1887

Abstract

Phylogenetic analysis of the genus, using either partial sequences of the non-structural 5 gene or the structural envelope gene, revealed an extensive series of clades defined by their epidemiology and disease associations. These phylogenies identified mosquito-borne, tick-borne and no-known-vector (NKV) virus clades, which could be further subdivided into clades defined by their principal vertebrate host. The mosquito-borne flaviviruses revealed two distinct epidemiological groups: (i) the neurotropic viruses, often associated with encephalitic disease in humans or livestock, correlated with the species vector and bird reservoirs and (ii) the non-neurotropic viruses, associated with haemorrhagic disease in humans, correlated with the species vector and primate hosts. Thus, the tree topology describing the virus–host association may reflect differences in the feeding behaviour between and mosquitoes. The tick-borne viruses also formed two distinct groups: one group associated with seabirds and the other, the tick-borne encephalitis complex viruses, associated primarily with rodents. The NKV flaviviruses formed three distinct groups: one group, which was closely related to the mosquito-borne viruses, associated with bats; a second group, which was more genetically distant, also associated with bats; and a third group associated with rodents. Each epidemiological group within the phylogenies revealed distinct geographical clusters in either the Old World or the New World, which for mosquito-borne viruses may reflect an Old World origin. The correlation between epidemiology, disease correlation and biogeography begins to define the complex evolutionary relationships between the virus, vector, vertebrate host and ecological niche.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-82-8-1867
2001-08-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/82/8/0821867a.html?itemId=/content/journal/jgv/10.1099/0022-1317-82-8-1867&mimeType=html&fmt=ahah

References

  1. Billoir F., de Chesse R., Tolou H., de Micco P., Gould E. A., de Lamballerie X. 2000; Phylogeny of the genus Flavivirus using complete coding sequences of arthropod-borne viruses and viruses with no known vector. Journal of General Virology 81:781–790
    [Google Scholar]
  2. Calisher C. H., Karabatsos N., Dalrymple J. M., Shope R. E., Porterfield J. S., Westerway E. G., Brandt W. E. 1989; Antigenic relationships between flaviviruses as determined by cross-neutralisation tests with polyclonal antisera. Journal of General Virology 70:37–43
    [Google Scholar]
  3. Chastel C., Main A. J., Guiguen C., le Lay G., Quillien M. C., Mannat J. Y., Beaucournu J. C. 1985; The isolation of Meaban virus, a new flavivirus from the seabird tick Ornithodoros (Alecorobius) maritimus in France. Archives of Virology 83:129–140
    [Google Scholar]
  4. Christensen H. A., de Vasquez A. M., Boreham M. M. 1996; Host-feeding patterns of mosquitoes (Diptera: Culicidae ) from central Panama. American Journal of Tropical Medicine and Hygiene 55:202–208
    [Google Scholar]
  5. Clements A. N. 1999 The Biology of Mosquitoes: Sensory, Reception, and Behaviour, 2nd edn. Wallingford, Oxford: CABI Publishing;
  6. de Madrid A. T., Porterfield J. S. 1974; The flaviviruses (group B arboviruses): a cross-neutralisation study. Journal of General Virology 23:91–96
    [Google Scholar]
  7. Gao G. F., Hussain M. H., Reid H. W., Gould E. A. 1993; Classification of a new member of the TBE flavivirus subgroup by its immunological, pathogenetic and molecular characteristics: identification of subgroup-specific pentapeptides. Virus Research 30:129–144
    [Google Scholar]
  8. Gaunt M. W., Jones L. D., Laurenson K., Hudson P. J., Reid H. W., Gould E. A. 1997; Definitive identification of louping ill virus by RT–PCR and sequencing in field populations of Ixodes ricinus on the Lochindorb estate. Archives of Virology 142:1181–1191
    [Google Scholar]
  9. Gould E. A., Zanotto P. M. A., Holmes E. C. 1997; The genetic evolution of the flaviviruses. In Factors in the Emergence of Arboviruses Diseases pp 51–63 Edited by Saluzzo J.-F., Dodet B. Paris: Elsevier;
    [Google Scholar]
  10. Gritsun T. S., Gould E. A. 1995; Infectious transcripts of tick-borne encephalitis virus, generated in days by RT–PCR. Virology 214:611–618
    [Google Scholar]
  11. Heinz F. X., Collett M. S., Purcell R. H., Gould E. A., Howard C. R., Houghton M., Moormann R. J. M., Rice C. M., Thiel H. J. 2000; Family Flaviviridae . In Virus Taxonomy. Seventh International Committee for the Taxonomy of Viruses pp 859–878 Edited by van Regenmortel M. H. V., Fauquet C. M., Bishop D. H. L. San Diego: Academic Press;
    [Google Scholar]
  12. Holmes E. C. 1998; Molecular epidemiology and evolution of emerging infectious diseases. British Medical Bulletin 54:533–543
    [Google Scholar]
  13. Hommel D., Talarmin A., Deubel V., Reynes J. M., Drouet M. T., Sarthou J. L., Hulin A. 1998; Dengue encephalitis in French Guiana. Research in Virology 149:235–238
    [Google Scholar]
  14. Jones D. T., Taylor W. R., Thornton J. M. 1992; The rapid generation of mutation data matrices from protein sequences. Computer Applications in the Biosciences 8:275–282
    [Google Scholar]
  15. Karabatsos N. 1995 International Catalogue of Arboviruses San Antonio: American Society of Tropical Medicine and Hygiene;
  16. Kuno G., Chang G.-J. J., Tsuchiya K. R., Karabatsos N., Cropp S. B. 1998; Phylogeny of genus Flavivirus. Journal of Virology 72:73–83
    [Google Scholar]
  17. Lanciotti R. S., Roehrig J. T., Deubel V., Smith J., Parker M., Steele K., Crise B., Volpe K. E., Crabtree M. B., Scherret J. H., Hall R. A., MacKenzie J. S., Cropp C. B., Panigrahy B., Ostlund E., Schmitt B., Malkinson M., Banet C., Weissman J., Komar N., Savage H. M., Stone W., McNamara T., Gubler D. J. 1999; Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States. Science 286:2333–2337
    [Google Scholar]
  18. Lum L. C. S., Lam S. K., Choy Y. S., George R., Harun F. 1996; Dengue encephalitis: a true entity?. American Journal of Tropical Medicine and Hygiene 54:256–259
    [Google Scholar]
  19. McGuire K., Holmes E. C., Gao G. F., Reid H. W., Gould E. A. 1998; Tracing the origins of louping ill virus by molecular phylogenetic analysis. Journal of General Virology 79:981–988
    [Google Scholar]
  20. Marin M. S., Zanotto P. M., Gritsun T., Gould E. A. 1995; Phylogeny of TYU, SRE, and CFA virus: different evolutionary rates in the genus Flavivirus. Virology 206:1133–1139
    [Google Scholar]
  21. Mitchell C. J. 1988; Occurrence, biology and physiology of diapause in overwintering mosquitoes. In The Arboviruses. Epidemiology and Ecology vol. 1 Edited by Monath T. P. Boca Raton: CRC Press;
    [Google Scholar]
  22. Monath T. P., Heinz F. X. 1990; Flaviviruses. In Fields Virology pp 763–814 Edited by Fields B. N., Knipe D. M. New York: Raven Press;
    [Google Scholar]
  23. Porterfield J. S. 1980; Antigenic characteristics and classification of Togaviridae . In The Togaviruses pp 13–46 Edited by Schlesinger R. W. New York: Academic Press;
    [Google Scholar]
  24. Possado D., Krandall K. A. 1998; MODELTEST: testing the model of DNA substitution. Computer Applications in the Biosciences 14:817–818
    [Google Scholar]
  25. Proutski V., Holmes E. C. 1998; SWAN: a new Macintosh application for the sliding window analysis of nucleotide sequence variability. Computer Applications in the Biosciences 14:467–468
    [Google Scholar]
  26. Rambaut A., Grassly N. C. 1997; Seq-Gen: an application for the Monte Carlo simulation of DNA sequence evolution along phylogenetic trees. Computer Applications in the Biosciences 13:235–238
    [Google Scholar]
  27. Randolph S. E., Green R. M., Peacey M. F., Rogers D. J. 2000; Seasonal synchrony: the key to tick-borne encephalitis foci identified by satellite data. Parasitology 121:15–23
    [Google Scholar]
  28. Reid H. W. 1984; Epidemiology of louping ill. In Vectors in Biology pp 161–178 London: Academic Press;
    [Google Scholar]
  29. Rice C. M. 1996; Flaviviridae : the viruses and their replication. In Fields Virology pp 931–959 Edited by Fields B. N., Knipe D. M., Howley P. M. Philadelphia: Lippincott–Raven;
    [Google Scholar]
  30. Rice C. M., Lenches E. M., Eddy S. R., Shin S. J., Sheets R. L., Strauss J. H. 1985; Nucleotide sequence of yellow fever virus: implications for flavivirus gene expression and evolution. Science 229:726–733
    [Google Scholar]
  31. Robertson L. C., Prior S., Apperson C. S., Irby W. S. 1993; Bionomics of Anopheles quadrimaculatus and Culex erraticus (Diptera: Culicidae ) in the Falls Lake basin, North Carolina: seasonal changes in abundance and gonotropic status, and host-feeding patterns. Journal of Medical Entomology 30:689–698
    [Google Scholar]
  32. Shilton L. A., Altringham J. D., Compton S. G., Whittaker R. J. 1999; Old World fruit bats can be long-distance seed dispersers through extended retention of viable seeds in the gut. Proceedings of the Royal Society of London Series B Biological Scienes 266:219–223
    [Google Scholar]
  33. Solomon T., Dung N. M., Vaughn D. W., Kneen R., Thao L. T. T., Raengsakulrach B., Loan H. T., Day N. P. J., Farrar J., Myint K. S. A., Warrell M. J., James W. S., Nisalak A., White N. J. 2000; Neurological manifestations of dengue infection. Lancet 335:1053–1059
    [Google Scholar]
  34. Strimmer K., von Haeseler A. 1996; Quartet puzzling: a quartet maximum likelihood method for reconstructing tree topologies. Molecular Biology and Evolution 13:964–969
    [Google Scholar]
  35. Strode G. K. 1951 Yellow Fever New York: McGraw–Hill;
  36. Tabachnick W. J. 1991; Evolutionary genetics and arthropod-borne disease: the yellow fever mosquito. American Entomologist 37:14–24
    [Google Scholar]
  37. Swofford D. L. 1999 PAUP*: Phylogenetic Analysis Using Parsimony (* and other methods), version 4.0 Sinauer Associates; Sunderland, MA, USA:
    [Google Scholar]
  38. Thompson J. D., Higgins D. G., Gibson T. J. 1994; CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22:4673–4680
    [Google Scholar]
  39. Wang E., Ni H., Xu R., Barrett A. D., Watowich S. J., Gubler D. J., Weaver S. C. 2000; Evolutionary relationships of endemic/epidemic and sylvatic dengue viruses. Journal of Virology 74:3227–3234
    [Google Scholar]
  40. Zanotto P. M. A., Gao G. F., Gritsun T., Marin M. S., Jiang W. R., Venugopal K., Reid H. W., Gould E. A. 1995; An arbovirus cline across the northern hemisphere. Virology 210:152–159
    [Google Scholar]
  41. Zanotto P. M. A., Gould E. A., Gao G. F., Harvey P. H., Holmes E. C. 1996; Population dynamics of flaviviruses revealed by molecular phylogenies. Proceedings of the National Academy of Sciences, USA 93:548–553
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-82-8-1867
Loading
/content/journal/jgv/10.1099/0022-1317-82-8-1867
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error