL toolbox. Generally, 
designed for the analysis of brain imaging data sequences. 
Extensions include AAL toolbox. 

(1) Statistical parametric mapping: the analysis of functional brain images. (Elsevier/
Academic Press, 2007).
(2) Website: https://www.fil.ion.ucl.ac.uk/spm/ext/

6 AAL 600 - Subparcellations of the AAL atlas into 600 subre-
gions. Upsampling algorithm described. Part of larger frame-
work for evaluating the effect of parcellation scale. 

Bassett, D. S., Brown, J. A., Deshpande, V., Carlson, J. M. & Grafton, S. T. Con-
served and variable architecture of human white matter connectivity. NeuroImage 
54, 1262–1279 (2011)

7 Use cases of AAL600. Both Ashourvan et al. (2017) and 
Hermundstad et al. (2014) use AAL600 for generating both 
structural and functional connectivity networks.

(1) Ashourvan, A., Telesford, Q. K., Verstynen, T., Vettel, J. M. & Bassett, D. S. Multi-
scale detection of hierarchical community architecture in structural and functional 
brain networks. (2017)
(2) Hermundstad, A. M. et al. Structurally-Constrained Relationships between Cog-
nitive States in the Human Brain. PLoS Comput Biol 10, e1003591 (2014).

AICHA 8 AICHA tries to account for homotopy: the concept that each 
region in one hemisphere has a homologue in the other.

Joliot, M. et al. AICHA: An atlas of intrinsic connectivity of homotopic areas. Journal 
of Neuroscience Methods 254, 46–59 (2015)

Brainnetome 9 Connectivity-based atlas. Further subdivision of structural 
parcellations using the DK (Desikan-Killiany) protocol, with 
adjustments. 

Fan, L. et al. The Human Brainnetome Atlas: A New Brain Atlas Based on Connec-
tional Architecture. Cerebral cortex (New York, N.Y. : 1991) 26, 3508–26 (2016).
Website: http://atlas.brainnetome.org

10 DSI studio created by Fang-Cheng (Frank) Yeh. Many recon-
struction and tracking algorithms are published and incorporat-
ed into DSI Studio. See citations page on website. Many atlases 
available, including Brainnetome. Can use custom atlas. 

(1) Website: http://dsi-studio.labsolver.org/
(2) Example of reconstruction method: Fang-Cheng Yeh, Wedeen, V. J. & Tseng, 
W.-Y. I. Generalized q-Sampling Imaging. IEEE Trans. Med. Imaging 29, 1626–1635 
(2010).

Brodmann 11 Perspective, description, and historical significance of Korbinian 
Brodman’s map.

Zilles, K. & Amunts, K. Centenary of Brodmann’s map — conception and fate. Nat 
Rev Neurosci 11, 139–145 (2010

12 References to the original German and English translation 
provided. 

(1) Original German: Vergleichende Lokalisationslehre der Grosshirnrinde in ihren 
Prinzipien dargestellt auf Grund des Zellenbaues. (1909)
(2) English translation: Brodmann, K. & Gary, L. J. Brodmann’s localisation in the 
cerebral cortex: the principles of comparative localisation in the cerebral cortex 
based on cytoarchitectonics. (Springer, 2006

13 The atlas is available through MRIcro, a legacy tool developed 
by Chris Rorden (University of South Carolina). The atlas is 
based on work from the Van Essen lab (Washington University 
in St. Louis) with corresponding Talairach coordinates, and 
transformed by Krish Singh (Cardiff University) to MNI space.

(1) Chris Rorden legacy tools webpage: https://people.cas.sc.edu/rorden/
(2) Updated webpage: https://crnl.readthedocs.io/
(3) About Brodmann atlas: https://people.cas.sc.edu/rorden/mricro/lesion.html
(4) BALSA: https://balsa.wustl.edu/Wz8r

CerebrA 14 Introduction to the CerebrA and MNI-ICBM2009c average brain 
template. 

Manera, A. L., Dadar, M., Fonov, V. & Collins, D. L. CerebrA, registration and 
manual label correction of Mindboggle-101 atlas for MNI-ICBM152 template. Sci 
Data 7, 237 (2020).
Website: https://doi.gin.g-node.org/10.12751/g-node.be5e62

Craddock 15 Original publication about functional parcellations. Craddock, R. C., James, G. A., Holtzheimer, P. E., Hu, X. P. & Mayberg, H. S. A 
whole brain fMRI atlas generated via spatially constrained spectral clustering. Hum. 
Brain Mapp. 33, 1914–1928 (2012).

16 GitHub with source code to make atlas with N clusters. GitHub: http://ccraddock.github.io/cluster_roi/atlases.html

17 Publicly available pre-made atlases at N=200 and N=400 from 
ABIDE (Autism Brain Imaging Data Exchange), co-founded by 
Cameron Craddock. 4x4x4mm resolution.

ABIDE: http://preprocessed-connectomes-project.org/abide/Pipelines.html
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Atlas Source Note Reference(s)

DKT 18 Original DK protocol and atlas. A protocol for an atlas is a set 
of instructions for how the brain should be labeled. See AAL, 
Hammersmith, Harvard-Oxford, and JHU atlases. 

Desikan, R. S. et al. An automated labeling system for subdividing the human 
cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 31, 
968–980 (2006).

19 DKT protocol, Mindboggle-101 dataset, and atlas creation. Klein, A. & Tourville, J. 101 Labeled Brain Images and a Consistent Human Cortical 
Labeling Protocol. Front. Neurosci. 6, (2012).

20 Summary of Mindboggle project, history, atlas development, 
applications, and current problems. 

Klein, A. et al. Mindboggling morphometry of human brains. PLoS Comput Biol 13, 
e1005350 (2017)

21 Websites for downloading data including the labeled brains and 
atlases. 

Open Science Framework: https://osf.io/nhtur/
Harvard Dataverse: https://dataverse.harvard.edu/dataverse/mindboggle
Labels: https://mindboggle.readthedocs.io/en/latest/labels.html
GitHub: https://github.com/nipy/mindboggle

22 Subcortical regions. http://www.neuromorphometrics.com/

23 FreeSurfer. https://surfer.nmr.mgh.harvard.edu/

Destrieux 24 Original article describes automatic labeling algorithm from 
probabilistic information using a manually labeled training set. 
74 parcellations per hemisphere (excluding subcortical struc-
tures). Available in FreeSurfer with subcortical structures output.

(1) Destrieux, C., et al., E. Automatic parcellation of human cortical gyri and sulci 
using standard anatomical nomenclature. NeuroImage 53, 1–15 (2010).
(2) Fischl, B. Automatically Parcellating the Human Cerebral Cortex. Cerebral 
Cortex 14, 11–22 (2004).

25 FreeSurfer information on atlases available. (1) https://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation
(2) https://surfer.nmr.mgh.harvard.edu/fswiki/DestrieuxAtlasChanges

Gordon-Petersen 26 Original article. Gordon, E. M. et al. Generation and Evaluation of a Cortical Area Parcellation from 
Resting-State Correlations. Cereb. Cortex 26, 288–303 (2016).

27 Resource  to download atlas. https://sites.wustl.edu/petersenschlaggarlab/resources/

Hammersmith 28 Original article (for regions 1-49), including their Hammersmith 
protocol (or “algorithm”).

Hammers, A. et al. Three-dimensional maximum probability atlas of the human 
brain, with particular reference to the temporal lobe. Hum. Brain Mapp. 19, 224–247 
(2003).

29 Updated regions (for regions 50-83). Gousias, I. S. et al. Automatic segmentation of brain MRIs of 2-year-olds into 83 
regions of interest. NeuroImage 40, 672–684 (2008).

30 Download atlas with 83 regions. http://brain-development.org/brain-atlases/adult-brain-atlases/adult-brain-maximum-
probability-map-hammers-mith-atlas-n30r83-in-mni-space/

Harvard-Oxford 31 Atlas developed at the Center for Morphometric Analysis (CMA) 
at Massachusetts General Hospital and distributed with FSL.

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases

32 Individual segmentations were segmented by CMA using in-
house software. Probability maps were then created. Freesurfer 
link (right) has archived CMA’s website and contains the 
Harvard-Oxford labeling protocols.

FreeSurfer description about CMA: http://freesurfer.net/fswiki/CMA
Link to website archive: https://web.archive.org/web/20180413052010/http://www.
cma.mgh.harvard.edu/

JHU 33 JHU labels: Protocol to reconstruct eleven white matter tracts 
and their segmentation into ROI labels. Included in FSL.

Wakana, S. et al. Reproducibility of quantitative tractography methods applied to 
cerebral white matter. NeuroImage 36, 630–644 (2007).

34 JHU Tracts: white matter parcellation atlas based on DTI prob-
abilistic tractography of 11 major white matter tracts d. Protocol 
defining manually identified ROIs from which the tracts were 
formed are described in Wakana et al. (2005). Included in FSL.

Hua, K. et al. Tract probability maps in stereotaxic spaces: Analyses of white matter 
anatomy and tract-specific quantification. NeuroImage 39, 336–347 (2008).

35 Textbook with more information about these atlases. MRI atlas of human white matter. (Elsevier, Acad. Press, 2011).

Julich 36 Cytoarchitecture map. Successor to both the Brodmann and 
Eickhoff-Zilles atlases. The Eichoff-Zilles is an SPM toolbox 
(see note is source 5 about the AAL atlas) for probabilistic 
cytoarchitecture.   

(1) Amunts, K., Mohlberg, H., Bludau, S. & Zilles, K. Julich-Brain: A 3D probabilistic 
atlas of the human brain’s cytoarchitecture. 6 (2020).
(2) Eickhoff, S. B. et al. A new SPM toolbox for combining probabilistic cytoarchitec-
tonic maps and functional imaging data. NeuroImage 25, 1325–1335 (2005)

37 Website for the Julich Atlas and SPM toolbox. https://www.fz-juelich.de/inm/inm-1/DE/Forschung/_docs/SPMAnatomyToolbox/
SPMAnatomyToolbox_node.html

MMP 38 Original article on multi-modal approach. Glasser, M. F. et al. A multi-modal parcellation of human cerebral cortex. Nature 
536, 171–178 (2016).

39 Information on surface vs volume based methodologies for 
localization of neuroanatomy. 

Coalson, T. S., Van Essen, D. C. & Glasser, M. F. The impact of traditional neuroim-
aging methods on the spatial localization of cortical areas. Proc Natl Acad Sci USA 
115, E6356–E6365 (2018).

40 Website to download data. Volumetric version also included in 
DSI-studio. Note the volume note above.

https://balsa.wustl.edu/

Surface version

Volumetric version

DK atlas - surface 
(original DK protocol)  
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Atlas Source Note Reference(s)

Random 41 Random atlas algorithm (pseudo-grassfire algorithm). Zalesky, A. et al. Whole-brain anatomical networks: does the choice of nodes 
matter? Neuroimage 50, 970–83 (2010).

42 Use case of random atlas. Goni et al. (2014) study the struc-
ture-function relationship in the brain with tractography and 
fMRI. They used random cortical atlases of 1170 equally sized 
regions. Misic et al. (2015) used random cortical atlases of 1015 
equally sized regions.

(1) Goni, J. et al. Resting-brain functional connectivity predicted by analytic mea-
sures of network communication. Proceedings of the National Academy of Sciences 
111, 833–838 (2014).
(2) Mišić, B. et al. Cooperative and Competitive Spreading Dynamics on the Human 
Connectome. Neuron 86, 1518–29 (2015).

MNI Structural 43 Included with FSL. See website for further details. Included 
structures are (1) Caudate, (2) Putamen, (3) Thalamus, (4) 
Insula, (5) Frontal lobe, (6) Temporal lobe, (7) Parietal lobe, (8) 
Occipital lobe, and (9) Cerebellum.

(1)  Website: http://www.talairach.org/about.html
(2) http://www.talairach.org/about.html
(3) Mazziotta, J. et al. A probabilistic atlas and reference system for the human 
brain: International Consortium for Brain Mapping (ICBM). Phil. Trans. R. Soc. Lond. 
B 356, 1293–1322 (2001).

Schaefer 44 Original publication about functional parcellations. Schaefer, A. et al. Local-Global Parcellation of the Human Cerebral Cortex from 
Intrinsic Functional Connectivity MRI. Cerebral Cortex 28, 3095–3114 (2018).

45 GitHub and detailed documentation of atlases. https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcella-
tion/Schaefer2018_LocalGlobal

Talairach 46 Download: Included with FSL. Also available through website. Website: http://www.talairach.org/

47 The anatomical region labels were electronically derived from 
axial sectional images in the 1988 Talairach Atlas. The atlas was 
digitized and manually traced into a volume-occupant hierarchy 
of anatomical regions detailed these publications (i.e. the pages 
of the 1988 textbook with drawings were photocopied and 
transformed into the computerized coordinate system). 

(1) Lancaster, J. L., Evans, A. C. & Toga, A. W. Automated Labeling of the Human 
Brain: A Preliminary Report on the Development and Evaluation of a Forward-Trans-
form Method. 238–242 (1997).
(2) Lancaster, J. L. et al. Automated Talairach Atlas Labels For Functional Brain 
Mapping. 120–131 (2000).

48 (1) First atlas in 1957 focusing on the subcortical deep gray 
nucelli, (2) second atlas in 1967 focusing on the telencepha-
lon, (3) third atlas in 1988 focusing on the whole brain.  Most 
researchers preferred the use of the Talairach atlas to report 
the localization of the activations detected in functional imaging 
studies because it offers a detailed anatomical brain description
within the stereotaxic space, including Brodmann’s areas.

(1) Talairach, J., David, M., Tournoux, P., Corredor, H. & Kvasina, T. Atlas d’Anato-
mie Stéréotaxique. Repérage Radiologique Indirect des Noyaux Gris Centraux des 
Régions Mésencephalosousoptique et Hypothalamique de l’Homme. (1957).
(2) Talairach, J. & Szikla, G. Atlas of Stereotaxic Anatomy of the Telencephalon. 
(Masson, 1967)
(3) Talairach, J. & Tournoux, P. Co-planar stereotaxic atlas of the human brain: 3-di-
mensional proportional system: an approach to cerebral imaging. (Georg Thieme, 
1988).

49 Historical publication about Jean Talairach. Harary, M. & Cosgrove, G. R. Jean Talairach: a cerebral cartographer. Neurosurgi-
cal Focus 47, E12 (2019).

50 Comparison between MNI and Talairach Coordinates. Lancaster, J. L. et al. Bias between MNI and Talairach coordinates analyzed using 
the ICBM-152 brain template. Hum. Brain Mapp. 28, 1194–1205 (2007).

Yeo 51 Original publication about functional parcellations. Thomas Yeo, B. T. et al. The organization of the human cerebral cortex estimated by 
intrinsic functional connectivity. Journal of Neurophysiology 106, 1125–1165 (2011)

52 Website from FreeSurfer. https://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation_Yeo2011

Region-specific 53 Thalamus - based on ex vivo analysis. Iglesias, J. E. et al. A probabilistic atlas of the human thalamic nuclei combining ex 
vivo MRI and histology. NeuroImage 183, 314–326 (2018).

54 Hippocampus - based on ex vivo analysis. Iglesias, J. E. et al. A computational atlas of the hippocampal formation using ex 
vivo, ultra-high resolution MRI: Application to adaptive segmentation of in vivo MRI. 
NeuroImage 115, 117–137 (2015).

55 Structural atlas of Cerebellum. Included with FSL. Diedrichsen, J., Balsters, J. H., Flavell, J., Cussans, E. & Ramnani, N. A probabilis-
tic MR atlas of the human cerebellum. NeuroImage 46, 39–46 (2009).

56 Functional atlas of Cerebellum. (1) Xue, A. et al. The Detailed Organization of the Human Cerebellum Estimated by 
Intrinsic Functional Connectivity Within the Individual. 69.
(2) Buckner, R. L., Krienen, F. M., Castellanos, A., Diaz, J. C. & Yeo, B. T. T. The 
organization of the human cerebellum estimated by intrinsic functional connectivity. 
Journal of Neurophysiology 106, 2322–2345 (2011).
(2) GitHub: https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/
brain_parcellation/Xue2021_IndCerebellum

Population-specific 57 Pediatric/Neonatal. Alexander, B. et al. A new neonatal cortical and subcortical brain atlas: the Mel-
bourne Children’s Regional Infant Brain (M-CRIB) atlas. NeuroImage 147, 841–851 
(2017).

58 Disease-specific: example of a multiple sclerosis lesional atlas. Sahraian, M. A. & Radue, E.-W. MRI atlas of MS lesions. (Springer, 2008).
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