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Abstract. A rapid shift from traditional Sanger sequencing-based molecular methods to the 49 

phylogenomic approach with large numbers of loci is underway. Among phylogenomic methods, 50 

RAD (Restriction site Associated DNA) sequencing approaches have gained much attention as they 51 

enable rapid generation of up to thousands of loci randomly scattered across the genome and are 52 

suitable for non-model species. RAD data sets however suffer from large amounts of missing data 53 

and rapid locus dropout along with decreasing relatedness among taxa. The relationship between 54 

locus dropout and the amount of phylogenetic information retained in the data has remained largely 55 

un-investigated. Similarly, phylogenetic hypotheses based on RAD have rarely been compared with 56 

phylogenetic hypotheses based on multilocus Sanger sequencing, even less so using exactly the 57 

same species and specimens. We compared the Sanger-based phylogenetic hypothesis (8 loci; 6,172 58 

bp) of 32 species of the diverse moth genus Eupithecia (Lepidoptera, Geometridae) to that based on 59 

double-digest RAD sequencing (3,256 loci; 726,658 bp). We observed that topologies were largely 60 

congruent, with some notable exceptions that we discuss. The locus dropout effect was strong. We 61 

demonstrate that number of loci is not a precise measure of phylogenetic information since the 62 

number of single-nucleotide polymorphisms (SNPs) may remain low at very shallow phylogenetic 63 

levels despite large numbers of loci. As we hypothesize, the number of SNPs and parsimony 64 

informative SNPs (PIS) is low at shallow phylogenetic levels, peaks at intermediate levels and, 65 

thereafter, declines again at the deepest levels as a result of decay of available loci. Similarly, we 66 

demonstrate with empirical data that the locus dropout affects the type of loci retained, the loci 67 

found in many species tending to show lower interspecific distances than those shared among fewer 68 

species. We also examine the effects of the numbers of loci, SNPs and PIS on nodal bootstrap 69 

support, but could not demonstrate with our data our expectation of a positive correlation between 70 

them. We conclude that RAD methods provide a powerful tool for phylogenomics at an 71 

intermediate phylogenetic level as indicated by its broad congruence with an eight-gene Sanger data 72 

set in a genus of moths. When assessing the quality of the data for phylogenetic inference, the focus 73 
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should be on the distribution and number of SNPs and PIS rather than on loci. Key words: Allelic 74 

dropout, ddRAD sequencing, Eupithecia, Lepidoptera, Locus dropout, Molecular systematics, 75 

Parsimony informative SNPs, RAD sequencing, SNP dropout 76 
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High-throughput DNA sequencing methods have enabled rapid generation of genome-wide 93 

DNA sequence data simultaneously from many specimens with reasonable costs. Several NGS 94 

sequencing platforms have become available (Mardis 2013) and a number of different methods 95 

have been developed to accumulate data to address specific scientific questions, including various 96 

areas of systematic research (Lemmon and Lemmon 2013). Recent approaches include anchored 97 

hybrid enrichment (Lemmon et al. 2012; Brandley et al. 2015; Hamilton et al. 2016; Breinholt et al. 98 

2018) and several varieties of restriction site associated DNA sequencing (RAD) (Miller et al. 2007; 99 

Baird et al. 2008). RAD methods, based on the digestion of genomic DNA with restriction enzymes 100 

and subsequent sequencing of short regions adjacent to the restriction sites, enable efficient SNP 101 

(single nucleotide polymorphism) discovery and are receiving growing attention among 102 

systematists. 103 

Several RAD-based studies have focused on young species groups and taxonomically complex 104 

groups with horizontal gene transfer and incomplete lineage sorting potentially complicating the 105 

inference of phylogenies or species trees (Eaton and Ree 2013; Rheindt et al. 2014; Streicher et al. 106 

2014). Other studies have been carried out with well-defined and even arguably relatively old (ten 107 

to tens of millions years) species (Rubin et al. 2012; Cruaud et al. 2014; Hipp et al. 2014; Viricel et 108 

al. 2014; Herrera et al. 2015; McCluskey and Postlethwait 2015; Herrera and Shank 2016; Eaton et 109 

al. 2017). Of the RAD methods, double-digest RAD sequencing (ddRADseq) has a benefit of high 110 

repeatability because it avoids the random shearing characteristic of traditional RAD methods, 111 

which makes combining independent datasets straightforward as long as the same restriction 112 

enzyme pair has been used (Peterson et al. 2012; Kai et al. 2014; Puritz et al. 2014). So far, only a 113 

few explorations of ddRADseq have been conducted in a phylogenetic context (Kai et al. 2014; 114 

Leaché et al. 2015a; DaCosta and Sorenson 2016).  115 

RAD-based approaches have several benefits (Davey and Blaxter 2010; Rowe et al. 2011; Puritz 116 

et al. 2014). Restriction sites are scattered all over the genome and therefore RAD tags provide an 117 
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overview of the entire genome. Typically, the analysis yields thousands of loci (ca. 100-150 bp 118 

fragments) and SNPs per specimen. Alcohol preserved specimens are suitable and since reads are 119 

relatively short (usually 50-150 bp), dry collection specimens have been used successfully as well 120 

(Tin et al. 2014; Suchan et al. 2016). Furthermore, the efficient use of RAD tags does not require a 121 

reference genome. Therefore, the method is suitable for non-model organisms (Andrews et al. 2016; 122 

Kim et al. 2016). 123 

In spite of these benefits, RAD sequencing has certain limitations. RAD tags typically consist of 124 

substantial amounts of missing data, potentially complicating the inference of phylogenetic 125 

relationships (Rubin et al. 2012; Lemmon and Lemmon 2013; Wagner et al. 2013; DaCosta and 126 

Sorenson 2016). Attention has been directed to recognizing orthologous loci and distinguishing 127 

them from non-homologies and thus misleading paralogous loci (Rubin et al. 2012; Cariou et al. 128 

2013; Gonen et al. 2015). Another major practical issue is that the likelihood of recovering an 129 

orthologous locus is negatively correlated with time since lineage divergence, because mutations 130 

gradually accumulate on restriction sites as time elapses. Thus, only a fraction of shared loci are 131 

recovered between genetically distant individuals, arguably reducing the efficacy of the method at 132 

deeper phylogenetic levels (Arnold et al. 2013; Ree and Hipp 2015). Indeed, several studies have 133 

indicated that rapid locus dropout (also called locus decay or allelic dropout) is an inherent feature 134 

of RAD data and the effect can be drastic (Gonen et al. 2015; Leaché et al. 2015b; DaCosta and 135 

Sorenson 2016). If the mutation rate remains constant over time, a linear dropout of loci is expected 136 

with decreasing relatedness between two lineages (Fig. 1). Loci recovered between distant relatives 137 

are expected to be slowly evolving (e.g. protein coding genes), which translates into a 138 

disproportionately low number of SNPs and consequently a weak phylogenetic signal, further 139 

exaggerating the data decay at deep phylogenetic levels (Leaché et al. 2015a). Huang and Knowles 140 

(2016) demonstrated with simulated data that low tolerance to missing data leads to a 141 

disproportionately high exclusion rate of loci with high mutation rate. Locus dropout and decreased 142 
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mutation rate of retained loci are complementary and predict a constant steep loss of information 143 

towards deeper phylogenetic levels. Eaton et al. (2017) recently demonstrated that, somewhat 144 

counter-intuitively, the influence of locus dropout on the phylogenetic information content at deeper 145 

phylogenetic levels is less significant than previously expected because the decay of phylogenetic 146 

information resulting from locus dropout is compensated for by the increase of taxa towards the 147 

deeper nodes. Consequently, Eaton et al. (2017) concluded that the negative effects of locus dropout 148 

can be mitigated by increasing taxon sampling. 149 

We recognize an additional effect inherent to RAD data sets, which differs from the previously 150 

recognized effects in a remarkable way. Previous studies have largely concentrated on the amount 151 

of sequence data per se, but such measures do not provide a reliable picture of the amount of 152 

phylogenetic information content in the data. This is because phylogenetic relatedness is highly 153 

correlated with genetic similarity. Consequently, at very shallow phylogenetic levels, the number of 154 

retrieved loci can be very high, while at the same time they may be poor in phylogenetic 155 

information due to the limited time for mutations to have accumulated (Fig. 1). We therefore predict 156 

that the number of SNPs and PIS decrease towards very shallow phylogenetic levels and peaks at 157 

intermediate phylogenetic levels. As a result, the phylogenetic information content is not expected 158 

to be linearly related with the number of loci. In Figure 1, the expected relationship between the loci 159 

and SNPs/PIS along with increasing coalescence time between two lineages is demonstrated in a 160 

schematic way (Fig. 1). To our best knowledge, the relationship between locus and SNP/PIS 161 

dropouts across phylogenetic time has not been investigated. 162 

Here, we aim to assess the potential of ddRADseq in resolving phylogenetic affinities in the 163 

looper moth genus Eupithecia Curtis (vernacular name ‘pugs’) (Lepidoptera, Geometridae) and 164 

conduct a detailed examination of patterns and effects of loci, SNPs and PIS on ddRAD phylogeny. 165 

Eupithecia is one of the most diverse metazoan genera and includes 1,362 described valid species 166 

world-wide (Scoble and Hausmann 2007). Species of Eupithecia show high levels of morphological 167 



8 
 

similarity and niche specialization (McDunnough 1949; Mironov 2003), both features 168 

characterizing many megadiverse insect groups. Due to the high number of species and close 169 

morphological similarity, attempts to resolve their relationships with rigorous methodology are 170 

virtually lacking. 171 

We start by examining effects of ddRAD locus parameters (clustering threshold and minimum 172 

number of individuals per locus) on ddRAD tree topology and confidence. We continue by 173 

examining the congruence between the eight-gene Sanger data set and the ddRAD phylogenies. 174 

Few similar comparisons have previously been carried out (but see Cruaud et al. 2014; Ruane et al. 175 

2015). The Sanger phylogeny of Eupithecia is constructed based on a set of one mitochondrial and 176 

seven nuclear genes that combined have repeatedly shown to have high information value at 177 

intermediate and deep phylogenetic levels in Lepidoptera (e.g. Mutanen et al. 2010; Sihvonen et al. 178 

2011; Zahiri et al. 2012; Heikkilä et al. 2015). We investigate if the number of SNPs/locus 179 

decreases as the number of individuals/locus increases. We expect conserved loci to be shared more 180 

widely among individuals as the mutation rate of these loci is presumably slower. We next examine 181 

how the level of locus conservation is related to SNP/PIS abundance and investigate if locus and 182 

SNP/PIS distributions at different phylogenetic depths follow the predicted patterns as presented in 183 

Figure 1. Finally, we statistically examine locus and SNP/PIS effects on nodal support values.  184 

 185 

MATERIAL AND METHODS 186 

 187 

Taxon sampling 188 

We sampled a total of 42 specimens from 35 species of Eupithecia that were collected during 189 

2006-2014 from Finland, Germany and Italy. Pasiphila rectangulata was also included to serve as 190 

the outgroup, both genera belonging to the tribe Eupitheciini (Larentiinae). Multiple specimens of 191 
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four species (E. satyrata, E. plumbeolata, E. gelidata and E. nanata) were included, because based 192 

on their mtDNA, they potentially reflect either cryptic diversity or mitonuclear discordance. 193 

Detailed information on the label data of the specimens is provided in Table S1. 194 

 195 

Molecular methods 196 

Sanger sequencing was performed for one mitochondrial and seven nuclear markers. This set of 197 

markers has become a standard in Lepidoptera phylogenetics and have been used in over a hundred 198 

studies since they were proposed for this purpose (Wahlberg and Wheat 2008). The sequencing for 199 

the mt COI gene was carried out at the Canadian Centre for DNA Barcoding (CCDB) following 200 

laboratory protocols used routinely in CCDB as explained in detail in DeWaard et al. (2008). In 201 

order to proceed with the sequencing for nuclear genes and the ddRAD library preparation, genomic 202 

DNA (gDNA) was separately extracted from two legs using the DNeasy Blood & Tissue Kit 203 

(Qiagen) in the molecular laboratory at the University of Oulu, Finland. All PCR and sequencing 204 

protocols followed Wahlberg and Wheat (2008), except for PCR clean-up that was carried out with 205 

ExoSAP-IT (Affymetrix) and Sephadex columns (Sigma-Aldrich) and sequencing that was done 206 

using an ABI 3730 DNA Analyzer (Applied Biosystems). We acquired sequence data from the 207 

following nuclear regions comprising a total of 6,172 base pairs (bp): carbamoylphosphate synthase 208 

domain protein (CAD), elongation factor 1 alpha (EF1α), glyceraldhyde-3-phosphate 209 

dehydrogenase (GAPDH), isocitrate dehydrogenase (IDH), cytosolic malate dehydrogenase 210 

(MDH), ribosomal protein S5 (RpS5), wingless (see Table S2). All sequences for each taxon were 211 

manually aligned and edited using BioEdit (Hall 1999). Primers are available at 212 

http://www.nymphalidae.net/Molecular.htm. All DNA sequences are available at the U.S. National 213 

Center for Biotechnology Information (NCBI) GenBank (Accessions numbers MH030607- 214 

MH030876). 215 
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Double-digested RAD-Seq libraries were prepared following Peterson et al. (2012). All samples 216 

were whole-genome amplified prior to experimentation using a REPLI-g Mini kit (Qiagen) due to 217 

low concentrations of gDNA in the original isolates. Concentration of the amplified gDNA was 218 

estimated with the PicoGreen kit (Molecular Probes) according to the kit instructions. 200 ng of 219 

gDNA was digested with PstI and MseI restriction enzymes (New England Biolabs). Following 220 

digestion, ligation of double-stranded sequencing adapters was completed in the same tube. The P1 221 

adapter included the Illumina sequencing primer sequences, one of 43 unique, five bp barcodes, and 222 

a TGCA overhang on the top strand to match the sticky end left by PstI. The P2 adapter included 223 

the Illumina sequencing primer sequences and an AT overhang on the top strand to match the sticky 224 

end left by MseI. It also incorporated a ‘‘divergent-Y’’ to prevent amplification of fragments with 225 

MseI cut sites on both ends. Following ligation, size selection was performed by the automated size-226 

selection technology, BluePippin (Sage Science; 2% agarose cartridge). We produced two pooled 227 

libraries in four lanes of the machine using automated size selection set to “tight” with a mean of 228 

300 bp. Size selected libraries were eluted in 40 µL volumes and enriched by PCR using library-229 

specific indexed primers complementary to the Illumina paired-end adapters. Amplified DNA 230 

fragments were purified with AMPure XP magnetic beads (Agencourt). The quality, size and 231 

concentration of the pooled libraries were finally determined using the MultiNA® (Shimadzu). 232 

Individual fragment libraries were then combined in equimolar amounts and sequenced on an 233 

Illumina HiSeq 2500 PE 100. DNA reads from ddRAD sequencing are available at the NCBI 234 

Sequence Read Archive (SRA) [BioProject ID: PRJNA345300]. To rule out contamination by the 235 

bacterial parasite Wolbachia, the ddRAD reads were mapped to Wolbachia pipientis (GenBank: 236 

NZ_JQAM01000001) using Geneious 10.0.9 (Biomatters).   237 

 238 

ddRADseq data processing, examination of effects of locus parameters and assessing 239 

comprehensiveness of data 240 
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We processed raw Illumina reads using the pyRAD v.3.0.5 (Eaton 2014) pipeline. This program 241 

is designed to assemble data for phylogenetic studies that contain divergent species using global 242 

alignment clustering which may include indel variation. We de-multiplexed samples using their 243 

unique barcode and adapter sequences, and sites with Phred quality scores below 20 were converted 244 

to “N” characters, and reads with ≥ 10% N's were discarded. The filtered reads for each sample 245 

were clustered using the program VSEARCH v.1.1.3 (VSEARCH GitHub repository, 246 

https://github.com/torognes/vsearch), and then aligned with MUSCLE v.3.8.31 (Edgar 2004). This 247 

clustering step establishes homology among reads within a species. As an additional filtering step, 248 

such consensus sequences were discarded that had low coverage (< 3 reads), excessive 249 

undetermined or heterozygous sites (> 10) potential resulting from paralogs or highly repetitive 250 

genomic regions, or too many haplotypes (> 2 for diploids). In addition, we excluded all loci with 251 

excessive (> 3) shared polymorphic sites as likely representing clustering of paralogs. The 252 

consensus sequences were clustered across samples at 80, 85, 90, 95% similarity. This step 253 

establishes locus homology among species. The justification for this filtering method is that shared 254 

heterozygous SNPs across species are more likely to represent a fixed difference among paralogs 255 

than shared heterozygosity within orthologs among species. We applied a strict filter that allowed a 256 

maximum of three species to share heterozygosity at a given site (paralog = 3).  257 

The final ddRADseq loci were assembled by adjusting a minimum number of individuals per 258 

locus (m) value, which specifies the minimum number of individuals that are required to have data 259 

present at a locus for that locus to be included in the final matrix. Our ddRADseq dataset contained 260 

43 individuals from 36 species (35 Eupithecia species and Pasiphila rectangulata as the outgroup), 261 

and setting m=6 retains loci with data present for three or more species. By contrast, setting m=43 262 

retains zero loci with data present for all individuals (= 100% complete matrix). We compiled data 263 

matrices with m values of each 4, 6, 9, 12, 15, 21 to determine the potential impact of number of 264 

loci, SNPs, parsimony informative SNPs (PIS), and missing data on phylogenetic analysis. 265 
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We generated a pairwise similarity matrix for individuals based on locus-sharing patterns using 266 

RADami v. 1.0-3 (Hipp et al. 2014) in R 3.1.3 (R Core Team 2015). This analysis returned a 267 

pairwise similarity matrix based on how many loci or the proportion of loci shared between 268 

individuals. 269 

We assessed the comprehensiveness of our dataset by comparing the number and proportion of 270 

observed loci retained at the sequencing depth used in the final data sets (d ≥ 3; d denotes the 271 

sequencing depth) with those of observed showing depth less than 3 (observed 1-3 times). 272 

 273 

Construction of reference assembly data set 274 

We also constructed a phylogenetic hypothesis based only on the reads that we could map on 275 

available lepidopteran genomes. For the reference assembly, we used the following 26 genomes as 276 

reference: Amyelois transitella [GCF_001186105], Bombyx mori [GCF_000151625], Calycopis 277 

cecrops [GCA_001625245], Chilo suppressalis [GCA_000636095], Danaus plexippus 278 

[GCA_000235995], Heliconius cydno, [GCA_001485745] H. elevatus [GCA_900068365], H. 279 

ethilla, [GCA_001485985] H. hecale [GCA_001486065], H. ismenius [GCA_001485965], H. 280 

melpomene [GCA_000313835], H. numata [GCA_900068715], H. pardalinus [GCA_001486225], 281 

H. timareta [GCA_001486185], Lerema accius [GCA_001278395], Manduca sexta 282 

[GCA_000262585], Melitaea cinxia [GCA_000716385], Operophtera brumata [GCA_001266575], 283 

Papilio glaucus [GCA_000931545], Papilio machaon [GCF_001298355], Papilio polytes 284 

[GCF_000836215], Papilio xuthus [GCF_000836235], Phoebis sennae [GCA_001586405], Pieris 285 

rapae [GCA_001856805], Plutella xylostella [GCF_000330985], and Spodoptera frugiperda 286 

[GCA_002213285]. We concatenated these genomes to a single reference file. Sequences were 287 

assembled using ipyrad v.0.7.11 (Eaton and Overcast 2016). Reads were trimmed of barcodes and 288 

adapters and quality filtered using a q-score threshold of 33, with bases below this score converted 289 
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to Ns and any reads with more than 5 Ns removed. Reads were mapped to the concatenated 290 

reference genomes with BWA based on sequence similarity using the default bwa mem setting. With 291 

the collected reads, similar clusters of reads were identified using a threshold of 85% of similarity 292 

and were aligned. Next, we performed joint estimation of heterozygosity and error rate based on a 293 

diploid model assuming a maximum of 2 consensus alleles per individual. We then used the 294 

parameters from the previous step, heterozygosity and error rate, to determine consensus base calls 295 

for each allele, and removed consensus sequences with greater than 5 Ns per end of paired-end 296 

reads. Reads of each sample were then clustered and aligned to consensus sequences. Finally, we 297 

filtered the dataset according to maximum number of indels allowed per read end (8), maximum 298 

number of SNPs per locus (20), maximum proportion of shared heterozygous sites per locus (0.5), 299 

and minimum number of samples per locus (3). 300 

 301 

Construction of phylogenetic trees 302 

To infer phylogenetic hypotheses, we used concatenated sequences from all recovered RAD loci. 303 

We used the maximum likelihood (ML) method implemented in the RAxML 8.2.0 (Stamatakis 304 

2006) program with a GTR+GAMMA model (as the best fit model by jModelTest v.2.1.7 [Posada 305 

2008]). Two hundred independent trees were inferred, applying options of automatically optimized 306 

subtree pruning regrafting (SPR) rearrangement and 25 distinct rate categories in the program to 307 

identify the best tree. Statistical support for each branch was obtained using the rapid algorithm 308 

from 500 bootstrap replicates under the same substitution model.  309 

For reference assembly data, the ML tree was built using the unpartitioned GTR+CAT model 310 

and branch support was assessed by a 500 replicates rapid-bootstrap analysis. The following species 311 

were not included in the reference assembly due to the low number of recovered loci: E. tantillaria, 312 

E. tenuiata, E. linariata, E. intricata, E. nanata, E. centaureata, E. vulgata and E. abietaria. 313 
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Effects of locus conservation on SNP frequency 314 

 As the data were severely overdispersed for a Poisson distribution, to study whether locus 315 

conservativeness is correlated with SNPs in our data we fitted generalized linear models with a 316 

negative binomial error distribution and logarithmic link function (R function ‘glm.nb’ from the 317 

package MASS [Venables and Ripley 2002]) to the data derived with m ≥ 6, lower values of m 318 

being excluded due to the risk of contaminant loci (e.g. of bacterial origin) being included in the 319 

data. To assess potential non-linearity of the relationship between the number of SNPs/locus and the 320 

number of individuals/locus, we compared models where the linear predictor included only a linear 321 

term for the number of individuals/locus and a model with both the linear and quadratic terms. 322 

Models were compared based on their AIC and BIC values. Because the normal distribution 323 

assumption of residuals was violated in both models, we further derived 95% adjusted bootstrap 324 

percentile confidence intervals for the mean number of SNPs/locus with each value of m 325 

(individuals/locus), excluding the cases where less than seven observations were available (m ≥ 21). 326 

Bootstrap analyses (10,000 resamples, Davison and Hinkley 1997) were conducted with the R 327 

functions ‘boot’ and ‘boot.ci’ (Canty and Ripley 2015). 328 

 329 

Patterns of locus, SNP and PIS dropout and their effects on nodal confidence 330 

We used node depth as a proxy for node age (in relative terms) and used nodes as observation 331 

units. In order to quantify the depth values for each node, we converted the ML tree into an 332 

ultrametric tree (Fig. S1) based on rate smoothing as implemented in the R package ape (Paradis et 333 

al. 2004). A correlation analysis between node depth and bootstrap values was executed with R 334 

3.1.3 and graphically represented by using the packages corrplot (Wei 2013) and ggplot2 (Wickham 335 

2009).  336 
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To quantify and measure locus dropout, we calculated the numbers of loci shared between at 337 

least one individual of both sister lineages originating from each node, and divided this value by the 338 

number of taxa originating from the node in question. The latter standardization was done because 339 

the number of taxa varied widely between the lineages and the probability of recovering a locus 340 

increases with increased hierarchical redundancy. We considered this the best measure (in a 341 

phylogenetic sense) of locus dropout, because loci found only in one of the sister lineages do not 342 

contain phylogenetically useful information and therefore fall into the locus dropout zone. To test if 343 

the data are consistent with the predicted linear locus decay (Fig. 1), we fitted a linear regression 344 

model (function ‘lm’ in R 3.2.2) to the data on number of loci and the corresponding node depth 345 

values. Confidence intervals were derived for the regression slope (function ‘confint’) and fitted 346 

regression line (function ‘predict.lm’). Potential deviation from the linear locus decay was 347 

investigated by comparing the linear regression model to a quadratic regression fitted with the same 348 

function. Linear and quadratic regression models were compared on the grounds of AIC and BIC, 349 

but we also used the coefficient of determination (R2; given by the R function ‘lm’) in assessing 350 

model explanatory power.  351 

To examine SNP and PIS dropouts, only SNPs/PIS of loci recovered in both sister lineages of 352 

each node at least once were considered. To eliminate the effects of hierarchical redundancy, the 353 

numbers of SNPs/PIS were divided by the number of taxa found at lineages originating from each 354 

node. To test if the number of SNPs peak at intermediate node depth values (Fig. 1), we fitted a 355 

quadratic regression model (R function ‘lm’) to the data on numbers of SNPs and corresponding 356 

node depth values. Confidence intervals for the coefficient for squared node depth and the fitted 357 

regression curve were derived as above. The presence of a peak in the number of SNPs along node 358 

depth axis was further assessed by comparing the quadratic regression model to a linear one on the 359 

grounds of AIC and BIC, and by examining the R2 values of the two models. The analysis for PIS 360 

was conducted otherwise in a similar manner to SNP dropout, except that the number of PIS per 361 
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taxon was logarithmically transformed to ln([number of PIS) + 1]) (one added because the data 362 

include zeros) to ensure model goodness-of-fit. 363 

The effect of branch length was controlled for when assessing the contribution of SNPs, PIS, and 364 

loci to node support. We first modelled the dependence of bootstrap values on branch length with 365 

an asymptotic non-linear regression through the origin (self-starting regression function 366 

‘SSasympOrig’ in the R function ‘nls’). Observations were weighted with the number of SNPs for 367 

the analysis of SNP and PIS contribution to node support (PIS include zeros, precluding its use as 368 

weights, but the number of PIS is strongly and positively correlated with number of SNPs; see 369 

below), and with the number of loci for the assessment of the contribution of loci to node support. 370 

The contribution of SNPs, PIS, and loci to node support was analyzed separately because the 371 

numbers of SNPs, PIS, and loci are strongly and positively correlated (Pearson’s correlations [r]: 372 

rSNP-PIS = 0.957, t39 = 20.5, P < 0.0001; rSNP-loci = 0.898, t39 = 12.7, P<0.0001; rPIS-loci = 0.781, t39 = 373 

7.80, P < 0.0001). We took residuals from the above non-linear asymptotic regression models and 374 

used them as response variables (i.e. the component of node support not explained by branch 375 

length; hereafter called as bootstrap residuals) in subsequent analyses. Variation in the bootstrap 376 

residuals was analyzed with linear models (R function ‘lm’) where node depth and either the 377 

number of SNPs, the number of PIS, or number of loci were the explanatory variables. Interaction 378 

between the explanatory variables was included in both models. 379 

 380 

RESULTS 381 

 382 

Optimization of ddRAD loci parameters 383 

On average, approximately five million reads per individual were obtained, of which 82.3% were 384 

retained after stringent quality filtering steps (Table 1). After filtering and clustering, the ddRADseq 385 

data matrix yielded approximately 15,000 loci per specimen, with a minimum coverage of 3x after 386 
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filtering for paralogs (Table 1; Table S3). Only two loci (90 and 98 nucleotides) originated from 387 

Wolbachia pipientis. 388 

The total number of loci ranged from 10 to 8,737 between the nine data matrices, demonstrating 389 

the dramatic effect of parameter selection on the amount of data (Table 2). No shared loci were 390 

recovered across all 43 individuals in any of the data matrices, and only one locus was retained 391 

across 24 individuals (Table S4). Data assemblages that maximized the number of individuals per 392 

locus contained relatively few loci and SNPs, but at the same time reduced the amount of missing 393 

data. Those matrices produced discordant phylogenies compared to those with lower value of m. 394 

The different clustering thresholds had a significant effect on the total number of loci (range 794–395 

3,833 loci), variable sites (range 18,001–224,916) as well as the PIS (range 5,122–69,029) (Table 396 

2). The pairwise p-distance between specimens ranged from 0.1% and 14.7% across all specimens 397 

and data matrices, and showed that both m and clustering thresholds (c) have a significant effect on 398 

mean distances between the specimens (Fig. S4). Resulting data matrices analyzed in RAxML 399 

produced overall similar tree topologies for most trials, but ddRAD-c85m21 produced a poorly 400 

resolved and very deviant tree probably as a result of scarcity of retained loci (Fig S3). The tree 401 

based on the strictest clustering threshold (ddRAD-c95m6) also differed considerably from the other 402 

trees. In that tree, the number of SNPs was higher than in ddRAD-c85m12 and comparable to 403 

ddRAD-c85m9, but the proportion of missing data was clearly higher (Fig S3). 404 

Phylogeny of Eupithecia 405 

Of ddRAD topologies, the one based on ddRAD-c85m6 data (726,658 bp) was selected for 406 

further comparisons because of its general congruence with several other data sets and high number 407 

of retained loci (3,256) and SNPs (3,164). Phylogenetic trees based on other data matrices of 408 

ddRAD are provided in the Supplementary Material (Fig. S3) and basic statistics in Table 2. The 409 

concatenated nuclear and mitochondrial Sanger data included 6,172 bp and 8 loci. (Table 2, Fig. 2).  410 
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The ddRAD and Sanger topologies were similar but not identical, the ddRAD data providing 411 

better support than Sanger data from intermediate to shallow nodes (bootstrap mostly 100% at < 412 

0.45 depth; see Fig. 3a), whereas both ddRAD and Sanger data showed moderate to poor resolution 413 

at deeper-level nodes (at > 0.45 depth). The mt COI phylogeny produced a poorly resolved tree 414 

with low bootstrap values at most of the nodes, and the bootstrap values dropped especially fast 415 

between 0.2 to 0.4 depth (Fig. 3b, Fig. S3i).  416 

The ddRAD topology suggests that E. abietaria is the sister taxon to all other sampled 417 

Eupithecia, while the Sanger topology places E. actaeata in that position, indicating a clear conflict 418 

between the data sets (Fig. 2). The positions of E. centaureata, E. immundata and E. irriguata 419 

remain largely unclear. E. simpliciata clustered with E. semigraphata in the ddRAD topology 420 

(bootstrap 100%; Fig. 2a), while it grouped (although poorly supported) with E. satyrata, E. 421 

indigata, E. conterminata, and E. intricata in the Sanger topology (bootstrap 36%; Fig. 2b). E. 422 

simpliciata and E. semigraphata shared 97 ddRAD loci, whereas E. simpliciata shared only two 423 

ddRAD loci with E. satyrata, E. indigata, E. conterminata and E. intricata (Fig. S5). Eupithecia 424 

vulgata also showed a conflict between ddRAD and Sanger datasets. The number of recovered loci 425 

of E. vulgata was 107, being the lowest of all species in the ddRAD dataset (Table 1, Fig. S6). In a 426 

trial with E. tantillaria and E. vulgata removed, these having the highest levels of missing data, the 427 

phylogenetic placement and relationships of the species showing conflict between ddRAD and 428 

Sanger data (e.g., E. semigraphata, E. simpliciata) remained the same (see Fig. S7b). The exclusion 429 

of the six poorest-quality samples did not significantly affect the phylogenetic results. 430 

For the reference assembly, an average of 271,114 reads per sample were mapped to the 26 431 

reference genomes of Lepidoptera, while an average of 286,552 reads per sample remained 432 

unmapped (Table S3). After filtering, an average of 31,748 clusters per sample were obtained, with 433 

an average of 32.4 per sample for cluster depth. The final dataset from the reference assembly 434 

consisted of 822 recovered loci per sample across more than three individuals. The phylogenetic 435 
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hypothesis based on the reference assembly produced a remarkably incongruent tree with both the 436 

de novo ddRAD assembly tree and the Sanger tree (Fig. S8).  437 

Effects of locus conservation on SNP frequency 438 

The number of SNPs per locus showed considerable variation at each value of individuals per 439 

locus (m, range 6-24), demonstrating pronounced variation in locus conservation regardless of its 440 

likelihood to be recovered. The average number of SNPs/locus, however, tended to decrease with 441 

increasing number of individuals/locus across loci shared by a minimum of 10 individuals (Fig. 4), 442 

demonstrating the connection between the locus dropout and the type of retained loci. The quadratic 443 

model (Table S5) explained the data much better than the linear model (ΔAIC=18.3, ΔBIC=12.3 in 444 

favor of the quadratic model). The 95% adjusted bootstrap percentile confidence intervals 445 

encompassed the fitted regression curve derived from the generalized linear model, lending support 446 

to inferences based on the regression model even though the normality assumption of the residuals 447 

was violated in the regression model. The number of recovered loci decreased dramatically when an 448 

increasing number of individuals were required to share a locus (Fig. S9). 449 

Patterns of locus, SNP and PIS dropouts and their effects on node confidence 450 

Locus dropout towards deeper nodes was linear, as expected (Table 3; Fig. 5a), the 95% 451 

confidence interval of the regression slope (-315, -46.7) and the support for the linear regression 452 

over the quadratic one (ΔAIC=1.98, ΔBIC=3.70 in favor of the linear model) supporting the 453 

prediction presented in Figure 1. The coefficients of determination were the same for both the linear 454 

(R2 = 0.16) and quadratic (R2 = 0.16) regression models for locus dropout, further supporting the 455 

choice of the simpler linear regression model. The number of SNPs was highest at intermediate 456 

node depth and decreased towards shallow and deep nodes (Table 3; Fig. 5b), which is also 457 

consistent with the prediction (cf. Fig. 1). Consistency with the prediction is further supported by 458 

the 95% confidence interval of the coefficient for squared node depth (-14697, -1781), the support 459 
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for the quadratic regression over the linear regression model (ΔAIC=4.63, ΔBIC=2.92 in favor of 460 

the quadratic model), and the higher coefficient of determination for the quadratic (R2 = 0.30) than 461 

the linear (R2 = 0.17) regression model. The ln-transformed number of PIS linearly increased 462 

towards deep nodes (Fig. 5c; 95% confidence interval of the slope: 5.29, 13.0), and the linear model 463 

was supported over the quadratic one (ΔAIC=1.87, ΔBIC=3.20 in favor of the linear model), the 464 

coefficients of determination being similar for both the linear (R2 = 0.48) and quadratic (R2 = 0.48) 465 

models. Variation in bootstrap residuals was only explained by node depth, and not by the number 466 

of loci, SNPs or parsimony informative SNPs (PIS) in ddRAD data (Table S6; Fig. 6). 467 

 468 

DISCUSSION 469 

 470 

Previous studies have demonstrated that RAD methods are generally efficient in inferring 471 

shallow-level phylogenies (e.g. Tiffin and Ross-Ibarra 2014; Hou et al. 2015; Leaché et al. 2015b; 472 

Ree and Hipp 2015; Andrews et al. 2016; Kim et al. 2016). Counterintuitively, RAD phylogenies 473 

have often yielded unexpectedly well-resolved relationships also at relatively deep phylogenetic 474 

levels, and even tens of millions of years old divergences have been resolvable (Rubin et al. 2012; 475 

Cariou et al. 2013; Leaché et al. 2015a; Herrera and Shank 2016). Eaton et al. (2017) recently 476 

recognized that growing hierarchical redundancy towards the deeper splits constitutes a major 477 

reason for the high power of RAD methods at relatively deep phylogenetic levels. As far as we 478 

know, our study is the first to investigate how locus dropout affects the amount of phylogenetic 479 

information at different phylogenetic depths. We demonstrate that the number of retained loci is not 480 

an accurate measure of phylogenetic information content in RAD data sets and that they tend to 481 

become more information-rich towards the deeper phylogenetic levels. Our comparison with an 482 

eight-gene Sanger data indicates that ddRAD sequencing yields overall congruent tree topologies 483 

despite a lack of retained loci that are shared among all studied taxa. While we base our conclusions 484 
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on an empirical data set of 35 species of moths, the observed patterns are likely to occur in the RAD 485 

data sets from other taxa as well. 486 

 487 

Effects of sample quality and the adopted protocol 488 

A relatively low number (median 578) of consensus loci was retained in the ddRAD data set 489 

with a minimum number of individuals per locus being 6. We observed a very strong locus dropout 490 

effect as demonstrated by the observation that while on average 15k loci were recovered per 491 

specimen, none of them was recovered across all specimens. While an age estimate for the genus is 492 

not available, it is likely that it is less than 10-20 million years old, given that a deep split within the 493 

subfamily to which Eupithecia belongs to is estimated at 33 Ma (Wahlberg et al. 2013).  494 

The power of the analysis could likely be substantially increased by improving sample quality, 495 

repeating the ddRAD library preparation, using different (or additional) restriction enzymes, using a 496 

different RAD method, and increasing sampling intensity. Optimally, samples to be used should be 497 

stored in a way that minimizes the degradation of DNA as the level of DNA degradation is directly 498 

correlated with the probability of finding a given locus. To increase the density of taxon sampling, 499 

samples of suboptimal quality may be included as the availability of alcohol or freezer-preserved 500 

samples is usually limited. In some cases, the final number of retained loci remained much lower 501 

than in others. This could have been partly avoided by increasing the amount of tissue used for 502 

DNA extraction, but for very small species (the majority of extant species are small) even this is not 503 

an option. A substantial increase in the amount of loci could have been obtained by analyzing the 504 

library to a greater depth by reducing the number of individuals included in a single run or 505 

duplication of the RAD library preparation. This is supported by the observation that, on average, 506 

only 20.6% of all loci showed a depth value of at least 3 and could be retained (Table S7). 507 

Furthermore, since a majority of loci were recovered less than four times, many loci not falling 508 

within the locus dropout zone due to mutation-disruption were likely not recovered even a single 509 
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time. The power of RAD analysis could additionally be increased by repeating the analysis with 510 

another set of restriction enzymes, although this nearly duplicates the costs, which is why such trials 511 

are rare. Additionally, single digest RAD methods may yield more phylogenetic information than 512 

double-digest methods such as the one used here (Andrews et al. 2016). Finally, the tree resolution 513 

could be improved by a denser and more balanced taxon sampling (Eaton et al. 2017), and 514 

especially by the inclusion of “critical” taxa, namely those cutting the long branches of the tree and 515 

hence increasing the hierarchical redundancy of the data. 516 

Due to the low DNA quantity of the original DNA extracts, we conducted a whole-genome 517 

amplification (WGA) for each sample. WGA may amplify different parts of the genome in a biased 518 

way and introduce errors in the amplified regions (Pinard et al. 2006; Blair et al. 2015; Burford 519 

Reiskind et al. 2016), although it has been shown that WGA produced accurate reduced 520 

representations of human, mouse and bird genomes (Barker et al. 2004; Han et al. 2012; Rheindt et 521 

al. 2014). Tin et al. (2014) conducted WGA for RAD tags with ant museum material with degraded 522 

DNA, and similarly observed no significant genomic bias due to the genomic enrichment. If WGA 523 

under-amplifies the genome, a lower number of unique loci and a greater coverage of the amplified 524 

regions is expected. Alternatively, if WGA introduces errors to amplified regions, an exaggerated 525 

degree of SNPs is expected. We attempted to validate our data through careful bioinformatics 526 

scrutiny and applied a strict m (minimum number of individuals per locus) value, albeit at the 527 

expense of the number of loci included in the final data set. 528 

 529 

Effects of clustering threshold and minimum individual parameters on RAD data matrix 530 

Although on average approximately 15,000 loci for each sample were recovered for Eupithecia, 531 

an average of only 610 loci per individual were retained in the final data set. This represents a well-532 

demonstrated drawback of RAD methods. For example, Rheindt et al. (2014) could save only 2.9-533 

3.9% of all recovered SNPs in their between-population analyses. The breadth of the RAD data is 534 



23 
 

greatly affected by the stringency of clustering and minimum individual thresholds. Failure to pay 535 

careful attention to these issues may easily lead to the inclusion of paralogs, contaminant reads and 536 

otherwise misleading data, reducing the overall reliability of data. RAD methods have a benefit of 537 

being feasible for non-model taxa lacking a reference genome, but the reverse side of this is that 538 

filtering out alien reads and paralogs is complicated and must be done informatically (Ree and Hipp 539 

2015).  540 

We assessed the effects of both the clustering threshold and the minimum individual threshold 541 

on the tree topology of each data matrix. Most of our analyses based on ddRADseq matrices 542 

produced congruent trees with high support values for most nodes. In particular, the minimum 543 

individual parameter controls the amount of missing data as it has a direct relation with the number 544 

of loci (or SNPs) in the final matrix (Ree and Hipp 2015). The variation in the degree of missing 545 

data did not strongly affect the tree topologies, but the largest, and thus most informative, data 546 

matrices resulted in the highest phylogenetic support for nodes (see Table 2; Fig. S3). This result is 547 

consistent with previous observations that large amounts of missing data in RADseq data sets do 548 

not adversely affect the accuracy of phylogenetic inference (Rubin et al. 2012; Keller et al. 2013; 549 

Hipp et al. 2014; Takahashi et al. 2014; Hou et al. 2015; Herrera and Shank 2016). However, 550 

Leaché et al. (2015a) demonstrated that, although this generally holds true, data sets with high 551 

levels of missing data are error-prone. They emphasized that the statistical node support value is not 552 

equal to its true confidence (see also Rubin et al. 2012), but may artificially result from biases of the 553 

data. In our case, broad congruence between the two phylogenies based on independent data sets 554 

suggest that missing data did not have significant adverse effects on recovering a robust tree 555 

topology. 556 

 557 

Comparison of RAD and Sanger tree topologies 558 
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Previous comparisons between Sanger and RAD data sets have shown that RAD data generally 559 

outperform Sanger data sets (Eaton and Ree 2013; Keller et al. 2013; Cruaud et al. 2014; Escudero 560 

et al. 2014; Hipp et al. 2014; Herrera et al. 2015; Ruane et al. 2015). In our case, the ddRAD and 561 

Sanger data provided overall similar tree topologies. This would be an unlikely result if one or both 562 

of the data sets were poor in phylogenetic information and hence misleading. However, a few 563 

remarkable cases of incongruence were detected. In both trees, some of the deeper nodes were 564 

statistically poorly supported likely due to very short internodal branches. Nodes at intermediate 565 

phylogenetic depth were better supported by ddRAD data compared to Sanger data, but at the 566 

deepest levels bootstrap values in ddRAD data sets dropped steeply (Fig. 3). A likely explanation 567 

for this is the decay of phylogenetic information due to the dropout of data (Fig. 5). 568 

Based on ddRAD data, the sister species to the rest of the sampled Eupithecia is E. abietaria. 569 

Although no prior rigorous analysis of phylogenetic relationships in Eupithecia exists to support 570 

this finding, we find it a likely scenario based on the morphological distinctiveness of this taxon 571 

within Eupithecia but shared with Pasiphila, our outgroup taxon. Using Sanger data, the sister 572 

lineage to all other Eupithecia was inferred to be E. actaeata, a species that shows close overall 573 

morphological similarity with many other species of Eupithecia. However, in the Sanger data the 574 

monophyly of the sampled Eupithecia with E. actaeata excluded is very strongly supported, 575 

whereas in ddRAD data the monophyly of all except for E. abietaria remains supported by a 576 

bootstrap support (BS) of only 68%. This incongruence is difficult to explain, since E. actaeata is 577 

firmly (100% BS) associated with two other species (E. exiguata and E. assimilata) in all ddRAD 578 

trials and is never placed even close to the root. 579 

Another remarkable case of incongruence between the data sets is the position of E. simpliciata, 580 

which appears as a highly unstable taxon whose position is poorly supported in the Sanger data, and 581 

separated by a very short internodal branch. In the ddRAD data, it associates with E. semigraphata 582 

with 100% BS, and together with three other species (E. millefoliata, E. icterata and E. denotata), 583 
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forms a strongly supported entity, which, with the exclusion of E. simpliciata, is also strongly 584 

supported by Sanger data as well. Interestingly, all these five species share an ecological trait, their 585 

flight period being late summer. We conclude that the pattern displayed by E. simpliciata in Sanger 586 

data is likely to be caused by a shortage of phylogenetic information in this data set, which, unlike 587 

ddRAD data, performs poorly at intermediate phylogenetic levels (Fig. 3). 588 

The position of E. vulgata represents another remarkable case of incongruence between the data 589 

sets. On the basis of morphology, this species appears to be a close relative of E. assimilata, with 590 

which it associates in Sanger data with strong support (together with E. exiguata). In contrast, E. 591 

vulgata associates with E. selinata in the ddRAD tree. The position of E. vulgata is, however, 592 

significantly unstable in the various ddRAD trials (Fig. S3). The reason lies in the poor success of 593 

E. vulgata for loci recovery. With a low number of loci recovered (107) and a mean locus coverage 594 

of as high as 854, E. vulgata represents a likely case of poor quality in the original DNA template. 595 

The multi-marker Sanger gene set we used has proven to be efficient for Lepidoptera higher-596 

level phylogenetics (Mutanen et al. 2010; Sihvonen et al. 2011; Zahiri et al. 2012). This and the 597 

overall congruence of Sanger and ddRAD phylogenies calls into question the use of RAD 598 

approaches, why change if Sanger sequencing works? RAD protocols have the benefit of having a 599 

very broad phylogenetic scalability, whereas Sanger protocols tend to have limited scalability 600 

across different groups especially due to primer issues. At optimal, relatively shallow phylogenetic 601 

scales, RAD approaches yield significantly higher amounts of phylogenetic information in terms of 602 

loci, SNPs and PIS. Furthermore, building a RAD library for a large number of specimens is 603 

actually faster and cheaper than building a Sanger data set of ten gene fragments as done in this 604 

study, especially when labor costs are considered. 605 

 606 

Patterns of loci, SNPs and PIS in RAD datasets 607 
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Huang and Knowles (2016) demonstrated with simulations that the proportion of missing data is 608 

associated with the type of loci retained in the data. This is intuitively plausible as it can be 609 

expected that slowly evolving loci are less likely to drop out than rapidly evolving loci. Our study is 610 

the first to demonstrate with empirical data that the more often a locus is found among species, the 611 

poorer they are in phylogenetic information (measured in this analysis by SNPs). Likely for the 612 

same reason, the minimum number of individuals per locus value (m) is negatively correlated with 613 

the pairwise genetic distance between specimens. While the negative correlation between the locus 614 

recovery rate and their SNP content was statistically highly significant, there is overall much 615 

variation in SNP frequency, and the observed decline of SNPs is not steep. We presume that this 616 

effect is mitigated by opposite effects: conserved loci are more “long-living” (less sensitive to 617 

mutation-disruption), thus have had a longer time to accumulate mutations. These opposite effects 618 

might even compensate each other. The observed trend may therefore actually be explained by the 619 

higher proportion of ultra-conserved loci retained with higher values of individuals/locus (see Fig. 620 

4). 621 

Locus dropout is caused by the disruption of restriction site recognition as a result of mutation at 622 

the restriction region, resulting in a pattern of decline in locus sharing with phylogenetic distance. 623 

Accordingly, in our data, the number of loci shows a constant decline along with increased 624 

coalescence time (node depth), and nearly reaches zero at the deepest nodes. As we hypothesized, 625 

the number of loci is not a good proxy for phylogenetic information (number of SNPs and PIS) 626 

retained in the data (Figs. 5b and 5c). The shallow nodes with large numbers of shared loci between 627 

the sister lineages were constantly poor in SNPs and PIS in relation to the sister lineages at the 628 

intermediate phylogenetic levels. The number of SNPs was also low in the deepest phylogenetic 629 

nodes, reflecting the decay of recovered loci. While the loci retained at the deepest levels tend to be 630 

conserved, they are not necessarily particularly poor in phylogenetic information because they have 631 
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had the longest time to accumulate mutations, as suggested by the relatively high number of PIS in 632 

the deepest phylogenetic nodes. 633 

Interestingly, neither the number of loci or SNPs, nor PIS explained node support when the 634 

confounding effect of the length of the branch leading to the node was eliminated. Only node depth 635 

explained node support. The lack of contribution to node support should, however, be considered 636 

with caution, because our data do not contain much information about these effects. Our 637 

observations are strongly biased towards low numbers of loci, SNPs and PIS (see Fig. 6). Secondly, 638 

the observed bootstrap supports are strongly dominated by very high values, which also makes it 639 

difficult to estimate the dependency of node support on any explanatory variables. Furthermore, 640 

bootstrap values do not provide an accurate estimate of the true phylogeny under all conditions 641 

(Hillis and Bull 1993). Owing to these reasons, we cannot exclude the possibility that the number of 642 

loci, and the number of SNPs or PIS in particular, are positively correlated with the node 643 

confidence, as would be expected. Yet, given the clear-cut results concerning locus and SNP/PIS 644 

dropouts, any data are predicted to be unevenly spread in the node depth-phylogenetic information 645 

(numbers of loci/SNPs/PIS) space, which remains a potential challenge for future analyses. 646 

 647 

CONCLUSIONS 648 

RAD methods are characterized by large numbers of recovered loci combined with a strong 649 

locus dropout effect and large proportions of missing data, arguably compromising their use at deep 650 

phylogenetic levels. The plain number of retained loci, however, does not provide a good proxy for 651 

the amount of phylogenetic information in the data, because (i) retained loci tend to become more 652 

informative towards deeper phylogenetic levels (Huang and Knowles 2016, this study), (ii) 653 

hierarchical redundancy is increased towards deeper phylogenetic levels (Eaton et al. 2017), and 654 

(iii) the number of loci does not equal the number of SNPs and PIS (this study). Thus, attention 655 

should be paid to available phylogeny-informative SNPs retained at different phylogenetic depths. 656 
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Comprehensive and balanced taxon sampling helps to resolve phylogenetic affinities also at 657 

relatively deep phylogenetic levels. We demonstrated this with a comparison of ddRAD and 658 

multigene Sanger-sequencing based phylogenetic analyses of 35 species of a diverse moth genus. 659 

The number of available loci could be further increased by repeating the library preparation and 660 

applying different restriction enzymes. Since ddRAD library preparation is straightforward and a 661 

large number of specimens can be analyzed simultaneously and cost-effectively in a short time (100 662 

specimens in less than two weeks), the method has high potential to provide an efficient tool to 663 

resolve phylogenetic relationships especially of species-rich genera and lower-level taxonomic 664 

groups. 665 
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FIGURE 1. Schematic representation of actual numbers of shared loci, SNPs and PIS, and those expected to 850 

be observed in RAD data sets between two lineages along their coalescence time (starting from a 851 

coalescence time of zero). The actual number of homologous loci is constantly but slowly decreasing with 852 

increasing coalescence time. The actual number of SNPs and PIS is increasing first fast because most 853 

mutations represent new SNPs and PIS, but then at a steadily decreasing pace because of saturation of 854 

mutations at any given site. The number of loci observed in RAD data is expected to decrease at constant 855 

rate as a result of mutations accumulating to the restriction sites, finally reaching zero. This effect is called 856 

locus dropout or locus decay. The number of observed SNPs and PIS in the data are affected by their actual 857 

number and recovered number of loci, resulting in a peaked curve with an optimum at intermediate 858 

phylogenetic levels. 859 

 860 

FIGURE 2. Phylogenetic trees of Eupithecia based on (a) ddRAD-c85m6 and (b) combined nuclear and 861 

mitochondrial Sanger data. The combined nuclear and mitochondrial tree was constructed based on the 862 

nuclear CAD, EF1α, GAPDH, IDH, MDH, RpS5, wingless and mitochondrial COI genes. Phylogenetic trees 863 

were inferred with RAxML with 500 bootstrap replicates. Bootstrap values are indicated near branches.  864 

 865 

 866 

FIGURE 3. Bootstrap values in relation to node depth in (a) ddRAD-c80, ddRAD-c85, ddRAD-c90 and (b) 867 

combined NR+MT, mt COI. Shaded regions represent 95% confidence intervals around average coherence. 868 

 869 

 870 

FIGURE 4. Number of SNPs per locus in relation to the number of individuals per locus. Open circles indicate 871 

the observations, and the thick and thin lines depict the fitted regression (a quadratic generalized linear 872 

model with negative binomial error distribution and a logarithmic link function) and its 95% confidence 873 

intervals, respectively. The red crosses indicate the mean numbers of SNPs per locus in each category, and 874 

the red whiskers depict the 95% adjusted bootstrap percentile confidence intervals of the means.   875 

 876 
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 877 

FIGURE 5. The number of loci (a), SNPs (b) and parsimony informative SNPs (PIS) (c) in relation to node 878 

depth. Observations are indicated with points. The number of PIS per taxon was logarithmically transformed 879 

as ln([number of PIS] + 1), one added because data include zeros, to ensure model goodness-of fit. The fitted 880 

regression curves (thick lines) and their 95% confidence limits (thin lines) are depicted, the regression 881 

equations being (a) Y = 148 – 180X (R2 = 0.16), (b) Y = –101 + 7116X – 8239X2 (R2 = 0.30) and (c) Y = -882 

0.513 + 9.12X (R2 = 0.48); Y refers to the response variable and X to node depth.  883 

 884 

FIGURE 6. Contour plots of the fitted regression surfaces explaining variation in bootstrap residuals in 885 

relation to node depth and either the number of loci (a), SNPs (b) or parsimony informative SNPs (c). The 886 

color gradient illustrates the shape of the regression surface, predicted negative and positive bootstrap 887 

residuals being indicated by blue and red colors, respectively. Observations are indicated with points, the 888 

color of the point being the darker the higher the bootstrap residual. Note that the absolute values of the 889 

contours extend beyond 100 in the upper corners in (b) and (c) because the estimated regression surface 890 

extends beyond the data range there, rendering the predictions meaningless. The regression surfaces should 891 

be interpreted only within the space filled by observations (points). 892 



TABLE 1. Species included in the study and a summary of the ddRAD-c85m6 data  1 

Species Total reads 
Retained 

reads (%) 
Clusters 
at 85%a 

Retained 
locib 

Consensus 
loci 

Coveragec 
Polymorphicd 

(%) 
E. abietaria 3,153,492 83.7 103961 13636 213 31.7 0.42 
E. actaeata 7,966,281 81.3 133203 28112 172 35.1 0.45 
E. assimilata 6,153,855 74.9 138165 28317 845 35.3 0.54 
E. centaureata 63,136 85.6 16005 3199 263 4.8 1.11 
E. conterminata 1,734,585 83.2 85217 17062 901 20.4 0.43 
E. denotata 8,105,802 82.2 126102 19527 698 53.1 0.46 
E. dodoneata 14,005,161 76.4 202298 34626 544 32.3 0.49 
E. exiguata 6,362,404 80.6 165137 31727 578 21.8 0.47 
E. fennoscandica 831,000 84.7 65608 15311 833 12.2 0.39 
E. gelidata 1 5,822,853 86.2 41288 7265 300 337.0 0.31 
E. gelidata 2 5,551,806 80.6 36824 5127 307 361.3 0.40 
E. haworthiata 14,131,470 87.8 73255 17428 526 398.8 0.41 
E. icterata 1,402,900 86.1 73714 16806 1163 15.9 0.62 
E. immundata 3,152,567 84.2 24121 3560 238 156.0 0.76 
E. intricata  564,471 85.9 18674 2782 274 54.1 0.70 
E. indigata  2,178,843 81.6 41073 7117 522 75.2 0.93 
E. irriguata 425,006 81.0 31245 7444 708 11.5 0.32 
E. lanceata 2,375,868 85.5 51015 13874 972 43.4 0.26 
E. lariciata 5,529,328 84.0 96100 22598 854 70.2 0.39 
E. linariata 467,142 82.3 46377 11224 710 10.9 0.56 
E. millefoliata 3,985,644 81.0 129913 24154 818 19.6 0.44 
E. nanata 342,098 82.7 22858 2795 170 32.9 0.45 
E. plumbeolata 1 1,945,090 84.1 44623 10587 165 61.0 0.18 
E. plumbeolata 2 5,164,639 84.7 69641 20887 1455 43.6 0.61 
E. plumbeolata 3 8,952,893 82.3 56925 12979 1177 185.2 1.04 
E. plumbeolata 4 7,757,631 80.4 64936 17234 1322 108.8 0.79 
E. pusillata 3,112,206 84.4 106524 22793 945 18.9 0.57 
E. pygmaeata 3,904,053 84.0 107330 27585 1046 35.0 0.59 
E. satyrata 1 2,452,991 85.6 30499 3160 303 257.2 1.01 
E. satyrata 2 1,438,806 88.0 43806 8659 663 44.0 0.86 
E. satyrata 3 7,504,374 83.9 82506 19296 425 125.1 0.19 
E. satyrata 4 254,402 83.5 19294 1680 193 21.6 0.29 
E. selinata 22,420,628 80.8 338963 58787 511 30.4 0.49 
E. semigraphata 11,155,627 83.0 184098 36853 870 56.4 0.52 
E. simpliciata 621,787 80.8 37087 4816 344 45.8 0.65 
E. tantillaria 1,633,991 80.8 16353 2034 109 185.0 0.54 
E. tenuiata 2,749,080 79.6 47481 15067 1078 73.3 0.21 
E. tripunctaria 8,556,484 82.2 170227 30904 789 42.3 0.37 
E. trisignaria 3,069,263 81.4 87462 18591 842 30.8 0.34 
E. undata 6,560,991 81.1 106299 22407 391 88.5 0.39 
E. virgaureata 1,964,396 84.9 45389 10011 701 74.6 0.72 
E. vulgata 7,791,154 83.6 23469 3951 107  853.7 0.25 
Pasiphila rectangulata 9,998,984 84.0 154720 32338 199 57.2 0.55 
 3,153,492 83.2 65,608 15,311 578 44.0 0.47 

Note: Values shown below are median. 2 
aClusters that passed filtering for 3x minimum coverage. 3 
bLoci retained after passing coverage and paralog filters. 4 
cMedian depth of loci. 5 
dFrequency of polymorphic sites. 6 



TABLE 2. Sequence information in the ddRAD and Sanger sequencing data matrices. The ddRADseq data 7 
matrices were generated with different parameters of clustering threshold (c) and minimum individuals per 8 
locus (m) value 9 

Matrix No. of loci 
No. of 

unlinked SNPs 
Consensus 

sequences (bp) 
VAR (%) PIS (%) Missing (%) 

ddRAD-c85m4 8,737 8,394 1,922,029 424,617 (22.1) 91,382 (4.7) 86.7 
ddRAD-c85m6 3,256 3,164 726,658 167,368 (23.0) 50,320 (6.9) 81.4 
ddRAD-c85m9 953 927 206,855 48,071 (23.2) 17,392 (8.4) 74.1 
ddRAD-c85m12 305 296 63,863 13,691 (21.4) 5,348 (8.4) 66.9 
ddRAD-c85m15 95 90 19,412 3,511 (18.1) 1,409 (7.2) 59.6 
ddRAD-c85m21 10 10 1,917 148 (7.7) 75 (3.9) 49.2 
ddRAD-c80m6 3,833 3,741 869,455 224,916 (25.9) 69,029 (7.9) 81.4 
ddRAD-c90m6 2,228 2,132 484,133 89,717 (18.5) 26,730 (5.5) 81.5 
ddRAD-c95m6 794 709 163,685 18,001 (11.0) 5,122 (3.1) 81.3 
combined 
NR+MT 

8 - 6,172 1,871 (30.3) 1,297 (21.0) 24.4 

combined NR 7 - 4,696 1,376 (29.3) 901 (19.2) 26.9 
mt COI 1 - 1,476 495 (33.5) 369 (25.0) 16.4 
VAR, Number of variable sites; PIS, Number of parsimony informative SNPs. 10 

 11 

 12 



TABLE 3. Regression coefficients for locus dropout, SNP dropout, PIS dropout, and the number of SNPs per 13 
locus (each handled as separate response variables)  14 

Response variable Parameter Estimate Std.E. t P 
Locus dropout intercept 148 24.6 6.02 <0.0001 
 node depth -181 66.4 -2.73 0.0096 
SNP dropout intercept -101 301 -0.337 0.74 
 node depth 7116 2097 3.39 0.0016 
 (node depth)2 -8239 3190 -2.58 0.014 
PIS dropouta intercept 

node depth 
-0.513 
9.12 

0.794 
1.86 

-0.646 
4.90 

0.52 
<0.0001 

SNPs per locusb intercept 1.48 2.92 0.508 0.61 
 node depth -5.68 19.0 -0.298 0.77 
 (node depth)2 134 29.1 4.62 <0.0001 

a The number of PIS per taxon was ln([number of PIS per taxon] + 1)-transformed. 15 
b Observations were weighted with the number of loci. 16 
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