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Recent molecular investigations of marine samples taken from different environments, including tropical,

temperate and polar areas, as well as deep thermal vents, have revealed an unexpectedly high diversity of

protists, some of them forming deep-branching clades within important lineages, such as the alveolates and

heterokonts. Using the same approach on coastal samples, we have identified a novel group of protist small

subunit (SSU) rDNA sequences that do not correspond to any phylogenetic group previously identified.

Comparison with other sequences obtained from cultures of heterotrophic protists showed that the

environmental sequences grouped together with Telonema, a genus known since 1913 but of uncertain

taxonomic affinity. Phylogenetic analyses using four genes (SSU, Hsp90, alpha-tubulin and beta-tubulin),

and accounting for gamma- and covarion-distributed substitution rates, revealed Telonema as a distinct

group of species branching off close to chromist lineages. Consistent with these gene trees, Telonema

possesses ultrastructures revealing both the distinctness of the group and the evolutionary affinity to

chromist groups. Altogether, the data suggest that Telonema constitutes a new eukaryotic phylum, here

defined as Telonemia, possibly representing a key clade for the understanding of the early evolution of

bikont protist groups, such as the proposed chromalveolate supergroup.
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1. INTRODUCTION
Phylogenetic inferences of gene sequences and genome

rearrangements have recently resolved some of the most

intriguing evolutionary relationships between protist

lineages (Baldauf et al. 2000; Stechmann & Cavalier-

Smith 2002). By combining gene trees with ultrastructural

and biochemical traits, evidence is growing for at least six

distinct supergroups of eukaryotes; i.e. the opisthokonts,

Amoebozoa (together forming the unikonts), Rhizaria,

Excavata, chromalveolates and Plantae, each possibly

forming separate kingdoms or subkingdoms (Cavalier-

Smith 2003, 2004b; Keeling 2004). In recent years,

increasing number of studies have applied clone libraries

of DNA sampled from various environments to investigate

the protist diversity. A large number of sequences and

clades belonging to all the eukaryotic lineages have been

detected with this method, but very few sequences seem to

constitute entirely unknown supergroups (Berney et al.
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2004; Richards & Bass 2005). It is possible that all major

groups of living eukaryotes have already been described

(Berney et al. 2004). However, the small subunit rRNA

(SSU) gene typically used to construct phylogenies of

environmental sequences is known to be prone to long-

branch attraction, covarion substitutions patterns and

other artefacts that may violate the methods applied

(Lopez et al. 1999; Philippe 2000; Huelsenbeck &

Ronquist 2001; Galtier 2001; Huelsenbeck 2002). In

addition, since it is virtually impossible to combine

multigene-phylogenies and ultrastructural studies of

such uncultured species, it is difficult to rule out the

possibility that some sequences may constitute novel high-

level taxa (Berney et al. 2004). In our search for hitherto

undetermined groups of eukaryotes, we aimed at com-

bining data from clone libraries of the SSU gene, and

ultrastructural features and multiple-gene phylogenies of

cultured species. Furthermore, we included all undeter-

mined marine sequences from earlier analyses of environ-

mental clone libraries (Berney et al. 2004; Cavalier-Smith

2004a), and performed phylogenetic analyses allowing

both gamma- and covarion-distributed substitution pat-

terns (Yang 1996; Huelsenbeck 2002). Here, we present
q 2006 The Royal Society
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several new eukaryote sequences obtained from the

environment and show that they group together with

sequences obtained from cultures of Telonema, a genus

known since 1913 but of uncertain taxonomic affinity

(Griessmann 1913). Based on phylogenies of single- and

multi-gene sequences and unique ultrastructural features

of cultured Telonema species, we deduce that the Telonema-

group constitutes a novel lineage, here defined as phylum

Telonemia, which probably is evolutionarily related to the

chromist lineages.
2. MATERIAL AND METHODS
(a) Cultures

Two cultures of Telonema subtilis were isolated from surface

water sampled at the Astan station off Roscoff (English

Channel, Brittany, France) on 12 April and 11 July 2000.

Water pre-filtered through a 3 mm filter was enriched with K

medium (at 1/100 dilution) and grown at 15 8C under

12 h : 12 h light–dark cycles at 150 mmol quanta mK2 sK1.

These cultures are deposited in the Roscoff Culture

Collection (RCC: www.sb-roscoff.fr/phyto/collect.html).

Cultures of Telonema antarcticum were isolated from surface

seawater samples taken at the inner Oslofjord winter 1998

and grown in enriched seawater f/2 or IMR/2, transferring

weekly to a vigorously growing culture of the cryptophyte

Rhodomonas sp. The cultures were held at 17 8C on a 14/10 h

light/dark cycles 230 mmol quanta mK2 sK1.

(b) Electron microscopy

Transmission electron microscopy (TEM) of T. subtilis was

performed by following standard procedures as described in

Eikrem & Moestrup (1998). Scanning electron microscopy

(SEM) of T. antarcticum and T. subtilis and TEM of

T. antarcticum were conducted according to Klaveness et al.

(2005).

(c) Clone libraries and sequencing

Samples were collected from surface waters of the English

Channel off Roscoff (Astan station, 12 April and 10

December 2000) and of the Mediterranean Sea off Blanes

(Catalan coast, 25 June 2001) and pre-filtered through a

3 mm filter. DNA was collected on 0.2 mm filters and

extracted by classical methods as described elsewhere

(Romari & Vaulot 2004). The SSU rRNA gene was amplified

by PCR using primers described in Moon-van der Staay et al.

(2000) and cloned using the TOPO-TA cloning kit

(Invitrogen, Carlsbad, CA). Positive clones were partially

sequenced (550 bp) by Qiagen Genomics Sequencing

Services using the internal primer Euk528f (5 0-GCG GTA

ATT CCA GCT CCA A-3 0), and selected clones were fully

sequenced by the same company. The T. antarcticum SSU

sequence was generated as previously described (Klaveness

et al. 2005). Hsp90, alpha- and beta-tubulin sequences from

Telonema were amplified with various degenerate PCR

primers and subsequently cloned and sequenced as done

for the SSU sequences.

(d) Phylogenetic analysis

The evolutionary origin of Telonema was inferred from

phylogenetic reconstruction of single- and concatenated

sequences obtained from both cultured strains and environ-

mental clones (SSU only). Different phylogenetic methods

were used, including Bayesian inferences (Huelsenbeck &
Proc. R. Soc. B (2006)
Ronquist 2001), maximum likelihood (ML: Guindon &

Gascuel 2003), parsimony and distance (Swofford 1998;

Felsenstein 2004) methods. All phylogenetic analyses were

performed at the freely available University of Oslo Bioportal

(http//:www.bioportal.uio.no/).

In the Bayesian analysis of the SSU sequences, variable

substitution rates across sites were accounted for by using

gamma-shaped distribution of site rate probability (G) and

an invariable site parameter (I; together GCI ). In addition,

since deep branching phylogenetic analyses can be seriously

affected by covarion (hereafter only COV) substitution

processes, in which homologous sites evolve with different

rates across the tree (Lopez et al. 1999a; Galtier 2001b;

Huelsenbeck 2002), we conducted Bayesian inferences with

MRBAYES v. 3.0 and 3.1 (Huelsenbeck & Ronquist 2001),

allowing sites to switch between invariable and variable

states (Huelsenbeck 2002); i.e. offOon and onOoff (GC

COV), and finally together with both a constant proportion

of invariable site parameter and the covarion model (GCIC

COV). To test the significance of covarion rate patterns in

the datasets, we did a statistical comparison between all

these models in a Bayesian framework by applying the Bayes

factor. The Bayes factor is defined as the posterior

probability of a hypothesis, given that the prior probabilities

of the alternative evolutionary models are equal, and was

calculated as the ratio of marginal-likelihood values (i.e. the

harmonic mean value) obtained from stationary phases of

Markov chain Monte Carlo (MCMC) runs, as suggested by

Newton & Raftery (1994). We interpreted the Bayes factor

according to the guidelines provided by Kass & Raftery

(1995), in which a Bayes factor of 10 is defined as the limit

for decisive evidence for favouring the tested model. The

general time reversible model was implemented in Bayesian

analyses of SSU sequences. Priors for all other model

parameters were set to default values. Metropolis coupling

was used with three heated (temperature parameter 0.2) and

one cold chain. Randomly generated trees were used as a

starting point for MCMC chains that carried out for

1–20 000 000 generations. Sampling of trees was done

every 100 generations for a total of 10 000–20 000 trees.

Burn-in of trees (i.e. sampled before the MCMC chains

reached convergence) was set to 3000–15 000 trees based on

assessment of the likelihood plots. Consensus of the

remaining trees was used to calculate the posterior

probabilities of the clades. Two separate runs were

performed to confirm the stationarity of the chains; the

clade probabilities and likelihood scores of the received trees

were very similar between the independent runs, supporting

our conclusion that the chains produced a reasonable sample

from the posterior distribution within the chosen burn-in

period. The SSU tree was also estimated using PAUP�

(Swofford 1998), on the basis of ML distances (MLDIST;

GCI parameters) and 10 heuristic searches, random

addition of sequences and tree-bisection-reconnection

branch swapping. Non-parametric bootstrap analyses were

done with 100 pseudoreplicates and analysed as for the

original datasets, except using one heuristic search for each

replicate.

For Hsp90, alpha- and beta-tubulin genes (amino acid

sequences), Bayesian inferences were performed with the use

of JTT and WAG substitution models and the G, I and COV

parameters. Parsimony and distance non-parametric boot-

strap support were inferred using SEQBOOT (Felsenstein

2004), PROTPARS, PROTDIST ( JTT model) and

http://www.sb-roscoff.fr/phyto/collect.html
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NEIGHBOR programs (PHYLIP package; Felsenstein 2004),

applying global rearrangements and five jumbles. Beta-tubulin

tree with the inclusion of Kathablepharis and Leucocryptos

sequences was reconstructed with an ML method in PHYML

(Guindon & Gascuel 2003).
3. RESULTS AND DISCUSSION
(a) Telonema identified in environmental clone

libraries and cultures

Partial sequencing (500 bp starting from position 528)

of the SSU clone libraries revealed the presence of

many sequences that did not present any significant

similarities to sequences available in gene databases

(Massana et al. 2004; Romari & Vaulot 2004),

indicating a wide and unknown genetic diversity in

marine coastal plankton similar to what was recently

established for open ocean environments (Lopez-Garcia

et al. 2001; Moon-van der Staay et al. 2001). Screening

of protist cultures from the English Channel by the

same sequencing approach uncovered two cultures

containing sequences with high similarity to five of

the clone library sequences. Both cultures contained

T. subtilis, a small (2–6!4–10 mm) phagotrophic species

first described by Griessmann (1913) from Roscoff and

Naples in 1913. In parallel, we isolated from the

Oslofjord a novel species, T. antarcticum (Klaveness

et al. 2005), with an SSU sequence very similar to the

environmental and T. subtilis sequences.

(b) Distinct origin of Telonema inferred from

multiple sequences analysis applying covarion

substitution model

To investigate the evolutionary origin of the Telonema

species and the Telonema-like sequences, we obtained full

length SSU, Hsp90, alpha-tubulin and beta-tubulin

sequences from cultured strains and environmental clones

(SSU only).

The inferences of the SSU alignment (144 taxa and 1159

characters) clustered seven Telonema and Telonema-like

sequences as a monophyletic group with high posterior

probability (PP) and bootstrap support (PPZ1.0,

MLDISTZ100%), in which the environmental sequences

from Roscoff grouped with T. subtilis, while the sequence

obtained from Blanes grouped together with T. antarcticum

(figure 1). The Telonema group branched off just below

Haptophyta, which was placed at the base of a branch

consisting of Heterokonta, alveolates and a large group

with Foraminifera, Cercozoa and Radiolaria species

(termed Rhizaria; Cavalier-Smith 2002). The other

environmental sequences included in the analysis, which

have been pointed out as potential undetermined lineages

(Berney et al. 2004; Cavalier-Smith 2004a), were almost

all grouped within characterized lineages; only three

sequences appeared to have uncertain origin; one sequence

(Clone CCA32) was weakly supported (PPZ0.64) as a

sister to Telonema. Some of the environmental sequences

placed within the excavates, heredescribed as undetermined

lineage, may belong to alveolates, but possibly misplaced

because of long-branch attractions (for details, see figure 1;

Berney et al. 2004; Cavalier-Smith 2004a). Nearly all

other species were grouped together in accordance with

previously defined lineages and supergroups, including the

opisthokonts, Amoebozoa, Excavata, Rhizaria, Alveolata
Proc. R. Soc. B (2006)
and Heliozoa. In contrast, the Heterokonta, Haptophyta

and Cryptophyta were each well-supported groupings,

with the two latter as supported sister groups in protein

trees (see also Harper et al. 2005), but were not clustered

as the chromalveolate supergroup (Yoon et al. 2002;

Harper & Keeling 2003). Likewise, the red algae, plants

and glaucophytes were not grouped as a monophyletic

Plantae (Rodrı́guez-Ezpeleta et al. 2005), but belonged to

the same branch together with some of the chromists and

Heliozoa. Both the latter inconsistencies with the

proposed supergroup definitions are widely seen in SSU

trees (Van de Peer et al. 2000; Berney et al. 2004).

Interestingly, two species with previously unclear origin,

Diphylleia rotans and ‘Mastigamoeba invertens’, were weakly

placed together with excavates (PPZ0.78).

Consistent with the SSU tree, the analyses of Hsp90 (34

taxa and 476 amino acid characters; figure 2) and Hsp90C
SSU (figure 3) placed Telonema as a distinct lineage. Both

Hsp90 and Hsp90CSSU trees grouped the Telonema clade

together with the haptophytes and cryptophytes as a

monophyletic lineage (PPZ0.93 and PPZ1.00, respect-

ively). The other groups were largely grouped as in the SSU

tree, but comparison between the two protein trees show

different placement of the plants, Amastigomonas marina

(apusozoan) and Streblomastix strix (excavates).

Analysis of single-gene alpha-tubulin (40 taxa and 355

characters) and beta-tubulin (39 taxa and 383 characters)

sequences resulted in mutually incongruent tree topolo-

gies (results not shown). The tubulin sequences did not

increase the resolution of the phylogeny of the Telonema-

group or other well-established groups when concatenated

with the Hsp90 and SSU sequences, but the Telonema

species were still placed together with the haptophyte and

cryptophyte sequences in combined Hsp90Ctubulin tree

(figure S1; electronic supplementary material). The

topological differences in the SSU, Hsp90 and concate-

nated Hsp90CSSU trees, moving Telonema a few internal

branches in the trees, clearly indicate that Telonema is a

deep, distinct group of its own, but is also indicating

possible evolutionary relationship to the haptophytes and

cryptophytes.

Since Telonema was placed close to cryptophytes in the

protein trees, additional analyses of SSU and beta-tubulin

were performed with the inclusion of sequences from

Kathablepharis and Leucocryptos, recently suggested to

constitute a sister group to cryptophytes (Cavalier-Smith

2004b; Okamoto & Inouye 2005). The inferred trees

confirmed recent analysis by Okamoto & Inouye (2005) in

supporting the sister grouping of the kathablepharids and

cryptophytes SSU (MLDIST tree), and the unresolved

placement of the kathablepharids in beta-tubulin tree (ML

tree). However, the inclusion of the kathablepharid

sequences did not change the placement of Telonema

significantly. Telonema was not attracted to the kathable-

pharids or cryptophytes (results not shown).

(c) Covarion substitution patterns in SSU

and tubulin sequences

For almost all genes, one of the covarion models fitted the

data better than the GCI model with at least a Bayes

factor of 40.56, which is several magnitudes higher than

10 usually regarded as decisive evidence for the model

(Newton & Raftery 1994; Kass & Raftery 1995). Only the

Hsp90 data received insignificant Bayes factor differences.
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Figure 1. (Opposite.) SSU phylogeny of the Telonema-clade. Tree inferred with Bayesian inference by applying a covarion (GCIC
COV) model of evolution. The numbers at the nodes represent Bayesian posterior probability and bootstrap values from
distance analyses (GCI ) above 50%. The undetermined lineage has previously been identified as phylotypes of uncertain
taxonomic affiliation, and its grouping with the excavates may result from long-branch artefacts (Berney et al. 2004;
Cavalier-Smith 2004a). For accession numbers of sequences used, see table S1 in electronic supplementary material.
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clade composed of cryptophytes and haptophytes. (Accession numbers shown in table S1, electronic supplementary material.)
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Importantly, applying the GCICCOV and GCCOV

models in analysis of tubulin-containing data clearly

increased the posterior probability for the monophyly of

excavates in the concatenated protein tree (figure S1;

electronic supplementary material). These changes

suggest that the covarion-like processes in the evolution

of tubulin genes may violate the underlying model of the

phylogenetic inferences if not accounted for, possibly

causing inconsistencies in previous multi-sequence trees

(see, for instance, Hampl et al. 2005; Simpson et al. 2006).
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However, using the different substitution rate models on

the Hsp90 sequences resulted in very similar posterior

probability values, indicating that the phylogeny of this

gene is not very sensitive to model choice. Since the GC
COV clearly fitted best to the alpha- and beta-tubulin

sequences, we applied this substitution model in the

analysis of the concatenated Hsp90Calpha-tubulinC

beta-tubulin sequences. It should be noted that contrary

to expected results from testing nested models in a ML

framework, estimation of evolutionary models using
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Bayesian inferences does not always receive highest

harmonic mean likelihood score for the most general

model (for insights and discussion, see Holder & Lewis

2003; Nylander et al. 2004).
(d) Ultrastructural features of Telonema indicate

relationship to chromists and alveolates

Members of the genus Telonema are biflagellated and have

a proboscis-like structure located at the flagellar pole

(figure 4a–c). The ultrastucture of T. subtilis and

T. antarcticum revealed characters that provide clues for

the evolutionary position of the Telonema clade, including

mitochondria with tubular cristae (tubulocristae) and a

highly complex cytoskeleton composed of layers of

microtubuli and microfilaments (figure 4d, f ). Additional

traits defining the phylogeny of the group were exclusively

identified in T. antarcticum; these are characteristic
Proc. R. Soc. B (2006)
peripheral vacuoles located just beneath the cell mem-

brane (figure 4b,d,f ) and tripartite tubular hairs on the

long flagellum (figure 4e). Chloroplasts were not observed

in any of the investigated species.

Cortical alveoli, similar to the peripheral vacuoles

identified in T. antarcticum, are one of the main character

defining the alveolates, but membranous structures

situated just beneath the plasmalemma have also been

described in the heterokont classes Raphidophyceae and

Dictyochophyceae (Hara et al. 1985; Ishida et al. 2000),

as well as among the glaucophytes (Plantae; Cavalier-

Smith 1999, 2002). In addition, haptophytes appear to

contain similar structures (as their subsurface cisterna act

in the process of directed deposition of Golgi-derived

scales to the cell surface; Brown & Romanovicz 1976). It

is unclear whether these peripheral vacuoles of Telonema

are homologous structures already present in a primitive



Figure 4. Morphology and ultrastructure of Telonema. (a–c) Whole cell: (a) Telonema subtilis scanning electron micrograph from
natural sample (Gulf of Naples); (b) cultured T. antarcticum from the Oslofjord, showing cortical alveoli (grey arrow); (c) light
micrograph of cultured cell (RCC 404 from Roscoff ), fv, food vacuole. (d–f ) Sub-cellular components of T. antarcticum:
(d ) section through peripheral vacuoles and cytoskeleton (white arrows); (e) detail of flagellum with flagellar tubular tripartite
hairs as revealed by shadow cast whole-mount (see white arrow: distal filament; arrowhead: shaft; black arrow: base); ( f )
longitudinal section of embedded T. antarcticum, showing the cortical alveoli-like peripheral vacuoles, complex cytoskeleton
(white arrows), m, mitochondrion with tubular crista. (a–c) Scale bar, 5 mm; (d–f ) scale bar, 1 mm.
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form before the radiation of the alveolates, chromists and

Plantae (i.e. the corticates), but they could have evolved

independently as an adaptation for strengthening the cell

and for pelagic life forms (Cavalier-Smith 2003). On the

basis of this single character, Telonema could be related to

any of these groups, but both the inferred sequence
Proc. R. Soc. B (2006)
phylogeny and the presence of tubulocristate mitochon-

dria suggest that Telonema is more closely related to

alveolates and some of the chromists than to the

glaucophytes. A detailed comparison of kathablepharids

and Telonema reveals substantial ultrastructural differ-

ences, suggesting distant relationship (table S2 in
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electronic supplementary material; Lee & Kugrens 1991;

Vørs 1992; Kugrens & Clay 2003; Klaveness et al. 2005).

In contrast to many other groups of protists, the

heterokonts swim with a forward directed flagellum that

pulls the cell owing to a number of tubular hairs

attached to the surface of the flagellum (Andersen

2004). Typically, the heterokonts are supposed to have

tubular flagellar hairs composed of a hollow base and

tubular shaft as well as non-tubular distal fibres, the

so-called tripartite hairs (Inouye 1993). Since the

tripartite hairs are synthesized in a composite process

involving synthesis of distinct components in the

endoplasmatic reticulum (ER) and Golgi apparatus, as

well as precise assembly and transport to the surface of

the flagella, it seems unlikely that such hairs would have

evolved several times independently. Tripartite hairs

have until now been regarded as a synapomorphic trait

defining the heterokonts (for review and references, see

Andersen 2004).

(e) Combining ultrastructure and molecular

phylogenies: is Telonema a deep-branching

chromalveolate?

On the basis of the complex biosynthesis and marginal

distribution of tripartite hairs, Telonema should be related

to the heterokonts. However, phylogenetic analyses of all

gene sequences do not support this hypothesis. Instead,

the protein trees place Telonema closer to other chromist

groups, the cryptophytes and haptophytes. Interestingly,

the cryptophytes also possess similar tubular flagellar hairs

(that usually are bipartite), produced in the ER (Hibberd

1971; Inouye 1993). The chromists have recently been

placed with the alveolates in the chromalveolates (Cavalier-

Smith 2003; Keeling 2004), together constituting a large

and highly diverse group of ecologically important

heterotrophic and photosynthetic species, such as

coccolithophorids, diatoms, brown seaweeds (together,

the chromists), ciliates, apicomplexans (harbouring

malaria-causing agents) and dinoflagellates (together, the

alveolates). The chromists and alveolates are almost never

shown as a single clade in nucleus-encoded gene

phylogenies (Keeling 2004; Bachvaroff et al. 2005), but

phylogenies of concatenated chloroplast sequences and

the identification of rare gene replacements unique for

these groups have brought together support for the

monophyly of both the chromists and chromalveolates

(see Cavalier-Smith 2003; Harper & Keeling 2003;

Andersen 2004; Keeling 2004; Patron et al. 2004). If the

chromists are monophyletic (Cavalier-Smith 2003;

Keeling 2004), the most parsimonious explanation

for the evolution of these hairs would be an inheritance

from a common ancestor of chromists and Telonema

(Cavalier- Smith 2002). However, the discrete cytoskele-

ton identified in Telonema has not been found in any of

the chromist lineages, but resembles the cortical structures

in alveolates and some excavates (Huttenlauch & Stick

2003).
4. CONCLUSIONS
(a) Telonemia: a new phylum related to the

kingdom Chromista

In summary, on the basis of ultrastructure (i.e. tubular

mitochondrial crista, peripheral vacuoles, tubular
Proc. R. Soc. B (2006)
tripartite hairs and the complex cytoskeleton), we

conclude that Telonema is distinct from all established

protist phyla, and constitutes a deep eukaryotic lineage,

here defined as a separate phylum, Telonemia, phylum

novum (international code for zoological nomenclature,

ICZN). The molecular trees confirm the distinctiveness of

Telonemia, but also show affinity to some of the chromists.

Thus, it is possible that Telonemia branched off deeply

from one of the chromist lineages (before the cytoskeleton

was reduced in the majority of known chromists), or

possibly diverged before the separation of chromists and

alveolates (if chromalveolates are monophyletic; see

concatenated Hsp90CSSU trees, figure 3)—and thus

may be one of the earliest known groups with affinity to the

chromalveolates. Telonema has previously been classified

as an order Telonemida in the phylum Opalozoa, kingdom

Protozoa (Cavalier-Smith 1993), but the presence of

tripartite hairs fits better to the definition of kingdom

Chromista (Cavalier-Smith 2004b). If Telonemia should

be classified within Chromista, we believe that an erection

of a new subkingdom would be the most natural, given the

ultrastructural differences between Telonema and the

current subkingdoms Cryptista (cryptophytes and katha-

blepharids) or Chromobiota (haptophytes and hetero-

konts). More sequences from additional phylogenetic

markers will be needed to test the evolutionary origin of

Telonemia and the proper taxonomic placement within

the protist kingdoms.

The present work clearly highlights the importance of

establishing cultures in parallel to the acquisition of

sequences direct from the environment when aiming to

address the evolution of eukaryotes. Finally, our results

also emphasize the notion that the so-called ‘uncultivated’

species (Pace 1997) may very well correspond to existing

taxonomic entities (Berney et al. 2004; Cavalier-Smith

2004a)—for example, established from field observations

by classical protistologists—but for which no cultures have

been available or, if available, were not examined in detail

until now. The (re)discovery of the Telonema-clade is a

glaring example.
(b) Formal description of a new phylum, the

Telonemia, phylum novum (ICZN)

Phagotrophic and biflagellate protists of pyriform shape

with flagella emerging on opposite sides of a short

protruding antapical rostrum. A food vacuole may be

located anteriorly at the stout end of cell, in front of

centro-lateral large nucleus. Food uptake in depression in

antero-ventral region. Characteristic band of vesicles is

located laterally. Cell with tubulocristate mitochondria

and with characteristic subcortical lamina of microtubuli

supporting layers of microfilaments oriented slightly offset

from a right angle to each other.
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