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Abstract Fundamental restoration ecology and community ecology theories can help us better 21 

understand the underlying mechanisms of fecal microbiota transplantation (FMT) and to better 22 

design future microbial therapeutics for recurrent Clostridium difficile infections (rCDI) and other 23 

dysbiosis-related conditions. In a single cohort study, stool samples were collected from donors 24 

and rCDI patients one week prior to FMT (pre-FMT) as well as from patients one week following 25 

FMT (post-FMT). Using metagenomic sequencing and machine learning methods, our results 26 

suggested that the FMT outcome is not only dependent on the ecological structure of the 27 

recipients, but also the interactions between the donor and recipient microbiomes, both at the 28 

taxonomical and functional levels. Importantly, we observed that the presence of specific bacteria 29 

in donors (Clostridiodes spp., Desulfovibrio spp., Odoribacter spp. and Oscillibacter spp.) and 30 

the absence of specific fungi (Yarrowia spp.) and bacteria (Wigglesworthia spp.) in recipients 31 

prior to FMT could accurately predict FMT success. Our results also suggested a series of 32 

interlocked mechanisms for FMT success, including the repair of the disturbed gut microbial 33 

ecosystem by transient colonization of nexus species followed by secondary succession of bile 34 

acid metabolizers, sporulators, and short chain fatty acid producers. Therefore, a better 35 

understanding of such mechanisms can be fundamental key elements to develop adaptive, 36 

personalized microbial-based strategies for the restoration of the gut ecosystem. 37 

Importance There have been a number of studies focusing on understanding the underlying 38 

mechanisms in FMT treatment, which can accordingly be used for the optimization of future 39 

treatments. However, the current scientific lens has mainly had a uni-kingdom major focus on 40 

bacteria, leading to the proposition of the existence of FMT “super-donors”. On the contrary, our 41 

preliminary study here suggests that FMT is not necessarily a ‘one stool fits all’ approach and 42 

that donor-recipient cross-kingdom microbiota interactions, along with their short-term 43 
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fluctuations in the gut, bring profound implications in FMT success. The results 44 

also conceptualize a series of interlocked mechanisms for FMT success, including first repairing 45 

the disturbed gut microbial ecosystem by transient species, followed by secondary succession of 46 

indigenous or exogenous bile acid metabolizers, sporulators, and short chain fatty acid producers.  47 

Keywords: fecal microbiota transplantation (FMT), Clostridium difficile infection (CDI), gut 48 

microbiome, fecal transplant, community restoration 49 

Introduction 50 

Antibiotics are the primary treatment method for Clostridium difficile infections (CDI); 51 

however, the negative impact on the diversity, composition, and functionality of gut microbiota 52 

results in recurrent CDI (rCDI) (1, 2) requiring fecal microbiota transplantation (FMT). FMT is a 53 

strategy for the restoration of a disturbed microbial ecosystem and reinstatement of lost microbial 54 

functional networks. Although highly effective in the treatment of rCDI as well as promising in 55 

several other diseases (2-8), FMT carries infectious and non-infectious risks (9-12). In addition, 56 

under each specific disease scenario, it is crucial to understand how microbial ecosystems 57 

reassemble overtime after FMT and which microbial strains are the determining factors in this 58 

dynamic process. For rCDI treatment, the current scientific lens has mainly had a uni-kingdom 59 

major focus on bacteria. It has been suggested that an ideal donor should have high 60 

Lachnospiraceae and Ruminococcaceae (13), which are also positively associated with secondary 61 

bile acids that inhibit CDI germination (1). Increased Clostridium Scindens in donors has also 62 

shown a positive correlation with FMT efficacy and outcomes via the production of secondary 63 

bile acids (14). Moreover, FMT restores short chain fatty acids (SCFAs) metabolism, with 64 

immune modulatory effects in rCDI patients (15). SCFAs and butyrate producing bacteria have 65 
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been found to decrease the induction of proinflammatory cytokines and promote the 66 

differentiation of colonic Treg cells, leading to the attenuation of colitis in mice and humans (16, 67 

17). In addition, anaerobic, endospore-forming Firmicutes are dominant members of gut 68 

microbiota that can produce SCFAs (18), which allow organisms to enter metabolically dormant 69 

states that aid in their survival and transmission to new hosts (19). Thus, the oral delivery of 70 

SER-109, composed of sporulating bacteria, remains a promising therapeutic approach for rCDI 71 

treatment (20, 21). Furthermore, a critical consideration for FMT efficacy and durability is that 72 

the microbial consortium of the donors is not the only key player. The existing endogenous 73 

microbiome in recipients can also play a significant role in determining the colonization of those 74 

exogenous species. For example, focusing on bacterial engraftment, Smillie et al. (22) suggested 75 

that selective forces in the patient’s gut (host control), rather than input dose dependence 76 

(bacterial abundance in the donor and patient), determines bacterial abundance after FMT and, 77 

subsequently, its efficacy. In contrast, a number of studies suggest that FMT success is only 78 

dependent on the bacterial diversity and composition of the stool donor, leading to the 79 

proposition of the existence of FMT super-donors (3, 23).  80 

  Beyond the gut bacterium, few studies have examined the role of gut mycobiome and 81 

virome on FMT efficacy. For example, Zuo and colleagues found a negative relationship between 82 

the abundance of fungi such as Candida albicans in donor stool and FMT efficacy (24). Over the 83 

last decade, phages have gained increasing attention for therapeutic use due to their specificity 84 

(25). The reduction in the abundance of Caudovirales bacteriophages and an increase in 85 

Microviridae abundance, specifically higher abundance of Eel River basin pequenovirus as a 86 

potential Proteobacteria predator, were shown to be related to FMT efficacy in CDI patients (26, 87 

27). Using targeted refined phage therapy, Nale et al. (28) used a cocktail of four C. difficile 88 
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Myoviruses (CDHM1, 2, 5, and 6) to eradicate the CDI in a batch fermentation model, which 89 

suggests that a combination of bacteriophages may be needed to treat CDI. More recently, rCDI 90 

in five patients was prevented using sterile fecal filtrate, void of live bacteria (29). Contrary to 91 

these, a study by Meader et al. (30) showed that bacteriophages alone weren’t sufficient to 92 

eradicate CDI. These studies emphasize that in order to uncover mechanisms involved in FMT 93 

efficacy, it is fundamental to include the relative contribution of all domains and consider the 94 

microbiome-associated ecosystem heterogeneity in both donors and recipients. To this end, we 95 

specifically investigated whether FMT super-donors exists for rCDI treatment, or whether the 96 

donor-recipient compatibility and short-term fluctuations in the gut microbiomes (a combination 97 

of bacteria, fungi, archaea, and viruses) of both donors and recipients have profound implications 98 

in FMT success. 99 

Results 100 

Among recipients, 9/17 patients were successfully treated with a single FMT (53% 101 

successful FMT), while 8 patients failed the first FMT and required a second procedure. There 102 

was no difference between the two groups in factors of age, sex, or duration of CDI (31).  103 

We found no significant difference in alpha diversities of different organisms in stool 104 

samples provided by donors used for all patients whether the treatment outcome was successful 105 

or not (Kruskal-Wallis test, p>0.05, Fig. 1A-E). For the recipients, no significant differences in 106 

alpha diversities were observed between successful and failed pre-FMT samples (Kruskal-Wallis 107 

test, Fig. 1). There was a significant increase in the bacterial (Fig. 1A) and fungal (Fig. 1C) alpha 108 

diversities (Shannon diversity index) in post-FMT stool samples after successful FMT (Wilcoxon 109 

test, adjusted p-value<0.0001 and p-value=0.002, respectively), but not failed ones. No 110 
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significant changes in this index were seen post-FMT in archaeal, protozoan, and viral diversities 111 

(Fig. 1B, D, E). It is important to note that although no significant changes were observed for 112 

viral diversities, the interplay between phages and bacteria in rCDI and FMT treatment is 113 

intricate especially due to technical limitations of viral enrichment in biological samples, 114 

extraction and sequencing library bias towards dsDNA viruses, and removal of ssDNA and RNA 115 

viruses. 116 

The microbial composition of donors, recipients pre-FMT, and recipients post-FMT also 117 

differed from each other, as measured by the Bray-Curtis based density plots (ANOSIM, 118 

R=0.686, p=0.001) (Fig. 1F). Specifically, pre-FMT, the microbial community of recipients 119 

deviated from those of healthy individuals based on Bray-Curtis dissimilarities (ANOSIM, 120 

R=0.920) while the microbial community structure of successful and failed donors overlapped 121 

(ANOSIM, R=0.648) (Fig. 1F). After successful FMT, the recipients’ microbiome composition 122 

resembled the donors (ANOSIM, R=0.595). However, the composition of failed FMT recipients 123 

pre and post-FMT overlapped (ANOSIM, R= 0.719) (Fig. 1F). 124 

Since the restoration of bile acid metabolism and SCFA production is reported to account 125 

for FMT efficacy, we then extracted bacterial genera associated with these functions (15, 32), as 126 

well as sporulating communities (33). Our results showed that successful and failed FMT donors 127 

did not significantly differ in their alpha diversity for bile acid metabolizers, SCFA producers, 128 

and sporulators (Fig. 2A, B, C). However, a significant increase in the alpha diversity was 129 

observed in successful recipients post-FMT for bile acid metabolizers (Wilcoxon signed-rank 130 

test, p=0.003), SCFA producers was observed after successful FMT (Wilcoxon signed-rank test, 131 

p= 0.014), and sporulators (Wilcoxon signed-rank test, p=0.015) (Fig. 2A, B, C). The density plot 132 

for Bray-Curtis dissimilarity showed that the failed and successful FMT donors were not 133 
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significantly different in their SCFA producing and sporulating communities (ANOSIM, 134 

R=0.524 and ANOSIM, R=0.524) (Fig. 2E, F), but differed in their bile acid metabolizing 135 

community structures (ANOSIM, R=0.828) (Fig. 2D). Specifically, the relative abundance of 136 

bacterial bile acid metabolizers including Lactobacillus (associated with deconjugation and 137 

esterification of bile salts), Fusobacterium (associated with desulfation of bile salts), 138 

Pseudomonas (desulfation of bile salts), and Escherichia (oxidation and epimerization of bile 139 

salts) were significantly lower in unsuccessful donor samples (Fig. 3A). Interestingly, intra-140 

variability within donors pertaining to the abundance of bacterial bile acid metabolizers can also 141 

be observed (Fig. 3A), which shows that donor composition can vary over time and affect FMT 142 

outcome. The successful FMT recipients pre- and post-FMT also differed in their community 143 

structure for bile acid metabolizers (ANOSIM, R=0.670), SCFA producers (ANOSIM, R=0.759), 144 

and sproulators (ANOSIM, R=0.872) while the failed FMT recipients pre and post-FMT 145 

overlapped for the community structure of genera associated with these functions (ANOSIM, 146 

R=0.091, R=0.117, and R=0.134, respectively) (Fig. 2D, E, F). Interestingly, the relative 147 

abundance of all investigated bacterial bile acid producers was decreased in the failed FMT 148 

recipients post-FMT compared to successful FMT recipients (Fig. 3C). Therefore, successful 149 

FMT is associated with the colonization of bile acid metabolizing bacteria in the recipients.  150 

In addition, we also investigated whether microbial community compositions of donor 151 

and recipients before FMT can predict the treatment outcomes. The top 20 features from PCA 152 

analysis were selected and employed in the subsequent training process of a classification model, 153 

using samples from both donor and recipient pre-FMT at the genus level. Using LOO cross 154 

validation, the prediction model was significant (p=0.0099) (Fig. 4A), with the most important 155 

genera being Desulfovibrio, Filifactor, Bacillus, Yarrowia, Odoribacter, Wigglesworthia, 156 
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Oscillibacter, Intestinimonas, and Clostridiodes (Fig. 4B). Furthermore, in order to visualize the 157 

impact of the top features on FMT efficiency, the relative abundance of such features was plotted 158 

for donor and recipient samples pre- and post-FMT (Fig. 4C). Interestingly, the fungal genus of 159 

Yarrowia, as well as bacterial genus of Wigglesworthia, were significantly higher in pre-FMT 160 

failed recipients than pre-FMT successful recipients (Fig. 4C, Kruskal-Wallis, p=0.001 and 161 

p=0.002, respectively). The donor samples that contributed to a successful FMT outcome had a 162 

higher abundance of Clostridiodes (p=0.002), Desulfovibrio (p=0.004), Odoribacter (p=0.002), 163 

and Oscillibacter (p=0.003) compared to failed FMT donors (Fig. 4C), and intra-variability in the 164 

relative abundances of these genera for each donor was observed (Fig. S1) when comparing 165 

successful and failed samples. It is important to note that, these genera were not detected in 166 

successful recipients post-FMT (Fig. S1 and S2), indicating that long-term colonization of these 167 

genera in recipients may not be critical for FMT success.  168 

When we evaluated our model’s performance against an independent dataset (34, 35), 169 

interestingly the model identified similar top features including Odoribacter and Clostrioides; 170 

albeit with no statistically significant discriminatory powers. This was expected due to technical 171 

variation between studies which overshadowed the biological variation as well as the lack of full 172 

consistency between the two studies rooted in the difference in the average age or ethnicity of the 173 

two cohorts. 174 

Discussion 175 

Despite long-term stability and plasticity of healthy and low to moderately disturbed gut 176 

systems (36), severely damaged gut ecosystems are not self-renewing; therefore, FMT can help 177 

with restoring damaged systems through (a) the recreation of the original ecosystem (e.g., by 178 
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autologous FMT) or (b) the construction of an entirely new and alternative ecosystem (e.g., by 179 

allogeneic FMT). In our study, we showed that the success of gut ecological recovery through 180 

FMT is dependent on several factors, including the donor gut microbiome (the presence of 181 

specific bacteria) as well as the pre-FMT recipient gut community structures and recovering 182 

habitat (the absence of specific bacteria and fungi) (Fig. 4). In addition, short-term fluctuations in 183 

the gut microbiome of both donors and recipients have profound implications in FMT success by 184 

producing temporary changes or loss of function (see supplemental materials Fig. S1 and S2; Fig. 185 

3). Therefore, the notion of the “super-donor” is oversimplified due to the observed short-term 186 

fluctuations, and a recipient’s microbiota may be just as important to consider when predicting 187 

treatment outcomes, especially in other dysbiotic conditions such as ulcerative colitis.  188 

Our results also showed that a trans-kingdom interaction between bacteria and fungi may 189 

be important to consider in FMT outcomes. Considering ecological theories on community 190 

construction and recovery after disturbance, we hypothesize that the first step of a successful 191 

FMT is the colonization of “nexus species” including members of Desulfovibrio, Odoribacter, 192 

Oscillibacter, and Clostridioides genera, as identified in two independent datasets (Fig. 5). These 193 

are transient in the community development, but are ecosystem engineers that determine 194 

secondary succession trajectories of the ecosystem (Fig. S1 and S2). For example, Odoribacter is 195 

a known SCFA producer (37). Thus, its presence in the donor and the initial transfer to recipients 196 

may contribute to decreased inflammation (38). In addition, the class Clostridia includes many 197 

endospore-forming organisms that have the capacity to produce SCFAs (39, 40), which can 198 

induce T regulatory cells and associated anti-inflammatory cytokines (17). Following a 199 

successful repair, the secondary succession of endogenous or exogenous bile acid metabolizers 200 

can restore microbial diversity (lost commensals) and a variety of ecosystem functions (41). 201 
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Namely, when bile acid metabolizers colonize the repaired gut ecosystem, secondary bile acid 202 

concentrations, as pleiotropic signaling molecules in the gut, liver, and systemic circulation, 203 

increases (42). This process entails the germination of endogenous or exogenous sporulators such 204 

as Clostridia and other putative endospore formers, which are considered stress-resistant and are 205 

particularly adaptive to cross-host dissemination (19, 43). Aligned with the above hypothesized 206 

mechanism, donors that led to a failed FMT had reduced Fusobacterium and Pseudomonas 207 

genera, which are both capable of desulfating primary bile acids. When these genera exist, 208 

sulfation can reduce primary bile acid toxicity and increase secondary bile acid excretion via 209 

urine and feces (44). This reduced desulfation capacity in failed donor samples further 210 

perpetuates the already existing disturbed bile acid pool and inhibits successful secondary 211 

colonization for functional ecosystem restoration. Moreover, bacterial genera, which can 212 

dehydroxylate primary bile acids into secondary bile acids, are also known to produce SCFAs 213 

(38). These gut microbiota associated metabolites, especially butyrate, are a main source of 214 

energy for colonocytes and can activate G-protein coupled receptors that regulate intestinal 215 

motility and inflammation (38, 45). Lack of such genera in donor samples may diminish the 216 

therapeutic potential of FMT. 217 

However, interestingly, the presence of the Yarrowia and Wigglesworthia genera in pre-218 

FMT recipients can act as a barrier for the establishment of repair or successful secondary 219 

colonization for functional ecosystem restoration (Fig. 4C). This can be due to nutrient cycling 220 

and carbon uptake elevation by fungal activity. Moreover, Yarrowia lipolytica has been vastly 221 

studied as a non-conventional yeast species capable of synthesizing a group of metabolites, in 222 

particular lipases and other hydrolytic enzymes (46). These opportunistic fungal pathogens can 223 

cause infections in immunocompromised and critically ill patients (47-49). To overcome this 224 
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challenge, treatment targeted at these fungal elements prior to FMT may potentially enhance 225 

treatment efficacy. 226 

In summary, the findings presented herein shed light on potential interlocked mechanisms 227 

underlying FMT treatment success, beyond the bacterial community effect. Additionally, FMT is 228 

not a ‘one stool fits all’ approach and a more personalized treatment with the inclusion of both 229 

donor and patient variables should be taken into consideration to maximize the chance of FMT 230 

success. Further knowledge of these factors and mechanisms would be required to optimize FMT 231 

treatment for rCDI and possibly other dysbiotic-related diseases. However, the results should not 232 

yet be generalized to other patient populations with different demographic characteristics, since 233 

our study cohort was small with 88% Caucasian. This signifies the need for larger cohort studies 234 

that include patients with diverse demographic characteristics. 235 

Materials and Methods 236 

Study design and sample collection. Seventeen adult male and female patients who 237 

received FMT for rCDI at the University of Alberta Hospital in Edmonton, Alberta, Canada, 238 

between October 2012 and November 2014 were included in this study (31). Criteria for 239 

receiving FMT were 1) at least 2 recurrent episodes of mild to moderate CDI, or 2) at least 1 240 

recurrent episode of CDI requiring hospitalization. This study was approved by the University of 241 

Alberta Health Research Ethics Board, and all participants provided written informed consent. 242 

All participants received FMT by colonoscopy, with stool samples from unrelated donors 243 

registered with the Edmonton FMT program. Donor selection criteria and screening process have 244 

been described previously (50). After a failed FMT, each patient received FMT from the same 245 

donor or a different donor, depending on donor availability. Patients discontinued antibiotics for 246 
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CDI 24 hours prior to FMT and took 4 L of polyethylene glycol-based bowel preparation 247 

(GoLYTELY) one day prior to FMT. Stool samples were collected from donors and patients one 248 

week prior to FMT (pre-FMT) as well as from patients one week following FMT (post-FMT). 249 

Figure 6 shows the number of donors and recipients, as well as the FMT treatment outcomes. It’s 250 

important to note that although some donors had provided multiple stool samples, these samples 251 

were provided at different time points (minimum of a one-week gap), which were then 252 

administered to the recipients (Fig. 6). It has been perceived that the autocorrelation between 253 

microbiomes of stool samples of a given donor normally diminishes between 3-5 days (51). 254 

Metagenomic data collection. DNA from stool samples were extracted using the Qiagen 255 

QIAamp DNA stool kit. Shotgun sequencing for metagenomics was applied using the Nextera 256 

XT DNA Sample Preparation Kit, and Illumina MiSeq platform was performed as previously 257 

described (31). Host DNA was detected and reads were removed by mapping with the GEM 258 

program  to the human genome with inclusive parameters (52). A custom Kraken database was 259 

built of whole genomes of bacteria, viruses, archaea, eukaryote, and viroids (53). The Bayesian 260 

Reestimation of Abundance with KrakEN (Bracken) algorithm was used (kmer length of 30 and 261 

read length of 100 bp) to compute the abundance of species in DNA sequences originating from 262 

each metagenomic sample (54). Singletons, as well as those taxa occurring in only one or two 263 

samples, were removed and abundances of different microbial genera were obtained by 264 

collapsing detected taxonomies to the genus level and summing features within the same genera. 265 

Subsequently, taxa abundances were normalized by the total number of reads sequenced in each 266 

sample.  267 

Statistical analysis. The α-diversity (Shannon diversity index) of successful and failed 268 

FMT samples were compared for all organisms using the R package Vegan (55). In addition, α-269 
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diversity of bacteria related to bile acid metabolizers (32). SCFA producing genera (15) and 270 

sporulators (33) were compared for successful and failed FMT samples. Significant differences in 271 

α-diversity were determined using the non-parametric Kruskal-Wallis and Wilcoxon signed-rank 272 

test for unpaired and paired samples (pre- and post-FMT samples of recipients), respectively, 273 

using Bonferroni correction to adjust the probability. Differences among community structures 274 

across samples (β-diversity) were calculated using the Bray-Curtis dissimilarity metric using the 275 

R package Vegan and visualized via density plots using custom python scripts (55). Significant 276 

differences in β-diversity across donors and recipients were evaluated using analysis of 277 

similarities (ANOSIM) (56). Heatmap clustering graphs were constructed using the R pheatmap 278 

package to visualize the relative abundance of major bile acid producers in donors and recipients 279 

before and after FMT (57). 280 

To test whether donor and recipient microbial composition can predict FMT outcome, we 281 

trained a Random Forest (RF) model on pre-treatment samples of both donors and recipients at 282 

the genus leve (58). The microbial taxa of both donors and recipients constitute the feature space 283 

of the model and the following steps were performed using the Python library, Scikit-learn (59). 284 

As the features’ count outnumbers that of the test samples, a dimensionality reduction method 285 

was implemented so that the trained model avoids overfitting and generalizes better on the test 286 

data (60). Thus, the Principal Component Analysis (PCA) was used to exploit the features which 287 

describe the principal components the most. The top 20 features from this analysis were selected 288 

to be employed in the training process of the RF model. In order to assess how well the trained 289 

classifier generalizes in case of unseen data, the Leave One Out (LOO) cross-validation method 290 

was employed. In this method, each data point was used once as a test data, while the classifier 291 

was trained on the remaining data points. Subsequently, the cross-validation error value was 292 
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calculated by averaging all the measured test errors. For each LOO data subset, the Receiver 293 

Operating Characteristic (ROC) curve was plotted. Next, the RF classifiers with the highest 294 

validation scores were compared by implementing a statistical significance test. Herein, 295 

McNemar’s test was used to determine the statistical significance of the difference between the 296 

predictive performance of the top RF candidates (61). The RF model identified to be the most 297 

precise was then employed to find the most important features in the FMT treatment outcome 298 

task. After running the model 100 times, the average Mean Decrease in Impurity (MDI) of the 299 

most important features were also calculated (62). Subsequently, the Kruskal-Wallis test with the 300 

Bonferroni correction to adjust the probability was utilized to compare the relative abundance of 301 

the top important features across the samples. Lastly, in an attempt to evaluate our model’s 302 

performance and its generalizability another independent dataset was used (34, 35). This dataset 303 

consisted of DNA extracted from 5 fecal samples from 3 donors, and 5 fecal samples from each 304 

of 10 FMT recipients: collected at day 0 (pre-FMT) and days 2, 14, 42 and 84 after FMT.   305 

 306 

Supplemental Material 307 

Fig. S1 The intra-variability of relative abundance of the top 9 features of donor 1 (D1) samples 308 

and their corresponding recipients, pre- and post-FMT leading to successful (A and B) and failed 309 

(C and D) FMT outcomes.  310 

 311 

Fig. S2 The intra-variability of relative abundance of the top 9 features of donor 3 (D3) samples 312 

and their corresponding recipients, pre- and post-FMT leading to successful (A and B) and failed 313 

(C and D) FMT outcomes. 314 
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 508 

 Fig 1 Gut microbial diversity of FMT donors and recipients. The α-diversity (Shannon index) of 509 

(A) bacteria, (B) archaea, (C) fungi, (D) protozoa, and (E) viruses of donors, recipients pre- and 510 

post-FMT for successful and failed FMT outcomes of rCDI patients. Significant differences were 511 

determined using the Kruskal-Wallis and Wilcoxon signed-rank tests for unpaired and paired (i.e. 512 

when analysing pre- and post-FMT of recipients) samples, respectively, followed by Bonferroni 513 

post-hoc correction. Adjusted p-values were defined at *p<0.05, **p<0.01, ***p<0.001, and 514 

****p<0.0001. The Beta diversity was calculated for all microorganisms (F) using the Bray-515 

Curtis dissimilarity and analyzed using ANOSIM.  516 

Fig 2 Gut microbial diversity of bile acid metabolizers, SCFA producers, and sporulators. The α-517 

diversity (Shannon index) of (A) bile acid metabolizers, (B) SCFA producers, and (C) 518 

sporulating bacteria of donors, recipients pre- and post-FMT for successful and failed FMT 519 

outcomes. Significant differences were determined using the Kruskal-Wallis and Wilcoxon 520 

signed-rank tests for unpaired and paired samples, respectively, followed by the Bonferroni post-521 
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hoc correction. Adjusted p-values were defined at *p<0.05, **p<0.01, ***p<0.001, and 522 

****p<0.0001. The Beta diversity was also calculated using the Bray-Curtis distance-based 523 

density plots (D, E, F) and analyzed using ANOSIM.  524 

Fig 3 Bile acid metabolizers of FMT donors and recipients. Heatmap of bile acid metabolizers of 525 

(A) donors (D1-D4), (B) recipients pre-FMT, and (C) recipients post-FMT for successful and 526 

failed FMT outcomes. The dendrogram shows clustering based on the relative abundances. The 527 

heatmap color (white to dark blue, corresponding to low to high) represents the row z-score of the 528 

mean relative abundance values.  529 

Fig 4 Machine learning model predicting FMT outcome. The random forest model utilized led to 530 

(A) the ROC curve displaying an AUC of 98%, (B) the top 9 most important microbes (Blue 531 

ellipses represent bacteria; Yellow ellipse represent fungi) involved in FMT success prediction 532 

where the size of the ellipses represents the feature importance magnitudes (average Mean 533 

Decrease in Impurity), and (C) the relative abundance (shown on logarithmic scale) for the top 9 534 

features of donor, and recipient samples pre- and post-FMT.  535 

Fig 5 Multifaceted mechanisms affecting FMT treatment outcome. FMT treatment outcome of 536 

(A) successful FMT recipients, and (B) failed FMT recipients. A successful treatment outcome 537 

includes the repair of the disturbed gut microbial ecosystem by transient colonization of nexus 538 

species followed by secondary succession of bile acid metabolizers, sporulators, and short chain 539 

fatty acid producers. A failed treatment outcome may be due to the presence of fungal and 540 

bacteria genera including Yarrowia and Wigglesworthia in recipients, minimizing the 541 

establishment of repair or successful secondary colonization for functional ecosystem restoration. 542 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 28, 2020. ; https://doi.org/10.1101/2020.05.27.120386doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.27.120386


 21 

Fig 6 The experimental data structure of stool samples collected. Samples were collected from 4 543 

donors (D1 to D4) and 17 patients one week prior to FMT (pre-FMT) and patients one week 544 

following FMT (post-FMT). For D1 and D3, multiple independent samples were taken for 545 

different patients. Green line indicates a successful FMT outcome and a red line indicates a failed 546 

FMT outcome.  547 
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