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The lowering genotyping cost is ushering in a wider interest and adoption of genomic 
prediction and selection in plant breeding programs worldwide. However, improper 
conflation of historical and recent linkage disequilibrium between markers and genes 
restricts high accuracy of genomic prediction (GP). Multiple ancestors may share a 
common haplotype surrounding a gene, without sharing the same allele of that gene. This 
prevents parsing out genetic effects associated with the underlying allele of that gene 
among the set of ancestral haplotypes. We present “Parental Allele Tracing, Recombination 
Identification, and Optimal predicTion” (i.e., PATRIOT) approach that utilizes marker data 
to allow for a rapid identification of lines carrying specific alleles, increases the accuracy 
of genomic relatedness and diversity estimates, and improves genomic prediction. 
Leveraging identity-by-descent relationships, PATRIOT showed an improvement in GP 
accuracy by 16.6% relative to the traditional rrBLUP method. This approach will help to 
increase the rate of genetic gain and allow available information to be more effectively 
utilized within breeding programs.

Keywords: genomic selection, identity by descent, soybean, chromosomal tracing, genomic prediction

INTRODUCTION

Crop domestication has caused extreme genetic bottleneck, with a reduction in genetic diversity 
in domesticated crops compared to wild ancestors including in soybean (Glycine max L. Merr.; 
Hyten et  al., 2006). Consequently, the number of ancestral individuals that are represented in 
modern cultivars is quite low (Gizlice et  al., 1994). For example, 17 founding lines contributed 
75% of the genes in modern US soybean cultivars, and 95% of genes could be  traced to 35 
ancestral lines, demonstrating an extremely narrow genetic variation challenging breeding 
progress. This is not confined to soybean alone, as other crops have similar challenges (Smith, 2007;  
Bennett et  al., 2012).

The narrow genetic variability within modern breeding programs is a concern for breeders, 
as low diversity implies an incomplete sampling of favorable alleles as breeders attempt to 
improve crop performance and plasticity (Kisha et  al., 1998). Furthermore, the likelihood of 
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untapped resistance to biotic and abiotic stresses and the 
unavailability of favorable genes is high (Burdon, 2001). Low 
genetic diversity also negatively influences the response to 
selection (Tanksley and McCouch, 1997). In soybean, the 
continuous use of the same resistance source, i.e., PI 88788, 
has led to SCN populations developing increased reproduction 
on soybean varieties with this source, thereby necessitating 
additional sources of resistance in varieties (Tylka, 2007). 
Tracking identity-by-descent (IBD) presents unique advantages 
that can benefit ongoing plant breeding efforts in utilizing the 
narrow genetic germplasm pool within modern varieties 
effectively, as the limited number of founder sources increases 
the occurrence rate of each chromosomal segment from each 
founder. Each founder’s chromosomal segment is therefore 
expected to be  replicated sufficiently within breeding materials 
to obtain accurate predictions of the segment effect.

Genomic selection (GS) is becoming mainstream in mid- to 
large breeding programs (Hickey et  al., 2017), as it unlocks 
new opportunities to select in early generations and predict 
parental suitability (Battenfield et  al., 2016; Yao et  al., 2018). 
This leads to the ability to select improved lines accurately 
with less field testing and speed their reuse as parents in a 
breeding program. Such practice was only possible after the 
development of high-density marker panels that are currently 
available for many crops. Markers are widely used to infer 
relationships at the QTL level, which can be  well estimated 
whether the LD between markers and QTL is reasonably high 
(Habier et  al., 2007). Within breeding populations, markers 
can be  expressed as either identical-by-state (IBS; individuals 
share nucleotide sequence; marker allele is the same independent 
of the origin) or IBD (individuals share nucleotide sequence; 
marker allele is the same by inheritance from a shared ancestor; 
Lynch and Walsh, 1998). IBD data provide greater information 
than IBS, as the nucleotide sequence between two adjacent 
IBD marker alleles from one parent in an individual is inherited 
from that same parent at a high probability, barring mutation 
or double recombination. When recombination is low within 
a region of multiple marker loci, it becomes possible to identify 
haplotypes, or runs of multiple markers which are consistently 
inherited together (Daly et  al., 2001).

Current genomic selection models are predominantly based 
on IBS relationships between lines and utilize historic LD 
between markers and the trait of interest, as well as pedigree-
based relatedness (Habier et  al., 2007; Endelman, 2011). 
Modifications to the basic rrBLUP/GBLUP methods have had 
some success; for example, the SNP effects obtained in any 
SNP-based model can be  converted into SNP variance and 
used as weights in genomic relationship-based models (Tiezzi 
and Maltecca, 2015). An extension to this model has also 

been proposed that accounts for heteroskedasticity (Shen et al., 
2013). The basic approach has worked reasonably well in plants 
(Sorrells, 2015) and animals (VanRaden, 2008), which implies 
that IBS relationships are a reasonable approximation of the 
true IBD state. Where LD is high locally, IBS relationships 
are more similar to those calculated based on IBD. In other 
circumstances, the use of IBD can improve relationship estimation 
when compared to IBS (Li et  al., 2014), can better account 
for population structure (Morrison, 2013), and can enhance 
genetic mapping (Dawn Teare and Barrett, 2005). Luan et  al. 
(2012) compared IBS and IBD relationships for the estimation 
of genomic predictions in dairy cattle and found slightly greater 
additive genetic variance and accuracy for models based on 
IBD. Forneris et al. (2016) found IBD relationships to be more 
precise than IBS in simulated and real pig datasets; however, 
the authors reported that the computing time and memory 
needed to fit the hidden relatedness (i.e., IBD relationships 
through LD information) were high. This is because the method 
requires tracing IBD-inherited haplotypes within the pedigree 
(Thompson, 2013). The haplotype information from IBD due 
to inheritance from a recent common ancestor can therefore 
enable more accurate relationship estimates and improve the 
effectiveness of genomic selection with IBD-based genomic 
selection approaches. However, to take full advantage of the 
benefits of IBD data, it is necessary to track true IBD segments 
within the population, which requires knowledge about the 
pedigree and genotypes.

While previous efforts have relied on using haplotypes 
based on observed LD between markers, we  explore an 
alternative approach of tracking the parental source of each 
allele. Two main distinctions between the approaches should 
be  noted: (1) our approach does not assume any previous 
evidence of haplotypes or LD, instead utilizing markers which 
could only have been inherited from exactly one of the direct 
parents to define IBD segments, and (2) individuals which 
would otherwise have the same estimated effect from a shared 
haplotype can now be  assigned different estimated effects 
due to tracking exactly which ancestral line a haplotype was 
inherited from.

We test an approach hereafter named “Parental Allele 
Tracing, Recombination Identification, and Optimal predicTion” 
(PATRIOT) that utilizes raw marker data for tracking IBD 
inheritance of chromosome segments, enabling the rapid 
identification of lines carrying specific alleles, increasing the 
accuracy of genomic relatedness and diversity estimates, and 
improving genomic prediction and selection performance. 
Using the SoyNAM population (Song et  al., 2017), which 
includes 39 parents crossed to a common parent and 5,176 
recombinant inbred lines, we  explored the effectiveness of 
GS with additional information conferred with IBD (i.e., 
through PATRIOT). We  traced chromosome segments from 
parent to progeny, followed by the calculation of the mean 
phenotype of lines inheriting each SNP from a given parental 
source. The difference between the mean phenotype of each 
SNP source and the population mean were used in place of 
the raw marker data to allow the incorporation of IBD data 
into a GS pipeline.

Abbreviations: GP, Genomic prediction; GS, Genomic selection; GEBV, Genomic 
Estimated Breeding Value; gBLUP, Genomic best linear unbiased predictors; 
rrBLUP, Ridge regression best linear unbiased predictors; PATRIOT, “Parental 
Allele Tracing, Recombination Identification, and Optimal predicTion”; IBD, 
Identity-by-descent; IBS, Identity-by-state; LD, Linkage disequilibrium; QTL, 
Quantitative trait locus; MAS, Marker-assisted selection; USDA, United States 
Department of Agriculture; NAM, Nested Association Mapping (population); SNP, 
Single-nucleotide polymorphism.
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MATERIALS AND METHODS

Pedigree Records
Pedigrees for public breeding lines tested in the Uniform 
Soybean Tests were recorded based on reporting in their last 
year of testing in the Northern tests1 or Southern tests.2 
Additional breeding records were obtained from cultivar release 
papers, primarily from Crop Science,3 the Journal of Plant 
Registrations,4 and Canadian Journal of Plant Science.5 Pedigree 
information for other lines in the NPGS soybean germplasm 
collection were downloaded from https://npgsweb.ars-grin.gov/
gringlobal/search. The pedigree information used in this study 
is provided in Supplementary File 1 and is also available 
from GitHub.6

Marker Data
Soybean Nested Association Mapping Panel
SNP marker data for 5,149 soybean nested association mapping 
(SoyNAM) RILs, as well as their parents, were downloaded 
from SoyBase,7 using the Wm82.a2 reference genome for 
downloading. For the SoyNAM panel, 4,289 SNP markers were 
used in the analysis. Markers were reordered prior to tracing 
and imputation based on the composite linkage map created 
in previous work (Song et  al., 2017). The ancestral source of 
each chromosome segment was identified using the pipeline 
illustrated in Figure  1 and described below.

Released Cultivars and Isolines
We identified 868 accessions within the National Plant Germplasm 
System (NPGS) soybean collection wherein both parent and 
progeny were genotyped with the SoySNP50k SNP set, including 
near-isogenic lines derived from backcrossing schema. SNP 
marker data for all accessions in the GRIN database were 
downloaded from Soybase.org8 as a VCF file, with positions 
annotated based on the Wm82.a2 reference genome. Preprocessing 
to remove SNPs aligned to scaffolds or the mitochondria left 
42,080 SNP markers aligned to the Wm82.a2 reference genome 
and used in further analysis. Missing SNP data were imputed 
using Beagle 4.0 with default settings (Browning and Browning, 
2007). This panel will be  referred to as the “868/50K panel” 
for brevity.

Performance Data
Phenotypic records for the SoyNAM recombinant inbred line 
mapping population were downloaded from SoyBase (see 
Footnote 7), including yield, plant height, lodging, oil, and 

1 https://www.ars.usda.gov/midwest-area/west-lafayette-in/crop-production-and-
pest-control-research/docs/uniform-soybean-tests-northern-region/
2 https://www.ars.usda.gov/southeast-area/stoneville-ms/crop-genetics-research/
docs/uniform-soybean-tests/
3 https://acsess.onlinelibrary.wiley.com/journal/14350653
4 https://acsess.onlinelibrary.wiley.com/journal/19403496
5 https://www.nrcresearchpress.com/journal/cjps
6 https://github.com/SoylabSingh/PATRIOT
7 https://soybase.org/SoyNAM/index.php
8 https://soybase.org/dlpages/#snp50k

protein. Replicated entries’ phenotypic records from within a 
single environment were used to calculate BLUP for those 
lines, while unreplicated entries were incorporated using the 
raw phenotypic values. The “Corrected Strain” column was 
used to connect phenotypes with genotypic records. Phenotypic 
records were available from 2011 (IL and NE), 2012 (IA, IL, 
IN, KS, MI, MO, NE, OH1, and OH2), and 2013 (IA, IL, IN, 
KS, and MO). Additionally, SoyNAM RIL provided by Dr. 
George Graef was used to evaluate the performance of individual 
gene tracking for several qualitative traits (G. Graef, 
personal communication).

Phytophthora root rot resistance ratings were queried from 
the National Plant Germplasm System9 for each of the ancestors 
of the modern cultivar “Rend” (Nickell et  al., 1999). “Rend” 
was selected for demonstration of the multi-generation 
chromosome segment tracing code due to both parents and 
all four grandparents being genotyped with the same platform, 
as well as the major resistance gene segregating within 
the pedigree.

PATRIOT Workflow and Code Development
PATRIOT workflow utilizes LD and haplotype in a novel way 
to improve genomic prediction. Specifically, this system allows 
for the tracing of chromosomal segments from the immediate 
parents to the offspring, and to trace chromosomal segments 
through multiple generations. The allele tracing code outputs 
can be  used as inputs into a modified genomic evaluation 
code, wherein the ancestral allele source records are converted 
to numeric based on differences from the population’s phenotypic 
mean. Custom R scripts were developed to identify SNPs which 
could only come from one of the listed parents (hereafter 
“anchor markers,” Figures  1A,B), followed by imputation of 
SNPs of fixed markers based on surrounding anchor markers 
(Figure 1C). Code for identifying anchor markers, imputation, 
multi-generation tracing, and recombination zone identification 
are available as Code 1, Code 2, Code 3, and Code 4, respectively 
(see footnote 6). Genomic prediction was evaluated using 
rrBLUP in R with raw marker data and allele tracing alternatives 
Code 5 (see footnote 6).

The workflow can be translated into the following algorithm:

 1. Prepare pedigree file for all individuals under consideration 
(backcross-derived lines should be  coded as though they 
originated from a single cross).

 2. Prepare a master marker file for progeny and parents which 
have been genotyped with the same marker panel.

 3. Within each progeny, identify markers which could only 
have been inherited from one of the parents. Name those 
markers by their parental source and rename the remaining 
markers as “Parent A and Parent B.”

 4. Impute ambiguous markers if they are flanked on either 
side by alleles inherited from the same parent. This often 
requires going more than one marker away to get to a 
marker which is known to be  inherited from a 
specific parent.

9 https://npgsweb.ars-grin.gov/gringlobal/search.aspx
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To allow the nominal data created in steps 1–4 to be utilized 
for genomic prediction in linear regression-based approaches 
(e.g., ridge regression BLUP or rrBLUP), we  created what 
we  call an allele effect estimator. This requires the addition 
of three extra steps (5–7):
 5. For each marker position, calculate the difference between 

the average phenotype of lines which inherited that marker 
from each parent and the location mean.
If there are eight different sources of alleles at a specific 

locus, there will be  eight different estimates (one for each 
source). This process needs to be  repeated separately for every 
location and trait. However, the same file of ancestral allele 
sources can be  used regardless of environment or trait. The 
difference between the average phenotype of lines containing 
a specific ancestral allele and the location mean is the allele 
effect estimate (AEE or α):

 α µj
ijy
n

=
∑

−  (1)

where αj is the allele effect estimate for ancestral allele 
source j, yij is the phenotype for the ith line containing 
the ancestral allele source j, n is the total number of lines 
which inherited ancestral allele j, and μ is the population 
phenotypic mean.

In this way, separate allele effect estimates are created for 
each parental source of an allele. For loci whose ancestral 
source could not be determined (i.e., the nearest traced marker 
on either side come from different parents), the average of 
the two parental allelic differential estimators were used. Since 
each AEE is generated in a separate calculation, the AEE value 

is not regressed toward the mean to account for multiple 
regression. Instead, these values replace the marker representation 
as an input to GS models that evaluate the performance of 
this new approach (Table  1). They allow for the use of many 
distinct ancestral haplotypes in linear regression-based models 
based on the sign and relative scale of the estimated 
haplotype effect.

 6. Create a new matrix (AEE matrix) by replacing the parental 
source of each locus with the estimated AEE for that parent 
at that locus. Markers for which parentage could not 
be  differentiated are replaced with the average AEE of the 
two possible parents at that locus.

 7. Within the context of genomic selection, replace the raw 
marker file (traditionally 0,1,2 or −1,0,1 format) with the 
AEE matrix (numeric matrix with positive and negative 
values, not restricted to integers).

Chromosomal Tracing and Identity by 
Descent
As a proof of concept, tracing of chromosome segment inheritance 
within the pedigree of soybean cultivar “Rend” was performed. 
After ensuring consistency between expected results and the 
outputs, chromosome tracing was performed on the remainder 
of the 868/50 K panel. Following completion of the single-
generation tracing pipeline, the multi-generation tracing script 
was run on traced lines to allow visualization of multiple 
generations of inheritance and recombination.

A B

CD

FIGURE 1 | General workflow of Parental Allele Tracing, Recombination Identification, and Optimal predicTion (PATRIOT) input feature preparation for 
implementation in genomic selection: (A) Raw marker data are provided for both parent and progeny genotypes, (B) parental alleles encoded for those markers 
which can be conclusively traced to a specific parent, (C) alleles previously not assigned to a specific parent are imputed based on flanking markers, (D) those 
chromosome segments identical-by-descent from each parent are compiled. The “Position” column refers to the marker order and is provided only for 
demonstration purposes.
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In addition to the 868/50K panel, SoyNAM project parents 
and RILs were investigated with the chromosome tracing 
pipeline. The A/B genotype representation data available from 
SoyBase were utilized to impute chromosomal segments. Even 
with a sparse marker coverage, recombination events were still 
identifiable (Supplementary File 2). For SoyNAM families 
segregating for the known genes underlying the T, I, R, W1, 
and Dt2 loci, those lines for which the immediate flanking 
markers were assigned to the same parental allele source were 
used to evaluate the accuracy of allele calling with PATRIOT 
IBD tracking.

Genomic Prediction Models
To expand on the usefulness of the chromosome tracing pipeline 
outlined in Figure  1, we  used the SoyNAM panel to evaluate 
accuracy of genomic prediction using ancestral alleles. Genomic 
prediction was evaluated for multiple traits (yield, moisture, 
oil, protein, fiber, lodging, days to maturity, and 100 seed 
weight) using the 39 SoyNAM RIL populations based on the 
phenotypic records available from the SoyNAM project and 
all 4,289 available markers. All comparisons were made using 
80% of individuals phenotyped for the trait of interest in each 
environment for training and predicting on the remaining 20% 
of individuals.

Traditional rrBLUP performance was evaluated using mixed.
solve, a function in R package “rrBLUP” (Endelman, 2011). 
The rrBLUP-PATRIOT analysis was performed using mixed.
solve, but replacing the marker input data (0,1,2) with a matrix 
of AEEs calculated in PATRIOT. The mean observed phenotype 
of lines with top  10% of predicted performance using rrBLUP 
and PATRIOT were compared, as well as the difference in 
phenotype between selected lines and the base population. For 
yield, 5-fold cross-validation was used to reduce sampling bias 
in the estimation of GP accuracy for each method.

The performance of PATRIOT and rrBLUP was evaluated 
with via two approaches. For the first approach, we  measure 
the correlation between predicted phenotypes and the observed 
phenotype in the testing set (lines not used to train the model). 
Improvement in genomic prediction accuracy was calculated 
by dividing the correlation between observed and predicted 
values using PATRIOT by the correlation between observed 

and predicted values using rrBLUP. In the second approach, 
we  compared the mean phenotype of the testing lines with 
top  10% predicted phenotypes using PATRIOT and rrBLUP, 
and divide the mean of PATRIOT-selected lines by the mean 
of rrBLUP-selected lines to determine the improvement in 
genomic selection effectiveness. This second approach was then 
modified to compare the top  5% of lines for the 2012 OH1 
yield test to gain further insight into where differences in 
model performance were most significant.

RESULTS

Recombination Identification
For the 868/50Kpanel, 13.14% of all SNPs were unassigned to 
a specific parent. For the SoyNAM panel, 6.78% of all SNPs 
were unassigned to a specific parent. Using the SoyNAM panel 
marker data after PATRIOT IBD tracing and imputation, 
we examined the rates of recombination throughout the genome. 
Of the 5,149 RILs examined, we  found total recombinations 
per line ranged from 10 to 557, with an average of 50.9 
recombinations per line. The percentage of chromosomes that 
were inherited intact from one parent or another was 18.3% 
(18,808/102,960). A total of 5,011 RILs inherited at least one 
intact chromosome from a parent.

Chromosomal Segment Tracing and 
Recombination Events
Chromosomal segments were traced in the 868/50K panel using 
the PATRIOT framework. To demonstrate the PATRIOT 
workflow, we  traced the inheritance of the major Phytophthora 
root rot (PRR) resistance locus Rps1 (Figure  2). Williams 82 
(i.e., PI518671) inherited the Rps1k allele (that confers PRR 
resistance), as a long introgression (shown in green) on 
chromosome 3 from Kingwa (i.e., PI548359). This allele is 
then transmitted from Williams 82 to Resnik (i.e., PI534645) 
in a smaller chromosomal segment around Rps1k. However, 
the resistance allele was not passed on to Resnik’s progeny, 
Rend (i.e., PI606748). Resnik is therefore more suitable than 
Rend to breed for Phytophthora resistance. Chromosomal tracing 
over multiple generations allows presence/absence 

TABLE 1 | Simplified matrix showcasing parents, five potential progenies, and their AEEs.

SNP 1 SNP 2 SNP 3 SNP 4 SNP 5 SNP 6 SNP 7 Prediction

Parent 1 45 −23 70 14 −56 73 15 +116.2
Parent 2 −40 17 −65 −50 −15 −51 70 −107.8
Parent 3 −53 20 −71 106 69 −36 −43 −4.5
Progeny 1 45 −23 70 −50 −15 −51 70 +34.7
Progeny 2 −40 17 −65 14 −56 73 15 −33.3
Progeny 3 −40 17 70 14 −56 73 15 +80.1
Progeny 4 45 17 70 14 −15 73 70 +249.6
Progeny 5 45 20 70 106 69 73 70 +431.1

AEEs were calculated using the full panel (more than one family) and with unequal population sizes, so allele effects are not necessarily equal and opposite. Progeny 2 and 3 differ 
based on the site of recombination around SNP 3. Progeny 4 represents the optimal combination of ancestral alleles available from within that population (Parent 1 × Parent 2), but 
not necessarily within the full panel. Progeny 5 represents the global optimum progeny from within the panel. AEE scale is shown based on potential values for yield in terms of kg 
ha−1 in soybean.
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characterization for the Rps1k allele without the need for allele-
specific markers and can reduce the need for phenotyping in 
disease nurseries, as allele state is known by virtue of IBD. 
Figure  2 gives a visual chromosomal segment tracing that is 
applicable to all varieties with available pedigree records that 
have been genotyped.

Recombination events can be  visually identified when 
examining multiple generations within Figure  2 (or similar 
plots) in two ways using the chromosome 3 example: (i) between 
Williams 82 and Resnik, the length of the green segment 
surrounding Rps1k is greatly reduced in Resnik, indicating 
recombination during the cross of Asgrow 31274 × Williams 
82, and (ii) a segment of the soft red “AmbiguousParentage” 
class appears in the progeny, which indicates that recombination 
occurs somewhere within this region, but could not be delimited 
between two adjacent markers due to multiple markers being 
alike by state in the parents. This occurs in Asgrow 3127 (i.e., 
PI556511) on chromosome 3, separating large segments inherited 
from Williams and Essex.

While the Rps1k example is provided, the PATRIOT framework 
is applicable to trace chromosomal regions and for IBD 
characterization of important genes through generations, as 
well as to visualize nearby recombination events. In addition, 
Table  2 provides a quick summary of the rate of concordance 
between allele calls and observed phenotypes.

Comparison of Genomic Prediction 
Accuracy Using SoyNAM
To examine the relative effectiveness of rrBLUP with PATRIOT 
(PATRIOT GS) compared to traditional rrBLUP (rrBLUP GS), 

yield predictions for 16 environments from each model were 
generated using the same randomized testing set for each model. 
Results from the two GS approaches are presented in Table  3. 
A 16.6% increase was attained in genomic prediction accuracy 
by using PATRIOT GS compared with traditional rrBLUP (0.557 
vs. 0.478). Using a scenario of selecting 10% (and discarding 
90%) from the SoyNAM RIL population and comparing to 
the overall SoyNAM RIL population mean, PATRIOT GS had 
an 8.6% greater selection differential among the selected RILs 
over basic rrBLUP GS (an increase of +538.7  in PATRIOT 
GS vs. +496.1 kg ha−1 in rrBLUP GS) Similar results were found 
for other traits, and can be found in Supplementary File 2.

To help explain the cause of the difference in performance 
improvement between genomic prediction accuracy (+16.6%) 
and genomic selection effectiveness (+8.6%; both compared to 
rrBLUP), we  further examined the yield predictions from the 
2012 OH1 environment, which showed a large increase in 
GP accuracy (+39.5%) but only slight increase in genomic 
selection effectiveness (+3.8%). When examining the bottom 
10% of predicted lines (rather than top  10% as before), the 
genomic selection effectiveness was 52.7% greater using 
PATRIOT than rrBLUP. This finding, coupled with smaller 
average absolute error terms using PATRIOT, suggests that 
the GP accuracy increase came from decreased error terms 
(PATRIOT prediction was closer to the observed phenotype 
than was rrBLUP prediction) throughout the full range of 
phenotypes, allowing for better rankings. Indeed, using a 5% 
selection level for high GEBVs using PATRIOT resulted in 
a 29.8% increase in average observed phenotype compared 
to rrBLUP in the 2012 OH1 set.

FIGURE 2 | Scatterplot maps of chromosome segments inherited from ancestral sources, traced through progenitors of soybean cultivar Rend (i.e., PI606748). 
Chromosome number (based on Wms82.a2 reference genome) is plotted left to right on the x-axis, while position is plotted on the y-axis increasing bottom to top.
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DISCUSSION

Some of the earlier efforts in soybean chromosomal tracing 
involved RFLP markers, as researchers traced chromosome 
segments in 67 genotypes through generations (Lorenzen, 1994). 
The transition to SNP markers as more mainstream marker 
technology enables better genome coverage to trace chromosomal 
segments from progenitors (Letcher and King, 2001), with 
increased resolution for recombination identification (Yu et al., 
2011). However, the biallelic nature of SNP markers is a 
limitation for more refined haplotype generation. In the 868/50K 
panel, 13.14% of all markers could not be  definitively traced 
back to their ancestral source. While some portion of this 
unassigned group can be attributed to heterozygous allele state 
in either one of the parents or the progeny, a substantial 
portion is due to recombination in the affected area in which 
both parents are IBS at several consecutive markers. A lower 
rate of singletons was found in the SoyNAM panel compared 
to the 868/50K panel.

The genome tracing of large segments through multiple 
generations enables breeders to follow genes of interest throughout 
the pedigrees of modern lines (Bruce et  al., 2020). This allows 
for a rapid identification of lines containing the desired allele 
even if allele specific markers are not available. Visualization 
of relatedness of lines based on IBD metrics similar to what 
is shown in Figure 2 allows breeders to rapidly identify pairings 
of lines with high genetic diversity as parents to create breeding 
families (Liu and Anderson, 2003).

While IBD can be  traced in many released public cultivars 
on the basis of markers from the SoySNP50K chip in soybean, 
applicability to breeding programs during the development of 
new pure lines requires a cost-effective genotyping system to 
allow genotyping of these lines at an earlier stage of development. 
This can be  achieved by utilizing a smaller, less expensive 
genotyping array such as the SoyNAM6K BeadChip  
(Song et  al., 2017) to genotype experimental lines.

The PATRIOT framework facilitates the identification of 
lines for breeding purposes that have favorable genes linked 
in coupling, as well as in situations where breaking the linkage 
drag is imperative. For example, SCN resistance from PI494182 
was determined to carry a risk of linkage drag (St-Amour 
et  al., 2020). Likewise, SCN resistance from the commonly 
used donor PI88788 was initially associated with considerable 
linkage drag (Cregan et  al., 1999). With the use of PATRIOT, 
parents can be  readily identified which contain the gene(s) of 
interest with the least amount of additional introgressed region(s), 
thereby reducing the likelihood of linkage drag, and concurrently 

deploy it in a GS pipeline. With an additional generation of 
traced progeny, those regions negatively associated with another 
trait can be  identified to inform marker-based decisions.

Much like genome-wide association studies (GWAS), genomic 
prediction models rely on the association between markers 
and QTL. However, the association between marker and QTL 
decays in subsequent generations, leading to reduced accuracy 
without retraining of the model (Habier et  al., 2007; Hayes 
et  al., 2009; Jannink, 2010). With the chromosome tracing 
approach, the linkage between marker and QTL should 
withstand the decay better since parental allele representation 
is directly incorporated into the marker data. According to 
Li et  al. (2005), when a SNP is in complete LD with a QTL 
or is at the QTL, this SNP provides sufficient information 
regarding the IBD state of a given locus. Based on that, the 
closer linkage between SNP and QTL among close relatives 
suggest that IBD relationships better reflect the similarity of 
individuals at the QTL level. This is because IBD is based 
on linkage generated by family structure, and relies on more 
recent generations, whereas IBS reflects relationships beyond 
pedigree recording (Luan et  al., 2012).

The prediction accuracy is expected to decay much more 
slowly with chromosome tracing because the linkage between 
marker and QTL decays only when recombination occurs, 
rather than with changing founder allele frequency at a given 
locus. Furthermore, multi-generation tracing allows the 
preservation of information on lineage-specific marker association 
which can better model the differences in genes linked to a 
particular marker or set of markers. This concept can 
be  elucidated with a hypothetical example with following 
conditions: (1) diploid organism, (2) single gene controlling 
the trait of interest, (3) trait of interest causes 1 unit increase 
in phenotype, (4) SNP marker is known and is 1 cM away 
from the gene, and (5) wild population. In this scenario, the 
genetic information is given in Table  4.

With the incidence rate of the desirable allele, we can expect 
0.5 unit phenotype level due to the causal gene. If the “A” 
allele of the SNP was selected, the total proportion selected 
will only be  50% but the phenotype level will only be  0.6 units 
above the wild-type baseline. However, if the population was 
intermated after genotyping, and parental tracking for each 
progeny, marker–gene region can be tracked and therefore QTL 
effect can be accurately estimated by replication of the parental 
segment. These steps will ensure that with 1 cM marker–gene 
linkage, the progeny after intermating can show 0.99 unit of 
phenotype level without model retraining.

This does not mean retraining or recalculation of SNP effects 
is not needed when IBD is used, but the decay in predictive 
ability is less. Other factors can also reduce the frequency of 
retraining. Hidalgo et  al. (2021) showed that the decay in 
predictive ability was less when the number of genotyped 
individuals with phenotypes was greater than the number of 
independent chromosome segments (ICS). The ICS was defined 
as four times the effective population size (Ne) and the length 
of the genome in Morgans (Stam, 1980), which can be approached 
by the number of largest eigenvalues explaining 98% of the 
variance in the genomic relationship matrix (Pocrnic et  al., 

TABLE 2 | Rates of concordance between marker-based allele calls using flanking 
markers and the observed phenotype for five loci in the SoyNAM population.

Locus Proportion of lines called correctly

Dt2 634/639 (99.2%)
I 532/544 (97.8%)
R 781/810 (96.4%)
T 1074/1136 (94.5%)
W1 2592/2651 (97.8%)
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2016). Likewise, Luan et  al. (2012) concluded that prediction 
accuracy based on IBD relationships were akin to those using 
IBS based on a higher-density SNP panel, and required only 
four generations of data without losses in accuracy.

According to Thompson (2013), if individuals share IBD 
segments from loci linked to the trait phenotypes, those 
individuals will have phenotypic similarities. Therefore, 
phenotypes provide information about the IBD state and pedigree 
relationships. The widespread use of PATRIOT GS would 
be encouraged by the establishment of a fully connected pedigree 
(fully known relationships between all germplasm utilized) and 
development of base population resources with equal and wide 
representation of each parental source within the breeding 
pool. For example, while the SoyNAM panel can be  readily 
used as a training set for materials derived from any combination 
of the 40 parents, its efficacy is limited to that context, with 
the exception of a small number of the parents’ ancestors 
within the pool. Instead, in some situations, breeding applications 
would benefit from the development of fully interrelated 

populations derived from the original founder lines, such as 
through MAGIC design (Li et al., 2013; Dell’Acqua et al., 2015) 
or a NAM population created with founder parents (Yu et  al., 
2008) that can happen in different crossing cycles. Moreover, 
most breeding programs have an inherent nested design especially 
when a few superior parents are used extensively in the 
development of breeding populations, therefore this effort is 
not incremental.

The multi-generation chromosome segment tracing aspect 
of PATRIOT can also be  used as a tool to connect QTL 
mapping studies among related populations. In addition to 
tracing chromosomal regions within a pedigree, this framework 
can be  used to connect linkage mapping studies using related 
lines as parents by tracing QTL regions identified in related 
parents in separate studies to their ancestral sources. This allows 
for a meta-analysis to utilize the increased power which comes 
from having multiple mapping populations with common 
ancestry to map marker–trait associations.

However, there are challenges to the PATRIOT framework. 
In crosses where parents share large runs of IBS or IBD based 
on marker data, it is difficult to determine which parent is 
contributing each allele to the progeny. However, if these runs 
are IBD, the effect on allele estimation is equivalent, regardless 
of which parent is assigned to the allele. Additionally, a surprising 
number of singleton marker calls suggests that either double 
recombination is occurring at a much higher rate than previously 
believed, or that the reference genome assembly order does 
not agree with the true marker order. Increased marker density 
can overcome some of these challenges. Likewise, uncertain 
regions can be  assigned new allele effect classes. For example, 
Williams 82 (PI518671) has 3,399 out of 42,080 markers which 

TABLE 3 | Comparison of the effectiveness of genomic selection methods rrBLUP GS and PATRIOT GS for yield.

Environment Testing set mean rrBLUP GS PATRIOT GS Marker-based 
heritability (h2)

Testing set mean 
(kg ha−1)

Average yield, 
top 10% (kg ha−1)

3Correlation 
between observed 

phenotype and 
genomic prediction

Average yield, 
top 10% (kg ha−1)

3Correlation 
between observed 

phenotype and 
genomic prediction

2011 IL 2786.51 (12.26) 3162.15 (59.99) 0.51 (0.02) 3147.67 (59.58) 0.53 (0.01) 0.471
2011 NE 5048.98 (11.09) 5538.78 (54.92) 0.62 (0.03) 5420.83 (47.24) 0.57 (0.03) 0.614
2012 IA 2777.59 (10.38) 3263.39 (47.66) 0.43 (0.02) 3313.28 (43.48) 0.51 (0.02) 0.438
2012 IL 3390.61 (12.17) 3766.04 (75.62) 0.37 (0) 3887.74 (45.01) 0.48 (0.02) 0.415
2012 IN 4238.95 (12.81) 4761.52 (29.91) 0.5 (0.01) 4773.01 (58.21) 0.56 (0.01) 0.508
2012 KS 3875.14 (23.95) 4187.91 (39.67) 0.47 (0.03) 4204.66 (33.05) 0.6 (0.02) 0.548
2012 MI 2361.89 (32.5) 2785.12 (139.67) 0.57 (0.05) 2849.09 (132.92) 0.73 (0.04) 0.613
2012 MO 3458.43 (32.13) 4254.08 (65.28) 0.62 (0.04) 4244.01 (79.29) 0.64 (0.03) 0.603
2012 NE 4723.31 (18.08) 5251.94 (45.91) 0.44 (0.03) 5288.3 (52.85) 0.51 (0.02) 0.588
2012 OH1 3,402 (27.94) 3826.54 (133.36) 0.29 (0.04) 3979.25 (167.09) 0.4 (0.05) 0.285
2012 OH2 2811.38 (16.06) 3577.66 (99.49) 0.58 (0.04) 3709.85 (103.35) 0.71 (0.04) 0.664
2013 IA 2865.03 (15) 3216.05 (13.77) 0.39 (0.04) 3266.87 (39.46) 0.47 (0.02) 0.435
2013 IL 3113.94 (8.64) 3434.06 (33.06) 0.44 (0.03) 3467.78 (28.75) 0.51 (0.02) 0.459
2013 IN 5062.98 (17.78) 5492.83 (49.1) 0.38 (0.03) 5521.03 (42.71) 0.45 (0.01) 0.427
2013 KS 2759.03 (37.33) 3323.76 (67.07) 0.44 (0.02) 3441.16 (63.83) 0.53 (0.01) 0.548
2013 MO 4075.8 (11.47) 4848.04 (39.33) 0.61 (0.04) 4855.79 (35.65) 0.71 (0.04) 0.604

In each environment, the best model for each metric is highlighted in bold. Standard deviation given in parentheses. Each row contains results from a single site/year combination; 
“2011 IL” is therefore from an experiment in Illinois during 2011. IL, Illinois; NE, Nebraska; IA, Iowa; IN, Indiana; KS, Kansas; MI, Michigan; MO, Missouri; OH, Ohio. 
1and 2 represent two separate tests grown in Ohio in 2012.
3Correlation between observed phenotype and Genomic Prediction is a measure of predictive ability or accuracy of prediction.

TABLE 4 | Hypothetical distribution of linkage between nearby marker and gene 
of interest.

Marker SNP Gene Percentage of 
population carrying the 
allele

A Desired 0.30
A Wild type 0.20
G Desired 0.20
G Wild type 0.30
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could not be  assigned with certainty to a specific parent 
(Williams or Kingwa). To circumvent this challenge, each of 
these markers was assigned a new parent class of “PI518671” 
when tracking segments passed on to progeny but continue 
to use AEEs based on the average AEE of parents Williams 
and Kingwa when predicting its own performance.

PATRIOT genomic prediction accuracy for yield using all 
populations was greater than the calculated marker-based 
heritability of the trait in 13 of 16 environments (Table  3), 
suggesting that genomic prediction using ancestral allele tracing 
can perform better than traditional genomic prediction. 
Generating separate prediction models in this way for each 
environment may be  explored as an avenue to reduce the 
number of environments needed for phenotypic evaluation, as 
the prediction accuracy very nearly reaches the heritability of 
the trait itself. Alternatively, a model trained on the whole 
target population of environments rather than a single 
environment can be  developed to predict varieties that are 
expected to perform best across a wider range of environments.

The fact that this high level of prediction accuracy was possible 
with a 6 K SNP chip in the SoyNAM populations suggest 
significant potential cost savings, as the cost of genotyping at 
this density is less expensive than growing and phenotyping in 
replicated field plots (Xu et  al., 2020). More generally speaking, 
if small arrays are to continue to be used in community research 
projects, the array needs to be  carefully designed to provide 
adequate coverage throughout the genome. Consideration of 
both linkage distance and optimal SNP selection in genic regions 
should be made a priority. Alternatively, other genotyping platforms 
such as genotyping-by-sequencing (GBS) can be used to implement 
this approach, which is able to decrease the negative impact of 
missing data that are common from GBS (Gardner et al., 2014).

While our genomic prediction models utilized only the 
immediate parents for calculating allele effect estimates, it is 
possible to expand the method by combining with the multi-
generation IBD tracing script. This approach has an added 
benefit of bridging the gap between populations that do not 
share a direct parent but share ancestors in previous generations. 
By doing so, an increased number of lines can be  used for 
allele effect estimation, further improving the accuracy of 
these values.

IBD-based genomic selection has the clear potential to improve 
selection accuracy over existing genomic selection approaches. 
However, there is a trade-off due to the significant increase in 
computational time (Forneris et al., 2016). While the chromosome 
segment tracing portion of the workflow need only be  run once 
for any genotype, the AEE matrix must be  calculated separately 
for each trait and environment. Fortunately, this calculation can 
be parallelized, and only needs to be performed for the training 
population. Typical computation time on an AMD Ryzen 
Threadripper 1950X for AEE matrix calculation was on the 
order of 1 min without parallelization of the code, while the 
genomic prediction itself took on the order of 3 min for a dataset 
with 2,500 individuals and 4,289 markers. Computation time 
for the tracing and imputation of alleles within the SoyNAM 
study totaled 7 h 41 min. However, minor modifications to run 
each chromosome in parallel on different computational threads 

has the potential to reduce the wall time to around 35 min. 
Further studies are needed to determine the repeatability of the 
PATRIOT pipeline for IBD allele coding and genomic selection 
in the above-described scenarios.

CONCLUSION

The PATRIOT pipeline provides a framework for identifying, 
tracking, and applying IBD information to increase 
effectiveness of genomic selection under SNP-based models. 
Tracking IBD with PATRIOT enables pedigree-based gene 
tracking through generations, which can be useful for parental 
selection, as well as for predicting phenotypes for monogenic 
and oligogenic traits. Relatedness metrics within breeding 
populations can also be  improved due to the specification 
of IBD allele sharing rather than IBS. The IBD information 
also works to improve genomic prediction and selection 
results. This improvement was shown in first-cycle genomic 
prediction but should provide additional benefits in later 
cycles due to the donor-specific allele effect estimation, 
which does not suffer from the problem of population shift 
between training and testing sets. The large and consistent 
benefit shown suggests that chromosome tracing is a quick 
and efficient way to increase the accuracy of genomic selection 
models, with no additional cost beyond modestly increased 
computational time.
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