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Abstract 

This research note investigates the optimal size of pools for pooled, COVID-19 testing when positive 

pools will be followed up by individual tests of pool members.  Formulae for the optimum are derived 

and provided. The analysis indicates that  

• optimal pool sizes are unlikely to exceed about 20 individuals in realistic situations, 

• optimal pool size is influenced by prevalence in the population and the extent to which infection 

is clustered within the population, and, 

• pools are most efficiently comprised of people with homogeneous risk, with heterogeneity 

across pools. 
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Optimal size and composition of COVID-19 testing pools 

As the country returns to work from closures associated with Covid-19, employers are seeking 

mechanisms to help keep their workers and communities safe and healthy.  While it is widely 

understood that testing is necessary, the costs can prove prohibitive when applied to large number of 

individuals. 

Approaches have been proposed to pool samples taken from multiple individuals and test these pooled 

samples with a single test.  One of the most expensive parts of the test is the processing, which uses 

specialized reagents to detect the virus within the sample.  The tests used for COVID-19 are very 

sensitive and can detect a very diluted concentration of virus.  Pooling involves taking samples from 

multiple people and processing them together using a single batch of reagents.  This drastically reduces 

cost, but provides more limited information.  Results provide information about whether any of the 

people included in the pool is COVID-19 positive.  

Pooled testing, the process of aggregating individual samples for processing with a single batch of 

reagents, can provide the basis for cost-effective COVID-19 screening for entire workforces.  Testing 

would occur in three steps: 

• Divide the site population (e.g., workforce, students) into pools, probably based on the 

proximity of their work-spaces; 

• Periodically test the pools to identify any pools that include at least one infected individual; and 

• Individually test every member of any pool that yields a positive result. 

This note evaluates the optimal size of the testing pools, and identifies factors that can minimize the 

total number of tests required.  Before getting into the technical details, I offer a simple example. 

Consider the example of a workplace with 100 workers with an (as yet unknown) infection rate of one 
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percent.  At a price of $150 per test, testing every worker would cost $15,000 in total, and that cost 

would recur at regular intervals.  Now, imagine a regime in which groups of 10 workers are tested with a 

single, pooled test.  Only one or two pools are likely to include COVID-positive individuals, so the total 

number of tests would be between 10 (if no pools contain positive individuals) and 30 (if two of the 

pools contain positive individuals). The total cost ranges from $1,500 to an upper limit of $4,500, with an 

expectation of $3,000, or one fifth of the cost of testing everyone.  Effectively, this approach protects a 

workforce of 100 people for an expected cost of about $30 per person for the full workforce, compared 

to $150 per person if individual tests are applied universally. 

The testing plan proposed above covers the entire population. The goal, then, is to get the coverage at 

the lowest cost.  We achieve that by minimizing the total number of tests. Let the total number of tests 

required (T) be  

� � ������ � �

�
,   (1) 

where T represents the total number of tests, n is the number of workers included in each pool of tests, 

and N is the total size of the workforce (
�

�
 is the number of pools in the population, each requiring one 

test). 

 

The function �	��
 represents the probability that a group includes at least one COVID-positive person. 

Modeling this with a mixture of Poisson distributions representing the testing pools, recognizing that 

each pool may have a different prevalence of COVID-19, but combined they have an expected value of 

��. 

�~Γ ���
� , �� 

where �	�
 � ��, where r is the (initially unknown) rate of infection in the target population. � is a 

scale parameter and reflect heterogeneity in infection rates across groups.  Of course, the infection 

rate for each group is unknown before testing, so we must integrate over the distribution of � to get 

an expected value.  The critical rate, r , is also unknown so we must begin with a reasonable 

estimate, and refine the value as data accumulate. The probability of a pool testing positive because 

one or more member of the pool is positive is derived by integrating over the � distribution,  
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where �	. 
 is the gamma probability density function and the second term is the Poisson 

probability mass function at zero (the probability that the group has no infected individuals). 
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The optimum group size minimizes the number of tests 

���	�
 � ��
�� � 0 

So 

�	 � �
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 � log 	�
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Where !
 is the principal branch of the Lambert W function, for which convenient approximations 

exist (e.g., de Bruijn, 1981; Weisstein, 2020).  Noting that N > 0, this simplifies further to  
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,   (2) 

which is independent of N, the total number of employees.  Tables 1-3 present the optimal testing 

pool sizes and expected number of tests required to cover a population of 1,000 workers.  The size 

of the workforce is arbitrary in these examples, and the costs and associated calculations scale 

linearly with workforce size, as implied in Equation 2. As a basis for comparison, recognize that 

each round of testing would cost $150,000 to cover all employees. As Tables 1-3 show, our hybrid 

model of pooled testing and individual testing of those in COVID-19 positive pools can reduce the 

cost of testing the full workforce by an order of magnitude in some cases. 

Each table presents sample values for underlying infection rates ranging from 0.5% to 5.0%.  Table 

1 presents a case with virtually homogenous infection rates across groups.  Table 2 introduces 

moderate variation in the infection rates across groups, and Table 3 introduces substantial 

variation in the infection rates across groups.   

Notice that as we increase the between-group variation in infection rates, the optimal group sizes 

increase and the total number of tests required decrease, along with their costs.  This dynamic is 

illustrated below in Figure 1. 

  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 22, 2020. ; https://doi.org/10.1101/2020.07.20.20158436doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.20.20158436
http://creativecommons.org/licenses/by/4.0/


 5 

Table 1: Optimal testing groups sizes, numbers of tests, and costs given the overall infection rate with � � .01 (virtually no 

variation across groups) 

Overall 

infection rate 

(�) 

Optimal group 

size of each 

pool of 

employees 

Number of 

groups in 

population of 

1,000 

Expected 

number of 

groups with at 

least one 

positive 

member 

Total number 

of individuals 

tests required  

Total Cost at 

$150 per test 

0.005 15 67 5 142 21,300 

0.01 11 91 9 190 28,500 

0.02 8 125 18 269 40,350 

0.03 6 167 27 329 49,350 

0.04 6 167 35 377 56,550 

0.05 5 200 44 420 63,000 

 

Table 2: Optimal testing groups sizes, numbers of tests, and costs given the overall infection rate with � � .1 (moderate 

variation across groups) 

Overall 

infection rate 

(�) 

Optimal group 

size 

Number of 

groups in 

population of 

1,000 

Expected 

number of 

groups with at 

least one 

positive 

member 

Total number 

of tests 

required  

Total Cost at 

$150 per test 

0.005 18 56 3 110 16,500 

0.01 13 77 7 168 25,200 

0.02 9 112 13 229 34,350 

0.03 7 143 19 276 41,400 

0.04 7 143 25 318 47,700 

0.05 6 167 31 353 52,950 
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Table 3: Optimal testing groups sizes, numbers of tests, and costs given the overall infection rate with � � 2 (substantial 

variation across groups) 

Overall 

infection rate 

(�) 

Optimal group 

size 

Number of 

groups in 

population of 

1,000 

Expected 

number of 

groups with at 

least one 

positive 

member 

Total number 

of tests 

required  

Total Cost at 

$150 per test 

0.005 20 50 3 110 16,500 

0.01 14 72 5 142 21,300 

0.02 10 100 10 200 30,000 

0.03 8 125 16 253 37,950 

0.04 7 143 20 283 42,450 

0.05 7 143 25 318 47,700 

 

Figure 1 pulls together data from the tables to illustrate the impact of COVID-19 prevalence and within-

group contagion on the total number of tests needed. The top (blue) line shows the number of tests 

needed if groups are formed at random. With random assigned to groups an infection rate of 3 percent 

would require nearly 350 tests.  If the groups are formed so that the risk is more similar within group 

and more variable across groups (the bottom, grey line), about 250 tests can cover the population.  At 

$150 per test, this represents a substantial savings. 

Figure 1: Total tests needed by aggregate infection rate and homogeneity of testing groups 

 

 

Initial testing would have to rely on available best-guess estimates of infection rates and cross-group 

heterogeneity. As data is gathered these estimates can be updated to reflect workplace-specific factors.  

One thing made clear by Figure 1 is that heterogeneous risk across pools increases the efficiency of 

testing.  Given how contagion works, forming groups according to the physical proximity of the 
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individuals to each other should help increase this factor, which will increase the efficiency of the group 

testing.  

As tests are conducted and data gathered, the data can be used to estimate the actual values of the 

various parameters.  We can model the group-specific infection rates as a function of workplace-specific 

factors such as worksite, office layout and physical job requirements, and this information can be used 

to stratify the sample, optimizing group sizes to optimize testing resources. A hybrid testing model 

makes it possible for an organization to protect their community population and workforce and their 

balance sheets at the same time. 
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