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ABSTRACT

Due to their low surface brightness, dwarf galaxies are particularly susceptible to tidal forces. The expected degree of disturbance
depends on the assumed gravity law and whether they have a dominant dark halo. This makes dwarf galaxies useful for testing
different gravity models. In this project, we use the Fornax Deep Survey (FDS) dwarf galaxy catalogue to compare the properties
of dwarf galaxies in the Fornax Cluster with those predicted by the Lambda cold dark matter (ACDM) standard model of
cosmology and Milgromian dynamics (MOND). We construct a test particle simulation of the Fornax system. We then use
the Markov Chain Monte Carlo (MCMC) method to fit this to the FDS distribution of tidal susceptibility n (half-mass radius
divided by theoretical tidal radius), the fraction of dwarfs that visually appear disturbed as a function of 7, and the distribution
of projected separation from the cluster centre. This allows us to constrain the 7 value at which dwarfs should get destroyed by
tides. Accounting for an r -band surface brightness limit of 27.8 magnitudes per square arcsec, the required stability threshold
is Naesr = 0.257005 in ACDM and 1.8879%] in MOND. The ACDM value is in tension with previous N-body dwarf galaxy
simulations, which indicate that ngesr & 1. Our MOND N-body simulations indicate that nges = 1.70 &= 0.30, which agrees well
with our MCMC analysis of the FDS. We therefore conclude that the observed deformations of dwarf galaxies in the Fornax
Cluster and the lack of low surface brightness dwarfs towards its centre are incompatible with ACDM expectations but well
consistent with MOND.

Key words: (cosmology:) dark matter —galaxies: clusters: individual: Fornax —galaxies: dwarf—galaxies: interactions—
galaxies: statistics — gravitation.

1 INTRODUCTION

Dwartf galaxies are the smallest and most common type of galaxy.
They are characterized by their low mass (M < 10° M) and low
metallicity. Most dwarfs are found in galaxy clusters or near a larger
galaxy, making them potentially susceptible to the gravitational
effect of these larger structures. The currently standard Lambda cold
dark matter (ACDM) cosmological model (Efstathiou, Sutherland &
Maddox 1990; Ostriker & Steinhardt 1995) provides two different
scenarios by which dwarf galaxies can be formed (the dual dwarf
galaxy theorem; Kroupa 2012):

(i) From the collapse of dark matter particles into haloes, which
then accrete baryonic matter into their potential wells (White & Rees
1978). Such dwarfs are known as ‘primordial dwarf galaxies’ and
are expected to be dark matter-dominated; and

(i) From the collapse of overdense regions in tidal tails generated
by an interaction between larger, gas-rich galaxies. These so-called
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‘tidal dwarf galaxies’ (TDGs) must be free of dark matter as the
velocity dispersion of the dark matter particles surrounding the
host galaxy is too high to allow for their efficient capture by the
shallow potential wells of substructures in the tidal tail (Barnes &
Hernquist 1992; Wetzstein, Naab & Burkert 2007). In recent years,
cosmological ACDM simulations have advanced to the point where
they can resolve TDGs (Ploeckinger et al. 2018; Haslbauer et al.
2019b).

Dwarf galaxies can also be classified according to their morphol-
ogy into early and late types depending on whether they have star-
forming regions, which are present only for late-type dwarfs. This
category includes blue compact dwarfs and dwarf irregular galaxies
like the Magellanic Clouds, while early-type dwarfs include dwarf
elliptical (dE) and dwarf spheroidal (dSph) galaxies, with dSphs
generally having a lower stellar mass (M,). The lowest M, dwarfs
tend to have velocity dispersions (o) which are too high if one
assumes virial equilibrium, with o sometimes even exceeding the
escape velocity (Aaronson 1983; Grebel 2001).

This discrepancy relies on the validity of General Relativity and
our ability to detect nearly all the matter. ACDM is a cosmological
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model based on General Relativity in which the addition of the
dark matter component was motivated by the mismatch between the
observed baryonic mass and the mass calculated dynamically from
the observed o assuming the virial theorem (Zwicky 1933). Such
acceleration discrepancies are also apparent in the gravity between
the Milky Way (MW) and Andromeda (M31; Kahn & Woltjer 1959)
and in the outer rotation curves of galaxies (e.g. Babcock 1939;
Rubin & Ford 1970; Rogstad & Shostak 1972; Roberts & Whitehurst
1975; Bosma 1978, 1981), as reviewed in Faber & Gallagher (1979).
Therefore, the natural ACDM explanation for dSphs having such
high o is to assume that most of their mass is in the form of dark
matter, in which case they must be primordial dwarfs.

ACDM predicts that primordial dwarfs should be distributed
nearly isotropically around galaxies (Moore et al. 1999; Gao et al.
2004). However, the dwarf satellite galaxies of the MW, M31, and
Centaurus A preferentially align in flattened planes (Lynden-Bell
1976; Ibata et al. 2013; Tully et al. 2015; Miiller et al. 2018). This
is in significant tension with the ACDM model (Kroupa, Theis &
Boily 2005). While it was later shown that the distribution of dark
matter subhaloes is not supposed to be exactly isotropic due to the
preferential accretion of subhaloes along cosmic filaments and the
intrinsic triaxiality of dark matter haloes (Libeskind et al. 2005;
Zentner et al. 2005), the mild expected flattening is not sufficient to
explain the strong correlation in position and velocity space observed
in nearby satellite systems (Ibata et al. 2014; Pawlowski et al. 2014;
Pawlowski & Kroupa 2020; Miiller et al. 2021; Pawlowski & Tony
Sohn 2021). The satellite plane problem is reviewed in Pawlowski
(2021b), which also considers tentative evidence for more satellite
planes beyond the three mentioned above. The Local Group (LG)
satellite planes are each in 3.55¢ tension with ACDM (table 3 of
Banik et al. 2021, and references therein), while the satellite plane
around Centaurus A is only 0.2 per cent (3.090) likely to arise in this
paradigm (Miiller et al. 2021). These are the only three host galaxies
near enough for us to reliably know the phase-space distribution of
their satellites. We can approximately combine their low likelihoods
in ACDM using Gaussian statistics. Since we effectively have x2 =
3.55% + 3.55%2 + 3.09? = 34.75, the combined tension can be
estimated as the likelihood of the x? statistic exceeding this value for
three degrees of freedom. This suggests that the LG and Centaurus A
satellite planes combined cause a tension of 1.40 x 1077 (5.270). A
new interpretation is thus needed to explain the origin of the observed
satellite galaxy planes.

Another less widely known problem is the distorted morphologies
of MW satellites, which strongly imply that they have been affected
by tidal forces (Kleyna et al. 1998; Walcher et al. 2003; Sand et al.
2012). Because the inner region of a satellite galaxy can hardly be
affected by tides if it is protected by a dominant dark matter halo
(Kazantzidis et al. 2004), <10 per cent of the MW satellites are
expected to be distorted in this paradigm (Kroupa 2012). However,
McGaugh & Wolf (2010) found that the majority of the MW satellites
present signs of being disturbed, both in their elevated ¢ and in their
observed ellipticity. More recently, Hammer et al. (2020) pointed out
that the high o of dSphs surrounding the MW and their proximity
to perigalacticon makes it extremely unlikely for them to be dark
matter dominated.

An alternative explanation for the planar distribution of the satellite
galaxies is that they are of tidal origin. This is because TDGs are
expected to be phase-space correlated (Pawlowski, Kroupa & de
Boer 2011; Kroupa 2012; Pawlowski 2018; Haslbauer et al. 2019b).
But if the observed satellites are of tidal origin, they would be dark
matter free, in which case their high o for their low M, should be
explained in a different way. Kroupa (1997) proposed that due to
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close encounters of the TDGs with their parent galaxy, the TDGs are
highly perturbed. As a result, they should be significantly anisotropic
both in terms of their internal structure and their velocity dispersion
tensor. More generally, they should not be in dynamical equilibrium,
making it incorrect to directly apply the virial theorem to infer the
mass from o as this could cause a significant overestimate. However,
purely baryonic dwarfs would be very fragile and easily destroyed,
making it unlikely that so many of them exist in the LG right
now (Haslbauer et al. 2019a,b). Even if this scenario can explain
the high o of all observed dSphs, ACDM would still struggle to
explain why almost all observed dwarf satellites of the MW, M31,
and Centaurus A are of tidal origin — the quenching mechanisms
invoked to solve the missing substructure problem are not expected
to be so destructive as to get rid of all observable primordial dwarfs
(Kim, Peter & Hargis 2018; Read & Erkal 2019; Webb & Bovy
2020).

Given these difficulties, it is important to note that the proper-
ties of both primordial and tidal dSphs can be explained without
resorting to the assumption of a surrounding dark matter halo.
This entails discarding the ACDM cosmological model and using
instead an alternative framework, the currently leading contender
being Milgromian dynamics (MOND; Milgrom 1983). MOND
proposes that the deviations from Newtonian behaviour in the
rotation curves of galaxies should be attributed to a departure
from Newtonian gravity in the regime of weak gravitational fields
(g Sa,=12x 107" ms™2 = 3.9 pc Myr—2; Begeman, Broeils &
Sanders 1991; Gentile, Famaey & de Blok 2011; McGaugh, Lelli &
Schombert 2016). The gravity boost that dwarf galaxies experience
in this regime would explain their high o (McGaugh & Wolf 2010;
McGaugh & Milgrom 2013a,b; McGaugh et al. 2021). It would
also make the dwarfs less vulnerable to tides and stellar feedback
than Newtonian TDGs, which are expected to be extremely fragile.
Moreover, MOND offers an elegant scenario for the origin of the LG
satellite planes by means of a past flyby encounter between M31 and
the MW 9 £ 2 Gyr ago, which is required in MOND (Zhao et al.
2013) and seems to reproduce important aspects of their satellite
planes (Banik, O’Ryan & Zhao 2018; Bilek et al. 2018, 2021; Banik
etal. 2022a). Therefore, we will focus mainly on ACDM and MOND
in this contribution.

The planes of satellites problem is one of the most well-
known challenges to ACDM on galaxy scales (Kroupa et al. 2005;
Pawlowski 2018, 2021a,b). It provides a compelling motivation to
further investigate dwarf galaxies and question their very nature.
Fortunately, the properties of dwarf galaxies make them very suitable
for testing different gravity theories. Due to their low mass and
especially their low surface brightness, dwarf galaxies can be very
susceptible to the effects of gravitational tides. Depending on whether
we assume the ACDM or MOND model to be valid significantly
affects the expected influence of tides on dwarfs. These expectations
can then be compared with observations to try and distinguish the
models.

Since MOND is a non-linear theory of gravity, the internal
dynamics of an object can be affected by the presence of an
external field (Bekenstein & Milgrom 1984). This is because the
enhancement to the self-gravity depends on the total strength of g,
including any external sources. In a dwarf galaxy that experiences
a strong gravitational field (usually from a nearby massive galaxy),
the MOND boost to the self-gravity will be limited by the dominant
external field from the larger central galaxy. This effect becomes
stronger as the dwarf gets closer to the central galaxy, to the point
that the dwarf can become almost fully Newtonian. Because of this,
dwarfs are expected to be more vulnerable to tides in MOND than
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in ACDM, where they would be shielded by their dark matter halo
throughout their whole trajectory (Brada & Milgrom 2000)."

In this project, we use the Fornax Deep Survey (FDS) dwarf
galaxy catalogue (Venhola et al. 2018, 2019) to compare the observed
morphological properties of Fornax Cluster dwarf galaxies with the
properties predicted by ACDM and MOND. Our aim is to find out
if the observed level of disturbance in the Fornax dwarfs is similar
to that expected in ACDM or MOND, or if neither model works
well. ACDM could provide too much protection against tides such
that it underpredicts the observed level of disturbance in the Fornax
dwarfs population. Meanwhile, the lack of protective dark matter
haloes around all dwarf galaxies and their reduced self-gravity due
to the background cluster gravity could mean that in the MOND
scenario, dwarfs are too fragile to survive in the harsh Fornax
Cluster environment. Determining which of these scenarios is more
likely would help to clarify the physics governing the formation and
dynamics of galaxies, whose dominant source of gravity remains
unknown.

The layout of this paper is as follows: In Section 2, we describe
the FDS dwarf galaxy catalogue and the selection criteria that we
apply to it (Section 2.1). In Section 3, we explain the relevant
types of gravitational interactions that dwarfs might experience in
this cluster: disruption from cluster tides (Section 3.1) and galaxy—
galaxy harassment (Section 3.2). These sections consider only
Newtonian gravity — the generalization to MOND is presented in
Section 3.3. In Section 4, we provide the equations describing the
susceptibility of dwarfs to tidal forces in the ACDM and MOND
models, obtain the tidal susceptibility of the dwarfs in the FDS
catalogue for each model (Section 4.1), and show how this theoretical
quantity is related to the distribution of the dwarfs (Section 4.2) and
whether their observed morphology appears disturbed or undisturbed
(Section 4.3). In Section 5, we construct a test particle simulation of
the orbits of Fornax dwarfs and, using the Markov Chain Monte
Carlo (MCMC) method, fit it to the real Fornax system using
the FDS catalogue. In Section 6, we present the results obtained
from our MCMC analysis and how they compare to the results
of N-body simulations, which we complement with our own N-
body simulations of a typical Fornax dwarf in MOND (Section 7).
We then discuss our results in Section 8 before concluding in
Section 9.

2 THE FDS

The Fornax Cluster is one of the nearest galaxy clusters (dromax =
20.0 = 0.3 Mpc; Blakeslee et al. 2009). It is named after its sky
position in the Southern hemisphere constellation of Fornax. The
cluster is structured into two main components: the main Fornax
Cluster centred on NGC 1399, and an infalling subcluster (Fornax A)
centred 3° to the south-west in which NGC 1316 is the central galaxy
(Drinkwater, Gregg & Colless 2001). The Fornax Cluster contains
a significant number of dwarf galaxies with different luminosities,
colours, shapes, sizes, and distances to the cluster centre, making it
very valuable for studying the properties of dwarf galaxies.

The FDS is the most recent survey of the Fornax Cluster. It
includes the main Fornax Cluster and part of the Fornax A sub-
cluster, with a total sky coverage of 26 deg? (Venhola et al. 2018).
The FDS represents a significant improvement in resolution and

IFor an isolated dwarf, the dark matter halo in ACDM and the correction
to Newtonian gravity in MOND both provide a similar enhancement to the
self-gravity.
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image depth with respect to the previous spatially complete Fornax
Cluster Catalog (FCC; Ferguson 1989). This has allowed the FDS
to identify a large number of previously unknown faint galaxies,
which can be useful to test the effects of the cluster environment on
smaller, more vulnerable galaxies. The FDS reaches the 50 per cent
completeness limit at an apparent (absolute) magnitude in the red
band of M,» = —10.5 (m, = 21), while the corresponding surface
brightness limit is /1. ,» = 26 mag arcsec™2. However, the FDS can
still clearly detect some dwarf galaxies down to M, = —9 and
We, = 27.8 mag arcsec 2 (Venhola et al. 2018).

The FDS catalogue of dwarf galaxies (Venhola et al. 2017, 2018,
2019) includes 564 dwarf galaxies with 2 x 10° < M,/ Mg <2 X 10°,
some in the main Fornax Cluster and others in the infalling subcluster.
As in other galaxy clusters, dEs and dSphs are the most common
types of dwarf galaxy that can be found in the Fornax Cluster. These
are estimated to have an age of tpomax = 10 &= 1 Gyr (Rakos et al.
2001), where tromax 1 the age of the elliptical galaxies in Fornax,
which we assume to have a similar age to that of the dwarf galaxies.
Because of the similarities in some of their morphological properties,
the FDS classifies dE and dSph galaxies as one single type, dE. The
FDS catalogue also provides information about other properties of
the dwarfs. The ones which are relevant for this project are: M,, the
effective radius, the right ascension (RA) and declination (Dec),
the apparent surface brightness in the » band, the Sérsic index
of the surface brightness profile (Sérsic 1963), the morphological
type, the nucleated flag indicating if the dwarf is nucleated or non-
nucleated, and the tidal morphology (undisturbed, possibly/mildly
disturbed, very disturbed, or unclear; Venhola et al. 2022). The
effective radius, the Sérsic index, and the apparent brightness in
the 7 -band are obtained by fitting the data to a two-dimensional (2D)
Sérsic profile (Venhola et al. 2018) using the GALFIT software (Peng
et al. 2002). M, is obtained from the empirical relation between the
¢ — i colour and mass-to-light (M/L) ratio (Taylor et al. 2011;
for further details, see Venhola et al. 2019). The morphological
classifications such as the nucleated flags, the Hubble type (Venhola
et al. 2018, 2019), and the tidal morphologies are done visually. The
tidal morphology is classified in Venhola et al. (2022) based on the
following criteria:

(1) Undisturbed: Dwarf galaxies that do not present irregularities,
distortions to their shape, or tidal tails;

(ii) Possibly/mildly disturbed: Hints of irregularities are present
in the outskirts of the dwarf galaxy;

(iii) Very disturbed: Dwarf galaxies with tidal tails and/or very
clear distortion in the shape; and

(iv) Unclear: Nearby bright objects or data artefacts make the
classification difficult.

Fig. 1 shows some illustrative examples of dwarfs in these
categories.

2.1 Data selection

From the 564 FDS dwarfs, we remove those which are classified as
late-type as there is a high chance that these are not physically in the
cluster but instead represent line-of-sight contamination (Venhola
et al. 2019). We also remove dwarfs which have an ‘unclear’ tidal
morphology because they are not useful for the analysis. This leaves
us with 456 dwarfs. We then obtain the angular distance between
each dwarf and the centre of the Fornax Cluster based on the RA
and Dec of the dwarf and that of the Fornax Cluster, whose sky
coordinates are RA enre = 54.6°, DeCeenge = —35.5° (table D1 of
Watson et al. 2009).

MNRAS 515, 2981-3013 (2022)
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Figure 1. Images of three FDS dwarfs presenting different levels of distur-
bance in different colour bands and filters. Each row shows the same dwarf
as a red-green-blue colour image (left-hand column) and in the ¥ band with
a filter enhancing the dwarf’s low surface brightness features (right-hand
column). The dwarf in the first, second, and third row is classified as ‘very
disturbed’, ‘mildly disturbed’, and ‘undisturbed’, respectively. The horizontal
red lines show an angular scale of 10 arcsec, which corresponds to 970 pc at
the 20 Mpc distance to the Fornax Cluster.

ARA = RA — RA cnre » (H
ADec = Dec — DeCeentre » 2
A'RA = ARA - cos (%) , 3)
Angular distance = \/ (A'RA)* + (ADec)*. €]

Expressing this angular distance in radians and multiplying it by the
20 Mpc distance to Fornax (Blakeslee et al. 2009) then gives the
dwarf’s sky-projected distance Rq, from the centre of the Fornax
Cluster.

Ry = dromax X (Angular distance) . )]

We remove dwarfs with Ry, > 800 kpc as dwarfs further out
mostly belong to the subcluster Fornax A, so including these would
contaminate our sample of dwarfs belonging to the main Fornax
Cluster (see fig. 4 of Venhola et al. 2019). This leaves us with 353
dwarf galaxies.

MNRAS 515, 2981-3013 (2022)

3 EFFECTS OF GRAVITATIONAL
INTERACTIONS ON DWARFS

Before discussing the gravitational perturbations experienced by
Fornax Cluster dwarf galaxies, we first discuss why non-gravitational
forces are not expected to perturb Fornax Cluster dwarfs today. Old
dwarf galaxies in a cluster environment are expected to be gas-
poor. Most dwarfs in the FDS catalogue are classified as early-type
galaxies, implying that they are dominated by old stellar populations
and are not currently forming new stars. The scarcity of star-forming
dwarfs in the Fornax Cluster is consistent with the fact that they are
likely to be gas-poor. One important reason for this is ram pressure
stripping (Gunn & Gott 1972). This takes place when a galaxy
containing a large amount of cold gas moves through a galaxy cluster
full of hot gas. The temperature difference and motion between the
two gas components generate a pressure gradient that strips the cold
gas from the galaxy. Venhola et al. (2020) estimated in the left-hand
panel of their fig. 21 that ram pressure stripping of Fornax Cluster
dwarfs at the low masses relevant to our analysis should have been
quite efficient — the vast majority of the dwarfs in our sample have
M, < 108 Mg (Section 2.1). The fact that the Fornax dwarfs are
gas-poor has been observationally confirmed by Zabel et al. (2019),
who studied the molecular gas in the Fornax Cluster and showed that
its dwarfs are gas deficient. Loni et al. (2021) showed the same for
neutral hydrogen in FDS dwarfs with M, down to a few times 10" M,
below which theoretical arguments indicate that the gas reservoir
should have been ram pressure stripped by now (see section 7.3.1 of
Venhola et al. 2019). Moreover, the colours of the FDS dwarfs also
suggest a lack of recent star formation (see their fig. 18). Ongoing
gas loss is thus very unlikely to explain the observed disturbances to
the structures of some Fornax Cluster dwarfs. We therefore conclude
that their internal structure is to a good approximation only affected
by gravity from surrounding structures.

The main types of gravitational interaction that can disturb and
transform the structure of a dwarf galaxy in the Fornax Cluster
are tidal disruption from the cluster’s tidal field and galaxy—galaxy
harassment due to encounters with the cluster’s massive elliptical
galaxies (see section 7 of Venhola et al. 2019). In the following, we
discuss these processes in the context of Newtonian gravity before
deriving their generalization to MOND (Section 3.3).

3.1 Disruption from cluster tides

In this type of interaction, the structure of a dwarf with mass M gyarf
is affected by gravitational tides coming from the overall cluster
potential, i.e. from the difference in the cluster gravity across the
finite size of the dwarf. We quantify the influence of cluster tides
on a dwarf using the concept of its tidal radius ryq. This is defined
such that if r;q were the dwarf’s actual size, then the tidal force of
the cluster and the self-gravity of the dwarf would have the same
strength. We can intuitively see that

Tidal stress
G
M awart A
% ~ Tid (ﬁ) , (6)
Tia AR
Gdearf 13
Ag./AR ’
where G is the Newtonian constant of gravitation and Ag./AR is
the tidal stress from the cluster potential, with g. and R being the
cluster gravity and the 3D distance to the cluster centre, respectively.

Since we want to find out the maximum degree of disturbance that a
dwarf can experience due to the cluster potential, we obtain g. and its

= rig N ( @)
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gradient when the dwarf is at pericentre (R = Ry,). In order to obtain
Ryer for each dwarf from its projected distance in the FDS, we use
Rper = 0.29 R (see Appendix B), with R obtained by deprojecting
Ry using the method described in Appendix A.

As in Venhola et al. (2019), we assume that the galaxy number
density and cluster potential have remained constant over time. This
approximation is reasonable because the orbital periods of galaxies
in the Fornax Cluster are typically much shorter than a Hubble time:
The estimated 1D velocity dispersion of 370 kms~! (Drinkwater
et al. 2001) combined with a maximum size of 800 kpc (Section 2.1)
implies a crossing time of only 1.2 Gyr. We assign the cluster a
Newtonian dynamical mass profile given by

b \*
M. (< 03p) = Mo (7> s (8)
enorm
where 03p = R/dromax 1S the 3D angular distance to the Fornax Cluster
centre. The parameters are: Mo = 3 X 10'0 Mg, Onorm = 10 arcsec,
and o = 1.1. This radial mass dependency is obtained from fitting
the above power law to the mass profile derived in fig. 17b of Paolillo
et al. (2002), which uses the X-ray surface brightness distribution of
the central Fornax galaxy and its gas temperature profile to find the
gas density distribution. The mass profile is then derived assuming
hydrostatic equilibrium by applying the spherical Jeans equation.
Note that the mass derived here is a Newtonian dynamical mass.
A more model-independent way to describe the observations is in
terms of the cluster gravity g. = GM./R>. This method of obtaining
g relies on the well-understood physical process of thermal X-ray
emission from hot gas. Its temperature and density profile require a
particular radial run of g. regardless of the gravity law. Therefore, it
is not relevant whether g. has been enhanced by a dark matter halo
or by MOND (or indeed by some elements of both, as argued in
Section 3.3). Consequently, g. will be the same in the ACDM and
MOND scenarios, as will the resulting tidal stress on each dwarf.
This is not the case for Mgy..s. The FDS catalogue gives only M,
for each dwarf. This can be equated with Mgy, in MOND, but not
in ACDM where each dwarf is expected to have a substantial dark
halo of mass My,1,. We find this using the same abundance matching
procedure as Venhola et al. (2019). We first find My, from the
relation between M, and My, given in equation (2) of Moster et al.
(2010):

-1
M, M, Miao\ ? [ Myao\ 7

-2 ( ) ( halo) + ( hdl()) ) (9)
Mhya10 Mhyao / M, M,

Their table 1 clarifies that the parameters in this equation are:
( M. ) —0.0282, M, = 10'18% M_, g = 1.057, and y = 0.556.
0

Mhalo

As the dark halo of each dwarf is not observable and remains
hypothetical, we are only interested in whether tides are perturbing
the dwarf’s stellar component (which they might not be even if its
dark matter halo is being stripped; see Smith et al. 2016). For this,
the Shell theorem indicates that we only need to consider the dark
matter within the dwarf’s optical radius. Following Venhola et al.
(2019), we assume that this is only 4 per cent of the total halo mass
— Diaz-Garcia et al. (2016) found this fraction to be consistent with
the dark matter masses within the optical radii of S*G galaxies (Sheth
et al. 2010). Adding the halo contribution to M,, the total mass of the
dwarf in ACDM for the purposes of our analysis is therefore

Mwat, acom = M, + 0.04 My, . (10)

In Section 8.1.1, we consider other possible choices for the fraction
of the halo mass within the optical radius of a dwarf.
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Equation (7) is only a very crude estimate for the tidal radius of
a dwarf. While it should capture the essential physics, we expect a
more careful treatment to yield an additional factor of order unity.
Numerical simulations are required to capture the details of mass
loss from a dwarf undergoing tidal disruption, which is expected
to substantially distort its shape. To account for this, the ACDM
expression for g in equation (1) of Baumgardt et al. (2010) includes
an extra factor of 27!, Taking this into consideration, we adopt the
following expression for ;g in ACDM:

13
G Mgwat, AcoM ) /

2Ag./AR (b

Ttid, ACDM = (
This is based on using their study to obtain the numerical pre-factor
in equation (7) for circular orbits in a central potential with a flat
rotation curve (¢ = 1) — other approaches are discussed below
equation (63). Notice that g itself does not directly affect the tidal
radius: The cluster gravity only affects the dwarf through the tidal
stress it creates on the dwarf. This is not so in the corresponding
expression for MOND (equation 20), which we derive in Section 3.3.

3.2 Galaxy-galaxy harassment

The morphology of the Fornax Cluster dwarf galaxies can also be
disrupted by gravitational interactions with individual large galaxies
in the cluster. This effect is called harassment (Venhola et al. 2019).
Assuming a high relative velocity between the dwarf galaxy and the
larger galaxy, we can use the impulse approximation to estimate the
impact of each encounter on the internal structure of the dwarf. We
then need to combine the effects of many such interactions, each
time adding the squares of the velocity perturbations as these would
generally be in random directions, leading to a process resembling
a diffusive random walk. Equivalently, we should add the energy
gained by the dwarf from each encounter, leading to the concept of
a heating rate E (equation 8.52 of Binney & Tremaine 2008). The
disruption time-scale 74, acpm 1S the time-scale over which putting
energy into the dwarf at the presently calculated £ would cause it to
become unbound given its present gravitational binding energy per
unit dwarf mass of

G M gyart, AcDM

|E| = , (12)

2r h,dwarf

where 7, gwarr 1S the half-mass radius of the dwarf. Since only the
baryons are visible, we again restrict our attention to the baryonic
component of each dwarf, so ry awar refers to only its visible
component and Mgy, acom 18 again found using equation (10).
Dividing the magnitude of the binding energy by the heating rate
gives the disruption time-scale (equation 8.54 of Binney & Tremaine
2008):

|[E|  0.043 \/EUdearf,ACDMVip,ACDM

fqAcDM = — =
E W,

GM;,ACDMnPrI?,dwarf (1)
The ‘p’ subscript denotes the massive galaxy (perturber), while
‘dwarf” refers to the dwarf galaxy that is being perturbed. W, is
a factor accounting for the shape of the perturber galaxy’s mass
distribution. We choose W, = 1 as an intermediate value between
that of the Plummer and Hernquist models (chapter 8.2 of Binney &
Tremaine 2008). n, is the number density of perturbers, which
Venhola et al. (2019) estimated to be 25 Mpc™ by counting 48
large galaxies inside the virial volume of the Fornax Cluster (R,;; =
0.77 Mpc). Its 1D velocity dispersion is o = 370 km s~! (Drinkwater
et al. 2001), with the extra factor of \/i accounting for the fact that
we need to consider the dwarf—perturber relative velocity. M}, xcpm
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and ry, p, acpm are the perturber galaxy’s mass and half-mass radius,
respectively. Note that we use ry, for the deprojected half-mass radius
of the baryonic component. r, does not include the dark matter
halo unless we explicitly say so and label it accordingly as r, acpm-
Venhola et al. (2019) use r, for the radius containing half of the
total mass including dark matter, so our notation is different in this
respect.

To obtain 7y, qwart from the projected effective radius 7. containing
half of the dwarf’s total stellar mass, we use equation (B3) of Wolf
et al. (2010), though a good approximation is that ry, awart = (4/3)re.
Our adopted M, , = 10'° My, is the median stellar mass of the large
galaxies catalogued in table C1 of Iodice et al. (2019) and in the
FCC. In the ACDM case, the contribution of the dark halo should
be added to this mass. Unlike with the dwarf galaxies, the full extent
of the dark halo is considered for the large galaxies because these
are expected to be quite robust to cluster tides, so the full halo mass
should be considered when estimating the perturbation to a passing
dwarf. Venhola et al. (2019) found M,, xcpm = 10'10 M, following
this procedure, which we also verified.

Using a single M, value for all perturbers gives only an ap-
proximate estimate of the heating rate. A more accurate calculation
should use the power-law distribution of all the galaxies and make
predictions based on that, but this would be extremely difficult.
Moreover, the other simplifications assumed throughout the whole
calculation of #; have a larger impact on the result than taking
into account the right distribution of perturbing galaxy masses.
Fortunately, we will see that #; greatly exceeds a Hubble time, a
conclusion which should remain valid even with small adjustments
to the calculation. In particular, we will show that considering the
mass spectrum of perturbers should affect the estimated heating rate
by only a small factor such that 74 remains very long (Section 4.1).

The ry,,  value of the large galaxies is also obtained from the median
of all the documented large galaxies (perturbers) in the cluster,
yielding r, , = 4 kpc based on the luminous matter. This is applicable
to MOND, but in the ACDM case, the r, , of the large galaxies
should account for half of the perturber’s total mass, not only the
stellar mass given in the catalogues. This is because the gravitational
effect of the dark matter halo also contributes to perturb the stellar
content of a passing dwarf. To find out the relation between ry, ;, and
Th, p, AcbM» Venholaetal. (2019) looked into the Illustris cosmological
simulations (Pillepich et al. 2018) to infer the relation between these
two quantities in simulated large galaxies in a galaxy group with a
similar mass to the Fornax Cluster, yielding r p, acpm/7h,p = 3.6.
Therefore, the half-mass radius of the perturbers in ACDM is taken
to be r, p, acom = 14.4 kpc.

To summarize, the disruption time-scale in ACDM can be found
by directly applying equation (13) once we include the contribution
of the dark matter halo to My, My, and 1y, p. In Section 3.3.2,
we describe how to obtain the corresponding disruption time-scale
expression in MOND.

3.3 Generalization to MOND

The MOND model proposes that Newtonian gravity breaks down
in the limit of low accelerations such that the actual gravitational
field g is related to the Newtonian field g according to g = /a8y
Milgrom’s constant @, = 1.2 x 107! ms~? is a new fundamental
acceleration scale added by MOND. Its value has been empirically
determined by matching observed galaxy rotation curves (Begeman
etal. 1991; Gentile et al. 2011; McGaugh et al. 2016), which MOND
does extremely well (Famaey & McGaugh 2012; Lelli et al. 2017;
Li et al. 2018). Due to the very small numerical value of a, (which
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may be related to the quantum vacuum, see Milgrom 1999; Senay,
Mohammadi Sabet & Moradpour 2021), the behaviour of gravity
has never been directly tested in the deep-MOND regime (g < a,).
Indeed, Solar system tests are typically only sensitive to the behaviour
of gravity in the regime where g exceeds a, by many orders of
magnitude (though for a proposed Solar system test in the MOND
regime, see Penner 2020).

For an isolated spherically symmetric problem, the expression for
the MOND gravitational field g as a function of the Newtonian field
gy can be written as

g =g (&) . (14)

where v is the interpolating function with argument g,. To satisfy
Solar system constraints and the observed flat rotation curves in
the outskirts of galaxies, this function must have the following
asymptotic limits:

1, if gy >a,, s
v —> a .
i, if gy K a,.

The first case is the Newtonian regime in which v = 1 and g = g,
to a very good approximation. In the MOND regime, g = ,/a,8y.-
This causes the gravity from an isolated point mass M to decline as
1/r beyond its MOND radius ry,\, = 1/GM /a,, which is necessary
to explain the rotation curve data using only the luminous matter.
Several forms of the MOND interpolating function have been
proposed (Kent 1987; Hees et al. 2014, 2016; McGaugh et al. 2016).
Among these, the simple interpolating function (Famaey & Binney
2005) seems to work better with recent observations (Iocco, Pato &
Bertone 2015; Banik & Zhao 2018c; Chae, Bernardi & Sheth 2018).
Therefore, we will use the simple interpolating function

1 1 a,

v(e) =75+ it (16)

It is well known that although MOND is capable of fitting the
rotation curves of galaxies without dark matter (see the review by
Famaey & McGaugh 2012), it cannot fit the temperature and density
profiles of galaxy clusters using only their visible mass — MOND still
needs an additional contribution to the gravitational field (Sanders
1999; Aguirre, Schaye & Quataert 2001). The central galaxy of
the Fornax Cluster (NGC 1399) is no exception (Samurovi¢ 2016).
To solve this discrepancy and to account for other observations
hinting at the presence of collisionless matter in galaxy clusters
(most famously in the Bullet cluster; Clowe et al. 2006), it has been
proposed that MOND should be supplemented by sterile neutrinos
with a rest energy of 11 eV, a paradigm known as the neutrino hot
dark matter (VHDM) cosmological model (Angus 2009). vHDM
can fit observations of virialized galaxy clusters using the MOND
gravity of their directly detected baryons plus the sterile neutrinos
(Angus, Famaey & Diaferio 2010). It can also fit the power spec-
trum of anisotropies in the cosmic microwave background (CMB)
because the typical gravitational field at the epoch of recombination
was ~20a, and the cosmic expansion history would be standard.
Neutrino free streaming reduces the power on small scales compared
to ACDM, but this is consistent with CMB observations provided
the rest energy of the neutrinos exceeds 10 eV (see section 6.4.3
of Planck Collaboration XIII 2016). The gravitational fields from
density perturbations would enter the MOND regime only when
the redshift <50, before which the MOND corrections to General
Relativity should be small (for a more detailed explanation of this
model, see Haslbauer, Banik & Kroupa 2020). vHDM relies on the
existence of eV-scale sterile neutrinos, but these are also hinted at
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by several terrestrial experiments (for a recent review, see Berryman
et al. 2022).

Equation (16) shows that unlike Newtonian gravity, MOND is a
non-linear theory of gravity. A physical consequence of this non-
linearity is the so-called external field effect (EFE; Milgrom 1986).
This implies that the internal gravity of a system can be weakened by a
constant gravitational field from its external environment even if this
is completely uniform, violating the strong equivalence principle.
The reason is that the MOND boost to the Newtonian gravity is
approximately given by v, which is damped due to the external field.
In MOND, the EFE explains why some galaxies like NGC 1052-DF2
have a very low observed velocity dispersion (Famaey, McGaugh &
Milgrom 2018; Kroupa et al. 2018; van Dokkum et al. 2018; Haghi
et al. 2019a), even though other galaxies like DF44 with similar
properties but in a more isolated environment have a much higher
velocity dispersion (Bilek, Miiller & Famaey 2019; Haghi et al.
2019b; van Dokkum et al. 2019).2 Strong evidence for the EFE has
recently been obtained based on the outer rotation curves of galaxies
showing a declining trend if the galaxy experiences a significant EFE,
while galaxies in more isolated environments have flat outer rotation
curves (Haghi et al. 2016; Chae et al. 2020, 2021). For a discussion
of observational evidence relating to the EFE, we refer the reader to
section 3.3 of Banik & Zhao (2022).

The EFE is also important to Fornax Cluster dwarfs because their
low surface brightness implies rather little self-gravity, allowing the
gravitational field of the cluster to dominate over that of the dwarf.
As a result, the dwarf is in the quasi-Newtonian (QN) regime where
its internal dynamics are similar to a Newtonian dwarf but with a
renormalized gravitational constant G > G. We need to determine
Gegr from the cluster gravitational field g.. We do this by writing
equation (16) in the inverse form:

gy = gn(g) , where (17)
n(g) = gfa : (18)

As the cluster gravity is dominant over the self-gravity of the dwarf,
we can set g = g., with g. obtained from observations as described
in Section 3.1. Since the Newtonian gravity of the cluster is directly
proportional to the Newtonian gravitational constant (g. n o< G), the
effective gravity of a dwarf in the cluster will be directly proportional
to an analogous constant parameter Gy defined such that g. =
(Gett/G)ge, n- From equation (18), we infer G to be

Gur = (M) G. (19)
g

Note that replacing G — Geg can only be applied if the dwarf’s
self-gravity is dominated by the external field of the cluster, so that
the combined gravitational field of the dwarf and cluster will remain
approximately constant with increasing distance with respect to the
dwarf’s centre.

3.3.1 Tidal radius

At the tidal radius of a dwarf, the difference in cluster gravity across
the dwarf is comparable to its self-gravity. Therefore, the total cluster
gravity g. dominates over the dwarf’s self-gravity. Thus, the MOND

2In a conventional gravity context, the very low observed velocity dispersion
of NGC 1052-DF2 implies a lack of dark matter, which however is not easily
explained in ACDM (Haslbauer et al. 2019a; Moreno et al. 2022).
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tidal radius of any dwarf is necessarily in the EFE-dominated/QN
regime where its dynamics are approximately Newtonian but with
G — Gegr. Substituting this into equation (7) gives an approximate
expression for the MOND tidal radius. Accounting for additional
details like the non-spherical nature of the point mass potential in the
QN regime (discussed further in section 2.4 of Banik & Zhao 2022),
the MOND tidal radius can be expressed as (equations 26 and 36 of

Zhao & Tian 2006)
2—a\ Ger Magari 1" 20)
3—a) Ag /AR |

2 dlng
Tt = -
tid, MOND 3 91n PN
8=8c

where the factor of order unity is the MOND Roche lobe scaling
factor accounting for such subtleties. Note that we have generalized
their equation (26) to write the result in terms of G.s and the tidal
stress. The parameter o =2 + % has the same meaning as in
equation (8), so its value remains 1.1. For the case of a dwarf orbiting
a point mass in the deep-MOND limit (¢ = 1), the numerical factors

combine to give 2'%/3, matching equation (44) of Zhao (2005).

3.3.2 Galaxy—galaxy harassment

When a dwarf interacts with a massive galaxy in the Fornax
Cluster environment, we need to consider both the gravity from
the elliptical and the background EFE due to the cluster potential.
As in Section 3.2, we estimate the perturbation to the dwarf by
assuming it is a collection of test particles that receive some impulse
u from the elliptical, with the heating rate of the dwarf proportional
to the square of | Au|, the spread in u across the dwarf. Once it has
moved away from the elliptical, the binding energy of the dwarf is
given by equation (12) but with G — G as discussed above. The
main difficulty lies in estimating the energy gained by the dwarf due
to interactions with impact parameter b, which for a high-velocity
encounter is approximately the same as the closest approach distance
between the dwarf and the elliptical.
We need to consider encounters in two different regimes:

(1) The QN regime in which g. < a, dominates over gravity from
the elliptical; and

(ii) The isolated deep-MOND (IDM) regime in which the gravity
from the elliptical dominates over g. but is still much weaker than

a,.

We do not need to consider the Newtonian regime because the
perturbers have a radius that is numerically similar to their MOND
radius for the parameters given in Section 3.2. This is not unique to
the Fornax Cluster: Elliptical galaxies generally have a size similar
to their MOND radius (Sanders 2000). This is because if the initial
radius was much smaller and the system is nearly isothermal, then a
significant proportion of the mass in the outskirts would be moving
faster than the Newtonian escape velocity, causing the system to
expand to its MOND radius (Milgrom 1984, 2021).

The QN and IDM regimes are separated by encounters with b =
T » the distance from the elliptical beyond which the cluster gravity
dominates.

GM,

P = , 21)
8c N

3Equation (20) is the extent of the Roche Lobe in the tangential direction
within the orbital plane. The extent along the orbital pole is similar, and in
both cases is smaller than the extent along the radial direction (see section 4.2
of Zhao & Tian 2006).
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where g. N = gcuu(gc) is the Newtonian gravity of the cluster at the
location of the dwarf-elliptical encounter. These encounters would
generally not occur when the dwarf is at the pericentre of its orbit
around the Fornax Cluster. However, encounters at this point would
be more damaging because the dwarf’s self-gravity would be weaker.
‘We therefore assume that the encounters with ellipticals take place at
a typical distance from the cluster of R.,. = 0.5 R, which is slightly
more than the pericentre distance of 0.29 R (Appendix B) but less
than the present distance.

We will first consider the heating rate Eqy from encounters in the
QN regime before turning to the heating rate Eipym from encounters
in the IDM regime. The total heating rate is then

Enmonp = Enewt X CF = Egn + Eipu (22)

where CF is the correction factor that needs to be applied to the
Newtonian E to make it MONDian. Our approach is to assume a
sharp transition between the QN and IDM regimes such that the EFE
is completely dominant in the former and completely negligible in
the latter. This approximate approach should be accurate to within a
factor of order unity, which we will argue later is sufficient for our
purposes.

In all regimes, the heating rate due to encounters with an impact
parameter in the range b + db/2 (db < b) is E, = C (AE), where
C o bdb is the average rate of such encounters and (AE ) is the
average energy gain of the dwarf per unit mass due to each such
encounter. Since accelerating the dwarf as a whole does not alter
its internal structure, we only need to consider the variation in
the impulse u across the dwarf, so (AE) o |Au|*. In Newtonian
dynamics, the magnitude of the impulse on a passing test particle is
u o 1/b, so | Au| o< 1/b? (equation 8.41 of Binney & Tremaine 2008)
and (AE) o 1/b* This explains the 1/b scaling in the integrand in
equation (8.53) of Binney & Tremaine (2008), which states that the
Newtonian heating rate per unit dwarf mass is

, 14 —G*Minprg e [©db A
ENewt = —V2n—F -5 / — =, 23
Newt 3 ﬁcr oy b3 2’,}% ( )

P

A

where A is a constant.

We are now in a position to MONDiIfy this result for the QN
regime. Both the dwarf’s self-gravity and the elliptical’s gravity on
the dwarf are similar to the Newtonian result but with G — Geg.
The heating rate in the QN regime is thus similar to equation (23),
but using G instead of G in the calculation of the normalization
constant. To distinguish this result from the Newtonian case, we call
the QN normalization constant A" = A(Ge#/G)?. Since by definition
the QN regime involves only those encounters with b > rg.., the
total heating rate from encounters in this regime is

E —A//m@—i (24)
o TEFE b’ zréFE .

In the IDM regime, the scalings are different because the gravity
from the elliptical follows an inverse distance law. Since the inter-
action time-scale rises linearly with the closest approach distance,
the impulse becomes independent of this (u o< b°). However, as the
direction from the elliptical to the dwarf is still different for different
parts of the dwarf, the variation in the impulse across it scales as
|Au| o< 1/b, implying that the energy gain per encounter scales as
(AE) o |Au|?* o 1/b?. Since the encounter rate again behaves as
C o bdb due to the geometry being the same in both models, we
obtain
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) A [Tere db
Epm = 55— / - (25)
TEFE / rvonn
A/
= I (rEi) . (26)
TEFE "sonp

The normalization of the integrand ensures continuity of the specific
heating rate per unit b between the QN and IDM regimes.

Inserting our results for Eqn and Ejpy into equation (22) and
noting that A" = A(G./G)?, we obtain that

a Gt 11 2
CF = {l—kln( 0 )] (ﬁ) . @7
8c,N G Fig

Since ty = |E|/E and the MONDian binding energy of the dwarf
exceeds the Newtonian result (equation 12) by a factor of (Gex/G),
the effect of the MOND corrections to Newtonian gravity amount
to multiplying the Newtonian #; (equation 13) by a factor of
CF! (Get/G).

_ |Elmonp
I4MOND = —
Enonp
0043 V20 Mayart 72, 8)
Wo. G M2y gy [1 4+ 10 (221

We assume W, = 1 as in the Newtonian case. Our derivation assumes
that g n < a,, which is valid in the Fornax Cluster. In general, we
recommend that the logarithmic term be omitted if g.x > 4.

4 TIDAL SUSCEPTIBILITY

Now that we have defined the main effects which can disturb the
structure of a dwarf in a galaxy cluster, we estimate the susceptibility
of a dwarf to these effects in both ACDM and MOND. To quantify
the disturbance caused by tides from the global cluster potential,
we define the tidal susceptibility as the ratio between the half-mass
radius r, and the tidal radius ryq of a dwarf:

'
Metid = — -+ (29)
T'tid
From the definition of ;4 in both ACDM (equation 11) and MOND
(equation 20), we have that riq oc M. This implies that
x p 13, (30)

'
Nrtid X W

Therefore, only the density p of the dwarf is relevant to its tidal
susceptibility in both ACDM and MOND.

If a dwarf has strong self-gravity (e.g. due to being surrounded
by a dark matter halo or being in the deep-MOND regime), then the
point at which the tidal force of the cluster will start to dominate over
the self-gravity of the dwarf will be far from the centre of the dwarf.
Therefore, the dwarf’s r;g will be large and its tidal susceptibility will
be low. Such a dwarf should be little disturbed by the cluster tides. If
instead the dwarf has only weak self-gravity (e.g. because itis a TDG
with little dark matter or because it is a MONDian dwarf but the EFE
from the cluster is very significant), then the point at which the tidal
force of the cluster will start to dominate over the self-gravity of the
dwarf will be close to the dwarf’s centre. Its g will then be small
and its tidal susceptibility high. Such a dwarf would be significantly
disturbed by tides. In the extreme case that rig << 71 (9rig > 1), the
dwarf will be destroyed within a few dynamical times. As a result,
we need to consider the maximum value of 7 attained throughout
the trajectory, i.e. we need to evaluate 7,4 at pericentre.
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Figure 2. Histogram of the tidal susceptibility values of Fornax Cluster dwarfs in ACDM (left-hand column) and MOND (right-hand column) to tides from
the overall cluster potential (top row) and harassment by interactions with individual massive galaxies (bottom row). The bin widths are: 0.01 (top-left panel),
0.05 (top-right panel), 0.01 (bottom-left panel), and 0.005 (bottom-right panel). Notice the different 7,4 scales for ACDM and MOND. In both theories, we

typically have nhar < nrtid-

If the disturbance is caused by interaction with massive galaxies
(harassment), we define the tidal susceptibility as the ratio between
the age of the elliptical galaxies in the Fornax Cluster (fgomax =
10 Gyr; Rakos et al. 2001) and the disruption time-scale #; of the
dwarf, which we assume to typically be about as old as the cluster
itself.

Mo = o 31)
Iq

According to this definition, if fpymax << fg for a dwarf, then it will

hardly be susceptible to the effect of galaxy—galaxy harassment.

If instead fromax > f4 for a dwarf, then we expect that it will be

significantly disturbed due to this process.

Although our definitions for 7,4 and np,, differ somewhat because
the former is a ratio of radii while the latter is a ratio of time-scales,
both definitions share the feature that low values of 1 indicate that
a dwarf should be little affected by the process under consideration.
In principle, there should not be any dwarf galaxies for which
either n > 1. It is possible to have n slightly above 1 due to
projection effects and other subtleties like the time required to
achieve destruction, which can be significant for 1. as multiple
pericentre passages may be required and the orbital period can be
long (Section 3.1). However, we should very seriously doubt the
validity of any theory which tells us that a significant fraction of

the dwarf galaxies in a galaxy cluster have nug > 1 or npy >
1. It is harder to falsify a theory in the opposite limit where it
yields very low values for both measures of n for all the dwarfs
in a galaxy cluster. In this case, we could gain evidence against the
theory if there is strong evidence that the dwarf galaxy population
has been significantly affected by tides. In this project, we apply
these considerations to the dwarf galaxy population in the Fornax
Cluster.

4.1 Tidal susceptibility of the Fornax dwarfs

Our first quantitative result is the susceptibility of dwarfs in the
FDS catalogue to cluster tides, which we calculate in ACDM and
MOND using equations (11) and (20), respectively. We show the
results as histograms in the top row of Fig. 2, with ACDM shown
in the left-hand panel and MOND in the right-hand panel. The 7,4q
values are &5 x higher in MOND than in ACDM. Since an isolated
dwarf has a similar amount of self-gravity in both frameworks by
construction, the difference in 7,4 values is primarily caused by
the EFE weakening the self-gravity of a MONDian dwarf as it
approaches the cluster centre (Section 1). This effect does not exist
fora ACDM dwarf, which would retain the same dark matter fraction
within its baryonic extent throughout its trajectory.
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The bottom row of Fig. 2 shows the susceptibility of FDS dwarfs
to galaxy—galaxy harassment according to ACDM (equation 13) and
MOND (equation 28). In both theories, the histogram of ny,, peaks at
very low values such that 1y, < 7rig and Nhee << 1. Therefore, both
frameworks predict that the FDS dwarfs should be little affected by
interactions with massive elliptical galaxies in the Fornax Cluster.

This implies at face value that in ACDM, the observed signs
of tidal disturbance (section 7.4 of Venhola et al. 2022) cannot be
assigned to either cluster tides or to harassment. Since we explore
the impact of cluster tides more carefully later in this contribution,
we briefly reconsider our calculation of 7n,. As explained in
Section 3.2, one simplifying assumption we made is that there are
48 equal mass and equal size perturbers within the 0.77 Mpc virial
radius of the Fornax Cluster. However, the heating rate due to any
individual perturber scales as E (Mp /rh,p)2 (equation 23). We
can use this to find the ratio E/Egg between the heating rate due
to individual perturbers and the assumed heating rate Egq for an
‘average’ perturber with M, = 10"°M, and ry, , = 4 kpe, taking
into account that the actual mass and size are larger in ACDM and
assuming a de Vaucouleurs profile for the stars (de Vaucouleurs
1948). We obtain that in descending order of M,, the ratio E / Eg4 for
the perturbers listed in table C1 of lodice et al. (2019) is 14.7 (FCC
219), 42.7 (FCC 167), 10.3 (FCC 184), 4.76 (FCC 161), 5.41 (FCC
147), 11.8 (FCC 170), 1.06 (FCC 276), 1.93 (FCC 179), and 0.13
(FCC 312). Other perturbers have M, < 10'Mg, so we assume
their contribution to the heating rate is small. Adding up the above
ratios and averaging over 48 perturbers (many of which are too low
in mass to appreciably harass Fornax dwarfs), we get that E/Ejgq is
on average 1.9. Therefore, using a more accurate treatment of the
heating rate would not change our conclusion that the FDS dwarfs
are not really susceptible to galaxy—galaxy harassment: Doubling all
the np,r values would still lead to its distribution having a mode <0.1
and all the dwarfs having np, < 1.

Moreover, using fromax as the time-scale for interactions is an
optimistic assumption — dwarfs in ACDM may have been accreted
by the cluster long after they formed, while in MOND they could be
TDGs that formed more recently (Renaud, Famaey & Kroupa 2016).
This implies that the dwarfs would not have experienced that many
encounters with elliptical galaxies, which themselves might only
have been accreted <10 Gyr ago. As an example, we may consider
the case of FCC 219 = NGC 1404, the most massive perturber listed
in table C1 of lodice et al. (2019) in terms of M,. Its radial velocity
exceeds that of the brightest cluster galaxy NGC 1399 by 522 kms~!,
but modelling indicates that the relative velocity could be higher still
as most of it should lie within the sky plane (Machacek et al. 2005).
Moreover, NGC 1404 appears to lie in front of the Fornax Cluster:
Its heliocentric distance is only 18.7 & 0.3 Mpc (Hoyt et al. 2021),
whereas the distance to NGC 1399 is 20.0 & 0.3 Mpc (Blakeslee
et al. 2009). Detailed modelling in a ACDM context indicates that
although NGC 1404 is not on a first infall, it has likely spent <3 Gyr
within the cluster (Sheardown et al. 2018). During this time, the high
relative velocity would have reduced the heating rate on any dwarf
galaxy that it came near (equation 23). It is therefore clear that ny,, is
overestimated by assuming that both all the dwarfs and all 48 massive
ellipticals were in the virial volume of the Fornax Cluster over the
last 10 Gyr.

Based on this, we will neglect the role of harassment in what
follows and focus on cluster tides.* Thus, 1 will be used to mean

“This is consistent with the previous ACDM result that harassment is not
very significant for dwarfs in a Virgo-like cluster (Smith et al. 2015).
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Figure 3. Distribution of the projected distances of Fornax Cluster dwarfs
against re/rmax, Where re is the projected half-light radius and rpax is the
maximum r, at fixed M, that the dwarf can have to remain detectable given
the surface brightness limit of the survey of 27.8 magarcsec™2 in the r
band. Dwarfs visually classified as ‘undisturbed’ are shown in blue, while
those classified as ‘disturbed’ are shown in red. Notice the lack of low surface
brightness dwarfs near the cluster centre. We have emphasized this by drawing
a dashed grey line for illustrative purposes, which we interpret as a tidal edge.
This interpretation is bolstered by the lack of dwarfs above this line and the
high proportion of disturbed dwarfs just below this line.

Nwia unless stated otherwise. An important example of this is our
discussion of Newtonian TDGs that are purely baryonic, where 7y,
plays an important role (Appendix D).

4.2 Testing the effect of cluster tides on Fornax dwarfs

A significant fraction of the FDS dwarfs appear disturbed in a
manual visual classification (Fig. 1, see also Venhola et al. 2022).
To check if cluster tides are truly the main mechanism responsible
for the apparent disturbance of the Fornax dwarfs — as our results
in Fig. 2 seem to suggest — in Fig. 3 we plot the projected
distance of the selected Fornax dwarfs against the ratio between
their effective radius r. and rm., Where rpa 1S the maximum 7,
that the dwarf could have to remain detectable given its M, and
the FDS detection limit of 27.8 mag arcsec™2. Dwarfs with larger
size at fixed stellar mass — i.e. lower surface brightness dwarfs —
are more susceptible to tides and will be more easily destroyed,
especially near the cluster centre where the tides are stronger.
In Fig. 3, we can see a deficit of low surface brightness dwarfs
near the cluster centre. The absence of dwarfs in this region of
the parameter space cannot be explained by the survey detection
limit as we find an increasing number of dwarfs with the same
or lower surface brightness at larger Ry, e.g. if we consider
a horizontal line at r./rpm, = 0.4. This tendency is highlighted
in Fig. 3 using a sloped dotted line that appears to be a tidal
edge. Further from the cluster, its tides become weaker, so it is
quite possible that dwarfs in this region are not much affected by
tides.

Additional evidence for the importance of tides towards the cluster
centre comes from the colours of the dots in Fig. 3, which indicate
whether the dwarf visually appears disturbed (red) or undisturbed
(blue). Just below the claimed tidal edge, we would expect that the
dwarfs are much more likely to appear disturbed as they should be
close to the threshold of being destroyed altogether. This is indeed
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Figure 4. The proportion of Fornax dwarfs that appear disturbed in different
projected separation bins of width 200 kpc. The error bars show the binomial
uncertainty assuming the likelihood of appearing disturbed is the same as the
proportion of disturbed dwarfs.%

apparent: The proportion of disturbed galaxies is much higher in this
part of the parameter space.’

To emphasize this trend further, we use Fig. 4 to show the observed
fraction of disturbed dwarfs (fy) in different Ry bins. This is found as
fa = S/T, with the uncertainties calculated using binomial statistics as
\/S(T — S) /T3, where T is the number of galaxies in each Ry bin
and S < T is the number of these galaxies which appear disturbed.®
As expected from our previous results, fg is very high in the central
200 kpc of the Fornax Cluster. Although f; is very low further out, it
is still non-zero and remains so out to the largest distances covered
by our data set. We attribute this to the complexities of visually
assessing whether a dwarf is tidally disturbed: If a dwarf appears
asymmetric due to observational difficulties or due to a dense star
cluster on one side, this could lead to a false positive. It is also
possible that the dwarf is genuinely disturbed due to a recent close
encounter with a massive galaxy in the cluster, which could happen
even in the cluster outskirts. When we construct a detailed model of
the Fornax Cluster dwarf galaxy population in Section 5.2.4, we will
need to allow a non-zero likelihood that a dwarf appears disturbed
even if it is unaffected by cluster tides.

4.3 Correlating tidal susceptibility with the observed level of
disturbance

Having obtained the tidal susceptibility n of each Fornax dwarf in
our sample (Section 4.1), we can compare this to its visual level of
disturbance. We do so using the proportion of dwarfs classified as
disturbed in each 7 bin, which is similar to the analysis shown in
Fig. 4 but binning in 1 instead of Ryy. We consider each n bin as
an experiment with 7 trials (dwarfs) out of which S are ‘successes’
(disturbed-looking dwarfs). We then use binomial statistics to infer
the probability distribution of the disturbed fraction f; assuming a

SThis is not expected if the disturbances are due to harassment because dwarfs
subject to this would be well mixed throughout the cluster (Smith et al. 2015).
OThis is based on the binomial uncertainty in S assuming that the probability
of a galaxy appearing disturbed in each Ry bin is fg = S/T. In reality, fg is
not precisely constrained by the observations — we handle this complexity
later (equation 32).
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Figure 5. The likelihood that a dwarf appears disturbed in each tidal
susceptibility bin in ACDM (orange) and MOND (blue). The value and
uncertainty are calculated using binomial statistics (equation 32) and plotted
at the centre of each bin. The bin width is 0.5 for MOND and 0.1 for ACDM.
In both cases, the last bin also includes all dwarfs with higher 1. Notice
that the likelihood of a dwarf appearing disturbed rises with 1. The higher
uncertainties at high »n are due to a small sample size (see the n distribution
in Fig. 2).

uniform prior over the range 0—1 and applying Bayes’ theorem. The
mean and standard deviation of fy are

S+1
mean = ———,
T+2
1 S+1D)(T-S+1
standard deviation = S+ D * ). (32)
T+2 (T +3)

For the extreme case S = T = 0, we expect that the probability
distribution of fj is uniform over the range 0-1 as there is no data.
In this case, we recover the standard result that the mean of this
distribution is 1/2 and its variance is 1/12.

We use Fig. 5 to plot the mean and standard deviation obtained in
this way against the central 1 value for the bin under consideration.
In both ACDM and MOND, a clear trend is apparent whereby dwarfs
with higher n are more likely to appear disturbed. We quantify this
by dividing the FDS sample into two subsamples where 7 is below
or above some threshold 7, thereby assuming only a monotonic
relation between f3 and 7 that is not necessarily linear. Appendix C
explains how we obtain the likelihood that the same f; can explain
the number of disturbed dwarfs and the total number of dwarfs in
both subsamples given binomial uncertainties. Using this method,
we find that the ‘signal’ is maximized in ACDM if we use 1, =
0.36, in which case the null hypothesis of f; being the same in both
subsamples can be rejected at a significance of P = 4.1 x 1073
(2.870). If instead we use MOND, the optimal n, = 0.85 and the
significance rises to P = 4.4 x 107* (3.520).” Though both theories
imply that fy is higher in the high n subsample, f; starts rising at a
much lower value of 7 in ACDM than in MOND, as clearly shown
by the optimal 7, values. We may expect that dwarfs start to look
disturbed when their half-mass radius is about the same as their tidal
radius, so f; should start rising only when 1 = 0.5. This is not the
case in ACDM, which implies that dwarfs are more likely to be

7Section 8 provides a more rigorous quantification of how confident we can
be that fg rises with 7.
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classified as disturbed once their n > 0.1—0.2. A dwarf with such
a low 7 should be little affected by tides, indicating a problem for
this framework. In the MOND case, we see that dwarfs start being
classified as disturbed more often once their n 2 1—1.5, which is
much more plausible physically.

Another important aspect is the overall distribution of 1, whose
decline towards the highest bin is responsible for a larger uncertainty
in the probability of appearing disturbed. The distribution of 7 is
shown explicitly in the top row of Fig. 2. There are no ACDM
dwarfs with n > 0.7, even though a dwarf with n = 0.7 should
still be tidally stable. In MOND, the maximum 7 = 3, though there
are very few dwarfs with n > 1.5. The high calculated n for these
dwarfs could indicate that they lie very close to the cluster centre in
projection but not in reality. To handle such projection eftects and
other uncertainties like the unknown orbital eccentricity distribution
of the dwarfs, we next construct a test mass simulation of the dwarf
galaxy population in the Fornax Cluster.

5 TEST MASS SIMULATION OF THE FORNAX
CLUSTER

In order to quantify the aforementioned trends and thereby obtain
the range of values that the minimum 7 required for disturbance
and the n required for destruction can have to be consistent with
observations — both in ACDM and in MOND — we need to construct
a forward time-evolution model of the Fornax Cluster. With this
forward model, we can also account for projection effects that can
make dwarfs appear closer to the cluster centre than they actually are.
In this section, we describe the set-up of the simulated Fornax system
with test masses, as well as the methods that we use to quantify the
properties of the Fornax dwarfs and their orbits. Here, we focus only
on those dwarfs classified as ‘non-nucleated’ as this type of galaxy
is more numerous than the ‘nucleated’ type. Moreover, having the
same deprojection method (Appendix A) for all dwarfs will simplify
the analysis. Removing the nucleated dwarfs from the sample leaves
us with 279 dwarfs.

5.1 Orbit integration

The first step in building a simulation of test masses orbiting in the
observed cluster potential is to generate a grid of orbits for a wide
range of semimajor axis (R;) and eccentricity (e) values, with the
integrations started at R = R;. The initial radii have a range of values
from 15 to 2015 kpc, while the eccentricities cover the full range of
values for an ellipse (0 < e¢ < 1). The grid is divided into 100 x 100
cells. Initially, we assign the test mass a mass and half-mass radius
which are typical for a Fornax dwarf (Mgwarr = 3.16 X 10" Mg, and
rn = 0.84 kpc), but these values are not relevant as the results will be
rescaled later according to the distribution of dwarf densities in the
system (Section 5.2.3).

We initialize the simulated dwarfs for every possible combination
of R; and e as described below. We start the simulation at the
semimajor axis of the orbit, where the velocity v satisfies

V= =41 8. 33)

As discussed in section 2.3.1 of Banik & Zhao (2018c¢), the eccen-
tricity e is defined such that

e=1r-v|, (34)

where r = R;¥ and g = —g.F, with v indicating the unit vector
parallel to any vector v of length v. The modulus is not required in
our case because we start with the dwarf going away from the cluster
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if e > 0. Using Cartesian coordinates, we define the initial positions
and velocities of the orbit as

x=Ri, (35)
y=0, (36)
v, = ve, 37

vy =vV 1 —e?. (38)

Equation (33) defines v and equation (34) sets the component of v
along the radial direction. v, is the remaining tangential velocity.

In order to obtain the positions and velocities of the simulated
dwarf at each point of the orbit, we implement a fourth-order Runge—
Kutta integrator in 2D. To ensure that the time-step we use for each
iteration is computationally efficient but also small enough to yield
accurate results, we use an adaptive time-step that depends on the
dynamical time-scale at the instantaneous orbital radius R:

| R
dr =0.01,/—. (39
8e

We evolve the system for fpomax = 10 Gyr, the estimated age of
the system (Rakos et al. 2001). At each time-step, we calculate
the tidal radius of the simulated dwarf at its current position and, by
comparing this with the half-mass radius, we obtain its instantaneous
tidal susceptibility 1. We record the e value of each simulated orbit
and its final R, the distance with respect to the cluster centre at which
we should be seeing the dwarf today. We also record two 1 values
in each orbit simulation: the maximum 7 over the whole simulation
(7max)» and the maximum 7 in the 1last 2 Gyr (max. recent)- We US€ Nmax
to decide whether the dwarf is destroyed and should be removed
from our statistical analysis. If not, then 9max, recent 18 used to set the
likelihood that the dwarf appears disturbed. This is because we expect
a dwarf to return to a nearly undisturbed appearance if it experiences
only low 1 values along its orbit for over 2 Gyr, provided 7 is never
so high as to destroy the dwarf.

5.2 Assigning probabilities to the orbits

The orbital and internal properties of the Fornax dwarfs (e.g. the
radial profile of the orbits, the distribution of their eccentricities,
and the likelihood of appearing perturbed) follow certain probability
distributions. Because of this, we assign probabilities to each of our
simulated orbits by fitting them to a few crucial observed properties
(next subsection) in order to make our simulated system as similar as
possible to the observed Fornax dwarf galaxy system. The parameters
governing these probability distributions are described below.

5.2.1 Number density of dwarfs

The number density n of dwarfs is assumed to be a function only of the
distance R from the cluster centre. It is related to the radial probability
distribution P, as: n &« P./R*. We assume that P, is described by a
double power law:

P, = R2 (R + rcore)SIOPePr 5 (40)

where reore is the radius of the constant density central region of
the Fornax Cluster and Slope, is the power-law slope of the radial
profile in the cluster outskirts. To obtain a convergent number of
dwarfs, Slope, < —3.
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Figure 6. The distribution of each dwarf galaxy’s mean baryonic density p
within its half-mass radius. The orange vertical line shows the sample mean,
while the magenta lines offset by +0.57 dex show the standard deviation
around it. The grey line shows the density of a dwarf corresponding to
the observational surface density detection limit of ¥, = 0.26 Mg pc™2
assuming the mean M /L, = 1.10 and mean p/% = 0.59 kpc’l. If instead
we add (subtract) the standard deviation in the M /L, ratios, we have that
min = 0.35(0.17) Mg pc~2. From these and by adding (subtracting) the
standard deviation in the p/X ratios, we obtain the p value given by the
dashed (solid) black line.

5.2.2 The eccentricity distribution

For the probability distribution of the orbital eccentricities, we
assume a linear function as in Banik & Zhao (2018c):

1
P. =1+ Slope, <e — 5) , 41)

where Slope, is the slope of the eccentricity probability distribution.

5.2.3 Distribution of dwarf densities

The tidal susceptibility of a dwarf depends on both its mass and
its radius, which in general differ from the values assumed in our
test mass simulation. As discussed below equation (29), the mass
and radius of a dwarf affect its tidal susceptibility only to the
extent that they affect its density p. Therefore, the 1 values that
we recorded in Section 5.1 should be multiplied by a density-related
factor accounting for the difference between the intended density p
and the fixed value pg assumed in that section. We therefore set

o\
Nmax = Mmax, 0 <*> 5 (42)
00
~1/3
P
Mmax, recent = TTmax, recent, 0 (*> ) 43)
Lo

where the ‘0’ subscript denotes values obtained in Section 5.1. The
—1/3 exponent comes from the fact that i oc /M3 in both theories.

The density p of each Fornax dwarf within its r, can be inferred
from the data in the FDS catalogue using p = 3M,/ (87Trlf). Fig. 6
shows a histogram of the so-obtained densities of these dwarfs, from
which it can be seen that the FDS distribution of log,, o follows
a Gaussian distribution with mean —2.74 in units of Mg pc™>.
Therefore, when we assign a density to each of the simulated
dwarfs obtained in Section 5.1, we associate a probability to this
density according to a lognormal distribution. This is assumed to be
independent of R; since the central region of a cluster should be able
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Figure 7. The relation between mass and luminosity in the ¥ band for the
non-nucleated sample of dwarfs in the FDS catalogue, with both shown on
a logyo scale. The assumed M/L ratios are based on empirical relations with
the colour (Section 2). The dotted grey line shows the linear regression,
while the solid grey line shows our adopted fit assuming a slope of 1. The
dashed (solid) black line shows one standard deviation above (below) the
mean M, /L, . The horizontal red line at 1072 Mg, shows the stellar mass
below which core formation is inefficient in ACDM (Section 8).

to accrete dwarfs that formed further out, leading to mixing of dwarfs
that formed in different positions within the cluster.

In order to set the lowest density that can be assigned to a dwarf
in a way that is consistent with the observational constraints of the
FDS, we check down to which surface brightness u dwarfs can be
detected in this survey. The limiting u is given by the 1o signal-to-
noise threshold per pixel, which in the FDS is 27.8 mag arcsec >
in the red band (section 4.1 of Venhola et al. 2018). To infer the
corresponding p, we first convert this & value to astronomical units
(Lope™?):

w [mag arcsec™?] — 21.57 — Mag,,
-2.5

where Mag,, = 4.65 is the absolute magnitude of the Sun in the
red band (table 3 of Willmer 2018). This gives ftyin = 0.23Lg pc2.
We then use the mass—luminosity relation (solid grey line in Fig. 7)
to obtain that M /L, = 1.10 £ 0.38 Mg/Lg ,». From this we can
convert (i, to a surface density X, with some error due to the
scatter in M /L,, yielding % i, = 0.26 & 0.09 M, pc2. Finally, we
can convert this X, to a threshold density p; by plotting the surface
density of the Fornax dwarfs against their volume density and doing
a linear regression (Fig. 8). Since the slope is very close to 1, we
fix it to 1 for simplicity, leading to a fixed ratio of p/ X = 0.59 £
0.33kpc™". The limiting p of the Fornax survey that we obtain with
this method is p; = 1.517}5) x 107* Mg pc~> considering the 1o
lower and upper limits to both M /L, and p/%2. From Fig. 6, we can
see that the distribution of dwarfs is only included in its entirety if
we take the lower limit and thus adopt a threshold of p, = ppin =
4.2 x 107 Mg pc3. Given that the images of the dwarfs have been
carefully analysed by observers and labelled as ‘unclear’ whenever
the image was not clear enough, we assume that all the considered
dwarfs were observed without difficulty by the FDS. Therefore, we
consider that a reasonable lower limit for the density distribution in
our statistical analysis should encompass all the dwarfs in the data
set, so we take o = pmin = 4.2 x 107> Mg pc 3 (black line in Fig. 6)
as our nominal lower limit to the density distribution. This choice of
piis 0.09 dex below pmin, Fps, the lowest p of any considered dwarf

NG

log,y 1 [Lo Pciz] =
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Figure 8. The relation between the average 3D mass density of baryons
within their half-mass radius and their surface mass density within their
projected half-light radius for our galaxy sample. The dotted grey line shows
the linear regression, while the solid grey line shows our adopted fit assuming
aslope of 1. The dashed (solid) black line shows one standard deviation above
(below) the mean p/%. The red star shows the values for the dwarf galaxy
used in our N-body simulations (Section 7).

in the FDS. If instead we had assumed that o, = pyean = 1.51 x 107
Mg, pc3 (grey line in Fig. 6), we would have needed to discard seven
of the observed dwarfs in the FDS. These and other choices for p;
are discussed in Section 8.

In the ACDM case, we need to include the halo mass within the
baryonic extent of each dwarf (equation 10), leading to higher volume
densities. This causes a steeper slope and a larger amount of scatter in
the mass—luminosity relation, making it difficult to follow the above-
mentioned method. To keep the procedure similar, we set oy, to a
value 0.09 dex below puin, Fps as this is the gap assumed for MOND.
The steps involved with this model are shown in Appendix E.

5.2.4 Disturbance to the dwarf structure

Assuming that tides are the main cause of the apparent disturbance
to the structure of many Fornax dwarfs, we expect the probability of
a dwarf appearing perturbed to grow with its tidal susceptibility. We
assume a linear relation between 1 and the probability of disturbance
(Pgist) With slope

SlOpepdm — Pdisl, ceiling — Pdist, floor ’ (45)

Ndestr — Nmin, dist

where 1min, gist 1S the lowest 7 value at which the dwarf is disturbed
by tides, ngesr 1s the 1 value at which the dwarf is destroyed (the
algorithm rejects all simulated orbits in which 7y, surpasses this
value), Plig, ceiling 1S the probability for a dwarf to appear disturbed
right before it gets destroyed at 7 = ngestr, and Plist, fioor 1 the
minimum probability for a dwarf to appear disturbed if 7max. recent
< Nmin, dist- We allow Pgig foor > 0 to capture the possibility that a
dwarf appears disturbed for reasons unrelated to cluster tides, e.g.
asymmetric star formation. Similarly, we expect that P, ceiling < 1
because a significantly perturbed dwarf might be elongated along the
line of sight and thus appear circular. For a dwarf with nmax. recent >
Nmin, dist> the probability of disturbance is

Pdist = Pdisl, floor + SlOpepm (nmax, recent — !min, dist) . (46)
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5.3 Comparison with observations

The observed parameters of the Fornax dwarfs that we aim to
reproduce in our simulation are:

(i) The distribution of sky-projected distances (R ) to the cluster
centre;

(i1) The distribution of apparent n values at pericentre (1ops); and

(iii) The disturbed fraction of dwarfs as a function of 7ops.

Because these quantities are projected or depend on the depro-
jection method, we need to obtain the Ry, values of our simulated
dwarfs and then deproject them using the same method that we use for
the observed dwarfs. To obtain the Ry, values for each 3D distance
R of the simulated dwarf, we consider the view if it is observed from
all possible angles 0° < 6 < 90° in steps of 1°, where 0 is the angle
between R and the line of sight. The projected distance is given by

Rgyy = Rsinf . @7

Each value of 0 is statistically weighted by the difference in cos 6
across the corresponding bin. We then apply the deprojection method
described in Appendix A and obtain the corresponding distance at
pericentre (Appendix B). With this, we can calculate Riq and n at
pericentre in a similar way to that in which we obtain these parameters
for the observed dwarfs. We name the new 1 parameter that we
obtain with this method n,ps. Therefore, the simulated quantities that
we compare to the previously mentioned observables are: Ry, the
distribution of 7,ps, and the probability of disturbance at each 7qps.

To do the comparison, we start by dividing the range of Ry, and
Nobs 1nto several bins. We then classify the observed dwarfs into these
bins according to their values of projected distance or estimated n at
pericentre. To obtain the probability for a dwarf to have a projected
distance or nops which falls in the range of values delimited by
each of these bins, we count the number of dwarfs in each bin and
compare it to the total number of dwarfs. To obtain the probability of
disturbance, we count the number of dwarfs classified as disturbed
in each 7,ps bin and compare it to the total number of dwarfs in that
bin.

For the simulated sample (i.e. the dwarfs generated for all possible
combinations of R;, e, p, and #), we consider the same bins as for
the observed sample. For each bin, we add the probability that each
simulated dwarf has Ry or 14 values that fall in the range given by
the bin. We then normalize this by the sum of all the probabilities in
all bins. For the probability of disturbance, we apply an additional
factor of Py to the likelihood of each (R;, e, p, 6) combination and
add this to the appropriate n,ps bin. We then divide this sum by the
probability of 7. falling in that bin (i.e. without considering Pgis).

To quantify how closely the properties of the simulated sample of
dwarfs resemble the properties of the observed FDS dwarfs in terms
of each of the above-mentioned observables, we use the binomial
probability

T!
P=1] GG 48)

Bins

where T is the total number of observed dwarfs, S is the number of
observed dwarfs in a bin, p is the simulated probability that a dwarf
is in that bin, and the ‘x’ subscript refers to the observable under
consideration. If this is the disturbed fraction, 7 is the total number
of observed dwarfs in a particular n,ps bin, S is the observed number
of disturbed dwarfs in that bin, and p is the probability given by the
simulation that a dwarf in that bin is disturbed. The total probability
is given by multiplying all probabilities for all the bins and all the
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Table 1. Priors for the free parameters in our
model of the Fornax Cluster dwarf galaxy

population.
Parameter Minimum Maximum
Slope p, -9 -3
Slope p, -2 2
Tcore (MPC) 0.01 3
P dist, floor 0 1
Pdist, ceiling 0 1
Nmin, dist 0 5
Ndestr Nmin, dist 5
observables:
Protal = PRy Py P perturbedins - (49)

In order to maximize this Py, we leave as free parameters: reope,
Slope,, Slope p,, Mmin, dists Ndestrs Pist, fioors a0 Pist, ceiling- We explore
this set of parameter values using the MCMC method discussed
below.

5.3.1 MCMC analysis

The MCMC method generates a sequence of parameter values in
such a way that their frequency distribution matches the posterior
inference on the model parameters. The basic idea is to start with
some initial guess for the parameters with likelihood Py, and
generate a proposal by adding Gaussian random perturbations to
the parameters, leading to a likelihood of P, with the revised
parameters. The proposal is accepted if Pyey > Pior OF if @ random
number drawn uniformly from the range (0-1) is <Ppext/Piotar- If the
proposal is rejected, the parameter perturbations are not applied but
the previous parameters must be recorded once more.

We run a total of 10° trials in each chain and check that the
acceptance fraction is close to 0.234, the optimal acceptance rate
for an efficient MCMC algorithm (Gelman, Gilks & Roberts 1997).
This is achieved by rerunning the chain a few times to determine
the optimal step sizes for the parameter perturbations. To ensure that
the algorithm chooses physically reasonable parameter values, we
impose the priors listed in Table 1. If the algorithm chooses a value
for any of these parameters outside the specified range, it is asked
to draw another proposal, but this does not count as a new MCMC
trial. We let the algorithm consider a sufficiently large number of
proposals at each stage in the chain that we are sure to obtain a
physically plausible proposal for the parameter combination to try
next, even if this is rejected because it fits the observations poorly.

To prevent the MCMC algorithm from starting with a set of values
which is too far away from the optimal set, we first fit the simulation’s
free parameters to the observations using a gradient ascent algorithm
(Fletcher & Powell 1963). This maximizes Py, by increasing or
decreasing the step size according to how much Py, increased or
decreased with respect to the previous set of parameter values that it
tested. This is done until the step size becomes very small, indicating
that the algorithm cannot increase Py, any more. Then the algorithm
converges and returns the optimal set of parameter values.

6 RESULTS OF THE STATISTICAL ANALYSIS

We present our best-fitting model in each theory (Section 6.1) before
discussing the parameter uncertainties obtained with the MCMC
method (Section 6.2).
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Table 2. The parameters of our best-fitting model in each
theory, obtained with the gradient ascent method (columns
2-3) and based on 10° MCMC trials (columns 4-5). The
last row shows the likelihood of the model (equations 48

and 49).
Gradient ascent MCMC

Parameter ACDM MOND ACDM MOND
Slope p, —377 —=3.67 —585 —4.55
Slope p, —1.55 034 —-198 —1.70
Tcore 0.62 0.65 1.35 0.90
Pdist, floor 0.09 0.04 0.10 0.02
Pyist, ceiling 0.65 0.76 0.54 0.53
Nmin, dist 0.11 0.24 0.12 0.10
Ndestr 0.24 1.88 0.23 1.24
log10Protal —30.69 —3246 —30.53 —32.25

6.1 The best-fitting model

The optimal set of parameters found by the gradient ascent algorithm
are given in columns 2 and 3 of Table 2 for ACDM and MOND,
respectively. These are the initial values at which we start the MCMC
chains. Due to the use of 10° trials, the MCMC method provides a
set of parameter values (a model) that fits the observations slightly
better (higher P, in equation 49) than we achieved with gradient
ascent. The best-fitting parameter values in the MCMC chain are
also given in Table 2 (columns 4-5) along with the goodness of fit
to the observations (last row). In this regard, there is little difference
between the theories, though the optimal parameters are rather
different. We will return to this later (Section 8).

Using these parameters, Fig. 9 shows the simulated and observed
probability distributions of Ry, 1obs, and disturbed fraction versus
Nobs» Tevealing a good overall fit to the observations in both theories.?
In particular, the rising likelihood of a dwarf appearing disturbed as
a function of 74y is nicely reproduced by the best-fitting models.

6.2 Parameter uncertainties

To fit the test mass simulation of the Fornax dwarf galaxy system to its
observed properties, we require several free parameters in the model
(Section 5). Having discussed the values of these parameters in the
most likely model (Table 2), we now find the most likely value of each
parameter and its uncertainty. This is somewhat different because
instead of considering the most likely model, we use the MCMC
chain to obtain the posterior inference on each model parameter,
which we then characterize using its mode and lo confidence
interval. The results are shown in Table 3.

We also use Fig. 10 to show the results of the MCMC analysis by
plotting the probability distribution of each parameter and showing
contour plots for all possible parameter pairs. The parameters
Slope Pys Teores Paist, floors and P, ceiling COVer a similar range of values
in both theories. This is to be expected because the distribution
of dwarfs in the Fornax Cluster is known observationally such that
Slope p, and r¢ore are not strong tests of the gravity law, while Pyig, fioor
and Py, ceiling are set by the proportion of dwarfs in different nops
bins that appear disturbed (Fig. 3). Unlike these four parameters,
Slope P> Mmin, dists and ngeqr cover very different ranges in these two
models. As discussed below, these are the parameters which can help

8The low values of Py arise due to the large sample size.
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Figure 9. Comparison between observations and the best-fitting simulation in ACDM (left-hand column) and MOND (right-hand column) in terms of the
distribution of projected separation Ry from the cluster (first row), tidal susceptibility nops (second row), and likelihood that a dwarf appears disturbed as a
function of neps (third row). The observations (blue points with error bars) and the best-fitting simulation in each theory (red points) are plotted at the centre of
each bin, but dithered slightly along the x-axis for clarity in case the model works well. The bin width in Rgyy is 100 kpc in both theories. For nops, the bin width

is 0.15 in ACDM and 0.65 in MOND.

us discern between ACDM and MOND, allowing us to assess which
model performs better when compared to observations.

The inference on Slopep, (shown in the top panel of column 2
of Fig. 10) peaks close to the minimum allowed value of —2 in
ACDM. The opposite happens in MOND, where the peak is close
to 1. Negative slopes in equation (41) assign higher probabilities to
nearly circular orbits. However, according to Ambartsumian (1937),
we expect the eccentricity distribution to be thermal and thus have

MNRAS 515, 2981-3013 (2022)

Slopep, ~ 2 (for a derivation, see section 4.2 of Kroupa 2008). In
this regard, MOND performs better than ACDM.

The major differences between ACDM and MOND are in the
parameters 1min, dist and Ngestr, Whose posterior inferences are shown
in detail in Figs 11 and 12 due to their importance to our argument.
The low values in ACDM arise because dwarfs have quite strong
self-gravity by virtue of being embedded in a dominant dark matter
halo throughout their trajectory. This makes them less susceptible to
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Table 3. The most likely value and 1o confidence
interval of each model parameter in our test mass sim-
ulation of the Fornax Cluster dwarf galaxy population,
based on 10° MCMC trials.

Parameter ACDM MOND

Slopey, —74355 ~7.58"Cx
Slopep, ~1.65%53) 0.75%1 3
Feore 2.00%558 2.025035
Pist, floor 0. 10f88§ 0.074:8:84;
Pdist, ceiling 0.4970-39 0.79%033
Nmin, dist 0117508 0.2440%
Mdests 0.25%007 1887053

the effect of tides (stronger self-gravity raises r;g and thus reduces
n, see equation 29). As a result, the algorithm needs to set nmin, dist
and 7gesr to very low values in order to match the observed fact
that many dwarfs are morphologically disturbed and we do not
observe dwarfs beyond a certain limiting n. MOND also boosts
the baryonic self-gravity of a dwarf, but this boost is damped due to
the EFE of the cluster’s gravitational field. This effect gets stronger
as dwarfs approach the pericentre of their orbits, to the point that
dwarfs which are sufficiently close to the cluster centre can become
almost Newtonian despite a very low internal acceleration. Because
of this, MONDian dwarfs are significantly more susceptible to tides
than their ACDM counterparts. This causes the algorithm to choose
significantly higher nmin, gist and Ngesir Values in the MOND case.

N-body simulations of dwarf galaxies show that ngeg, should
be ~1 in ACDM (Pefiarrubia et al. 2009; van den Bosch et al.
2018). However, fitting the observations with our MCMC method
gives a much lower value of ngesy = 0.254:8:8;. This implies an
important discrepancy between model expectations in ACDM and
actual observations of dwarf galaxies in the Fornax Cluster.

Turning to MOND, comparing the 7gesr value inferred from
observations with that obtained using simulations is not so straight-
forward given that the best available N-body simulations studying
the resilience of Milgromian dwarf galaxies to tides is by now very
old and poorly suited to the present study (Brada & Milgrom 2000).
Because of this, we perform our own N-body simulations of a typical
Fornax Cluster dwarf galaxy, as described next.

7 N-BODY SIMULATIONS OF A FORNAX
DWARF

As the last part of this project, we conduct our own N-body
simulations of a typical Fornax dwarf to find out the expected ngegir
in MOND. The motivation is that while the analytic formula for
the tidal radius (equation 20) should capture the scalings with the
relevant variables like the tidal stress and the EFE, there could be a
constant numerical pre-factor that arises from a detailed simulation.
We investigated this using the Milgromian N-body code PHANTOM OF
RAMSES (POR) developed in Bonn by Liighausen, Famaey & Kroupa
(2015), who adapted it from the Newtonian N-body code RAMSES
(Teyssier 2002). As a result, POR inherits many features of RAMSES,
including the adaptive mesh refinement technique to better resolve
denser regions. POR can work with both particle and gas dynamics.
It is suited for simulations of isolated galaxies (Banik et al. 2020,
2022b; Roshan et al. 2021a), interacting galaxies (Renaud et al.
2016; Thomas et al. 2017, 2018; Bilek et al. 2018; Banik et al.
2022a), galaxy formation (Wittenburg, Kroupa & Famaey 2020),
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and even for cosmological structure formation (Wittenburg et al.,
in preparation). The main difference between POR and RAMSES
is the fact that POR solves the ordinary Poisson equation twice,
with g, found using standard techniques in the first stage and the
following equation solved in the second stage to implement the
MOND corrections:

V.g=v (vg). (50)

where v was defined in equation (16). The boundary condition for
the Milgromian potential ® is

®=./GMa,Inr, (51)

where M is the total mass in the simulation volume and r is the
distance from the barycentre in the simulation unit of length, the
choice of which has no bearing on the result.

Since Fornax Cluster dwarfs are expected to contain little gas
(Section 3), we can simplify the set-up greatly by using the ‘particle-
only’ version of the POR code. In particular, we use the ‘staticparts’
patch (described in section 4.1 of Nagesh et al. 2021) which allows
the use of particles that provide gravity but do not move if their mass
exceeds a user-defined threshold. This is helpful because we treat the
cluster gravity as sourced by a point mass fixed at the origin, with the
dwarf at three possible initial distances R;. To ensure the gravity on
the dwarf is the same as in the Fornax Cluster, we use equation (8)
to obtain g. and then obtain the corresponding g. n with the simple
interpolating function in the inverse form (equation 18), from which
we get the central mass:

_ gc,NR,'2
M. = e (52)
The different MOND dynamical cluster masses obtained in this way
are: M. = 2.18 x 10'>2 My at 150 kpc, M. = 2.89 x 10'> Mg
at 300 kpc, and M. = 3.31 x 10'> My, at 450 kpc. We use 7-13
refinement levels and set the box length to 6 R; as the apocentre
could be at almost 2 R;.

For the dwarf, we use a half-mass radius of r, = 0.84 kpc and a
total mass of Mgyt = 3.16 x 107 M, represented by 10° particles,
making the mass resolution 316 M. These are typical parameters for
a dwarf in the Fornax Cluster (see the red star in Fig. 8). Setting the
velocity dispersion o is non-trivial because we need to account for
the cluster EFE when we initiate the simulation. We do this by using
the Fornax dwarf templates kindly provided by Prof. Xufen Wu, who
used a similar method to that described in section 3.3 of Haghi et al.
(2019a) to generate these templates. The idea is to take a Newtonian
template and then enhance the velocities by the factor needed to
ensure virial equilibrium given the enhanced gravity (Wu & Kroupa
2013).

To set up the dwarf, we apply a Galilean transformation to the
template whereby the Cartesian positions of all particles are boosted
by (xo = R;, yo =0, zo = 0) and the velocities are boosted depending
on the circular velocity at R; and the orbital eccentricity e, as
described in Section 5.1. We start the simulation with the dwarf
at the semimajor axis of its orbit and receding from the cluster. We
then evolve the system until shortly after the dwarf reaches apocentre
for the second time so that there is ample time to assess the impact
of the pericentre passage. The code generates an output of the mass,
position, and velocity of every particle every 20 Myr, allowing us to
analyse the structure of the dwarf and find out if it has been destroyed.

Our main objective is to find the threshold value of » at pericentre
beyond which the dwarf gets destroyed in the simulation. This re-
quires us to perform multiple simulations with different eccentricities
in order to obtain different  values at pericentre. To guide our choice
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220z Jaquiaidag 90 uo Jasn Ausiaaiun NiNO Aq 2008 199/1862/2/S 1 S/0ne/seiuw/woo dnooiwepese//:sdiy woll papeojumod



2998 E. Asencio et al.

mmmm \OND
s ACDM
Ll
. 'Q’z I
[N \%_ ]
g < _
Q
7 % F n
/2§*| N = TR
AN
=R
~ 3
CD\,'
5 9
o N
£ o
540.
o Q
00‘.7'
g v
A~ v
oo O
g o
=
NS
VN
2o
&
A Q‘}
+
w Y
= £
g Y
o @
g~
S
Q L
T 1
e N _
- _
@ 9
g 9 .
> RN P
H QO ©H 0P DO OGP D N HQOON Y D oD D O %P NDYDOY N
R N R A S A R O S N A A NS S S a2 IR AR AR S R G A A
ATRTNTATQTOTONNTQOININTYT (PN AYRY 0TI 9N
Slopepr Slopepe rcore/Mpc Pdist,ﬂoor Pdist,ceiling Tmin,dist "ldestr

Figure 10. The lo confidence regions for the parameters in our model of the Fornax Cluster dwarf galaxy population using ACDM (orange) and MOND (blue),
based on the priors listed in Table 1. The top panel in each column shows the inference on a single parameter, while the other panels show the 1o confidence
region for a pair of parameters. The results shown in this ‘triangle plot’ are based on 105 MCMC trials (Section 5.3.1). All the triangle plots shown in this

contribution were generated using the PYGTC package (Bocquet & Carter 2016).

of parameters, we use a simple MOND Runge—Kutta orbit integrator
of a point mass orbited by a test particle in 2D. This is also very
helpful when deciding the appropriate duration for each simulation,
which we keep fixed for models with the same R;.

7.1 Analysis

We extract the particle positions r;, velocities v;, and masses m;
using EXTRACT-POR (Nagesh et al. 2021), with the index i used in
what follows to distinguish the particles. To assess if a dwarf has
been destroyed, we infer three properties of the dwarf from the
output at each snapshot: its half-mass radius, velocity dispersion,
and aspect ratio. Unlike in Newtonian gravity, the time-varying EFE
implies that these quantities are expected to vary around the orbit
even if the dwarf is completely tidally stable (n < 1), perhaps most

MNRAS 515, 2981-3013 (2022)

famously for the velocity dispersion (Kroupa et al. 2018). To assess
tidal stability, we check whether the dwarf responds adiabatically to
the time-varying EFE. Tidal stability requires the dwarf to recover
the initial values for these parameters after the pericentre passage,
at least by the time of the next apocentre. If this is not the case,
then the dwarf is either destroyed or unstable, in which case several
pericentre passages may be required to destroy the dwarf. However,
it is beyond the scope of this project to simulate multiple pericentre
passages.

7.1.1 Finding the barycentre

We apply an iterative outlier rejection scheme to accurately obtain
the barycentre position 7 and velocity v based on the positions and
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velocities of the particles. In the first iteration, we consider all the
particles and calculate

__ Doimiri _
pe R M= (53)

We use a similar definition for v. The barycentre position and velocity
are then used to find the root mean square (rms) dispersion in position
and velocity:
mi|r; — 7

mzzbﬁ—i, (54)
with a similar definition used for v,,s, which we call o for consistency
with other workers. This lets us define a x statistic for each particle
based on its position:

Iri —71\*
XQEGﬁj), (55)

with a similar definition used for x2, based on the velocity.
In the second iteration, we repeat the above steps for only those
particles whose ., and g, are both below 25, which changes the
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calculated quantities. In subsequent iterations, we expect to have
pinned down the barycentre more precisely, so we use the stricter
condition that

X;os + X331 S Xl%mx ’ (56)

where x2., = 11.83 s set so that the likelihood of the x* statistic for

two degrees of freedom exceeding x2,, is the same as the likelihood

of a Gaussian random variable deviating from its mean value by

>30. Our procedure can thus be thought of as 3o outlier rejection.
We consider the algorithm to have converged once the difference

in 7 and v between successive iterations is so small that

|AF? | |av?

2 2
T'tms o

< 1077, (57)

with the additional requirement that the number of ‘accepted’
particles deviates from that in the previous iteration by no more
than the Poisson uncertainty. In the analyses described below, we
will only consider those particles which are accepted on the final
iteration.

7.1.2 Velocity dispersion

The velocity dispersion o is already available as part of our 3o
outlier rejection system for finding the barycentre of the dwarf. This
3D o is found by applying equation (54) but using velocities rather
than positions. If the dwarf were isolated and unaffected by tides,
equation (14) of Milgrom (1994) tells us to expect that

4 1/4
o= <§GMaO> . (58)

This assumes dynamical equilibrium and the deep-MOND limit, but
does not make any assumptions concerning whether the orbits are
mostly radial or tangential. If the system is not spherically symmetric,
the velocity dispersion would not be the same along every direction,
but the bulk 3D velocity dispersion above would still hold. Another
important caveat is that the system should consist only of particles
with m; < M.

7.1.3 Half-mass radius

To obtain the half-mass radius r,, we order the particles in ascending
order of their distance to the above-determined dwarf barycentre 7.
We then find the index p such that

im-—% (59)
£ [ ) 5

with the total mass M of all accepted particles in general being
slightly below the initial mass of the dwarf. By definition, ry is the
distance of particle p from the dwarf’s barycentre.

m=|r, —Tl. (60)

7.1.4 Aspect ratio

To quantify the shape of the simulated dwarf, we obtain its inertia
tensor

=Y _mi(r—7);@—7) . (61)

where the spatial indices j and k take values in the range 1-3 because
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Figure 13. Evolution of the half-mass radius (first column), 3D velocity dispersion (second column), and aspect ratio (third column) of the simulated dwarfs
over time starting from an initial distance of R; = 150 kpc (first row), R; = 300 kpc (second row), and R; = 450 kpc (third row). In each panel, the different
curves show different orbital eccentricities as indicated in the legend, which gives their corresponding 7 values at pericentre (solid grey line) based on the EFE
and tidal stress there but with the mass and half-mass radius found at the next apocentre (see the text). The mass at that time is similar to the initial value.
The vertical dashed grey lines represent the first and second apocentre of the orbit. The solid (dashed) coloured lines represent those dwarfs which do (do not)
recover their initial properties. The dotted lines that repeat one of the eccentricities in each panel correspond to a higher resolution simulation (8 x 10° particles),
indicating that resolution hardly affects our results. The horizontal black line in the lower middle panel represents the expected velocity dispersion of the dwarf

in the IDM limit (equation 58).

there are three dimensions. We then find the eigenvalues of I. The
aspect ratio of the dwarf is defined as

)‘-min
. (62)

max

aspect ratio =

where Amin (Amay) 1S the smallest (largest) eigenvalue.

7.2 Results

The results of our POR simulations are shown in Fig. 13. Unlike in
the Newtonian case, even dwarfs with a very low tidal susceptibility
exhibit significant variations in their properties due to the time-
varying EFE. We can see that in the cases with low e, the dwarf
manages to recover the properties it had before pericentre. However,
in the cases with higher e, these properties do not regain their
initial values, indicating that the dwarf is tidally unstable.” This

9This seems to be the case for the MW satellite Crater II (Torrealba et al.
2016), whose low surface brightness, small pericentre (Li et al. 2021), and
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was expected because dwarfs with more eccentric orbits have closer
pericentre passages and thus higher 1 values at pericentre.

To assess whether a dwarf is destroyed in the simulation, the
criterion that we apply is to consider destroyed those dwarfs which
have a higher r, at the second apocentre than at pericentre. Since the
dwarf is likely to expand even further as it heads towards its next
pericentre, this implies that the dwarf has been too destabilized by
tides to contract back to its size at its first pericentre passage. As
a result, the dwarf would have an even higher tidal susceptibility
at subsequent pericentres. This makes it very likely that the dwarf
would not be able to survive multiple pericentre passages. On the
other hand, if a dwarf that experiences a pericentre passage has a
smaller r, at the subsequent apocentre and is contracting further,

low velocity dispersion for ACDM (Caldwell et al. 2017) suggest that it is the
remnant of an originally smaller object that got severely disrupted by tides
during its perigalacticon passage (Borukhovetskaya et al. 2022; Errani et al.
2022). It is also expected to be tidally unstable in MOND (see section 3.3 of
Banik & Zhao 2022).
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Table 4. Summary of our MOND N-body sim-
ulation results for a Fornax dwarf with an initial
distance of R; = 150 kpc and different orbital
eccentricities (first column). The tidal suscepti-
bility is calculated assuming the EFE and tidal
stress at pericentre but using the half-mass radius
of the dwarf at pericentre (second column) or at
the subsequent apocentre (third column), which we
argue in the text is more comparable to our MCMC
results. The fourth column gives our assessment
of the simulation based on the top-left panel of

Fig. 13.
nusing ry at . ..

e Pericentre ~ Apocentre ~ Outcome
0.03 0.6 0.5 Stable
0.29 0.9 0.6 Stable
0.45 1.2 1.0 Stable
0.48 1.3 1.4 Marginal
0.51 1.4 2.0 Unstable
0.52 1.4 2.3 Unstable
0.53 1.4 2.7 Destroyed

then it may well get back to its size at first pericentre by the time it
reaches its second pericentre. This should allow it to survive multiple
pericentre passages, which in the Fornax Cluster case should allow
survival over a Hubble time.

To fairly compare our N-body results with our MCMC analysis,
we should consider how observers calculate 7q,s. The r, entering
into equation (29) is the observed size, so ideally we would calculate
n at pericentre using the EFE and tidal stress there but using the
presently observed size. As a proxy for this, we use the size at
apocentre since this is the orbital phase at which we are most likely
to observe the dwarf. Physically, the tidal stability of a dwarf depends
on the ratio between its size and tidal radius at pericentre. Using the
ratio between the tidal radius at pericentre and the half-mass radius
at apocentre may seem somewhat counter-intuitive. However, the
Ndestr Values obtained in this way are much more comparable to those
obtained from our MCMC analysis of the Fornax Cluster for the
reasons discussed above. In what follows, we will use 1 to mean the
value calculated in this way, though Table 4 also shows results based
on the size at pericentre.

To constrain 7ges» We focus mainly on models with R; = 150 kpc
as dwarfs with a larger semimajor axis would typically be observed
much further out than the region contributing to the apparent tidal
edge in Fig. 3, especially if the eccentricity is significant. The results
of these models are summarized in Table 4. The models with n <
1.0 respond adiabatically. We choose 1¢es = 1.4 as the lowest value
at which a dwarf can get destroyed in MOND since dwarfs with
this 7 still seem to be marginally capable of contracting their ry
back to their pericentre value by the time they reach apocentre.!”
For the upper limit to nges at pericentre, we choose a value of 2.0
because for this 7, the dwarfs in our simulations are clearly larger
at apocentre than at pericentre and are still expanding at the end of
the simulation, indicating irreversible behaviour. We therefore infer
that ngese = 1.70 £ 0.30 if 1, is measured at the second apocentre.
If instead we obtain r, at pericentre, then nges has a slightly lower
value of 1.35 £ 0.05.

10This certainly appears to be the case for the = 1.5 model with R; =
300 kpc.
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As expected, ngese 1S of order unity because the main physics
should be captured by analytic arguments (Zhao 2005; Zhao & Tian
2006). Our numerical results suggest that it would be more accurate to
drop the factor of % in equation (20), which would also reconcile the
numerical pre-factor with that in the Newtonian tidal radius formula
(equation 11) for the case « = 1 and g > a,,. This seems to indicate
that we should identify the tidal radius with the distance to the L1
Lagrange point in the derivation of Zhao & Tian (2006) — their
equation (36) introduces a factor of % in the Newtonian limit because
the Roche Lobe extends to a shorter distance in the two non-radial
directions than in the radial direction by about this factor. However,
it could be that for somewhat eccentric orbits, the Roche Lobe’s
extent along the radial direction is the limiting factor to the dwarf’s
size.!!

Our simulations also show that the higher the initial distance to the
cluster, the more resilient the dwarf is to the effect of cluster tides.
This is because a more eccentric orbit implies a shorter amount of
time spent near pericentre, so the dwarf is exposed to a high n value
for only a very brief period, allowing it to recover. Therefore, we
would probably still be able to observe dwarfs which have n = 2.4
(or higher) at pericentre if these have sufficiently large apocentric
distances. Given that in our analysis we considered dwarfs up to
800 kpc from the cluster centre, it is likely that there are several
dwarfs in our sample which experienced a somewhat higher 1 at
some point in their past — but for a sufficiently brief period that the
dwarf remained intact. This is fairly consistent with the results of our
MCMC analysis, which found that nges, = 1.88f8:§§.

The observed shape of a dwarf is one of the indicators for
whether it has been perturbed. Therefore, to estimate the n at which
simulated dwarfs should start appearing morphologically disturbed,
we look at the evolution of their aspect ratio (equation 62). We
need to bear in mind that even a uniform external field can cause
a MONDian dwarf to become deformed because the potential of a
point mass is not spherical once the EFE is considered (Banik &
Zhao 2018a). N-body simulations of dwarfs experiencing the EFE
but not tides explicitly show that this process can yield axis ratios
of ~0.7 (Wu et al. 2017). This is very much in line with our
lowest eccentricity orbit with R; = 150 kpc, so the mild degree
of flattening evident here is not necessarily indicative of tidal effects.
We find that models with R; = 150 kpc start to acquire significantly
elongated morphologies throughout most of their trajectories only
when n 2 0.6 (see column 3 in Fig. 13). Therefore, we take 1min, dist
~ 0.6. This is slightly higher than what our MCMC analysis requires
(Mmin, dist = 0,241’8%). One possible explanation is that dwarfs with
higher R; start acquiring elongated morphologies at lower 7.

To check if increasing the resolution would affect our results, we
perform a high-resolution rerun of one of our models for each R;.
This is shown using the dotted line in each panel of Fig. 13. The
only resolution-related effect which we can observe is that the half-
mass radius of a distant dwarf expands less than at lower resolution.
Because of this, we obtain slightly lower pericentric n values for
the same orbit with higher resolution. However, the evolution of the
dwarf properties as a function of 7 at pericentre remains almost the
same as for the low-resolution model. Therefore, our conclusions
should barely be affected by the resolution of the simulation.

"'without the % factor in equation (20), the tidal susceptibility threshold is
Ndesr = 1.13 £ 0.20 when using ry, at apocentre and ngesr = 0.90 £ 0.03
when using ry, at pericentre. Note that the MOND tidal susceptibilities of
FDS dwarfs would also be reduced by a factor of % in this case, which would
affect the inferred ngestr posterior.
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8 DISCUSSION

Observations of Fornax Cluster dwarf galaxies show that some of
them present a detectable level of disturbance in their morphology.
Among the environmental effects inside a galaxy cluster that could
be causing this disturbance, we found that gravitational tides from the
cluster are the most likely cause (Section 3). The condition for a dwarf
galaxy in a galaxy cluster to be tidally stable is approximately the
same as the requirement that the dwarf’s density exceed the average
density of the cluster interior to the dwarf’s orbit (equation 7).'? This
should be the case for a ACDM dwarf in a cluster because we expect
the dwarf to be dominated by dark matter and to have formed much
earlier than the cluster, at which time the cosmic mean density was
higher. Therefore, in this paradigm, the dwarf galaxies in the Fornax
Cluster should be little affected by the tides it raises. This is indeed
what our calculations show (Fig. 2).

In MOND, the enhancement to the Newtonian gravity of an
isolated dwarf is similar to that provided by the dark matter halo
in ACDM. However, MONDian dwarfs in a galaxy cluster are also
affected by the resulting EFE, which weakens their self-gravity. As
a result, they are more susceptible to tides than dwarfs in ACDM,
which has no EFE due to the strong equivalence principle. Therefore,
observations of Fornax dwarfs can be used to compare which of the
two models performs better.

To check if tides might be important in the Fornax Cluster, we
plotted the projected separation (Rqy) of each FDS dwarf against
a measure of its surface brightness (Fig. 3). This revealed a lack
of low surface brightness dwarfs in the central ~200 kpc even
though such dwarfs are evident further out, indicating that selection
effects are not responsible for the tentative tidal edge marked
on this figure as a grey line. Just below this, the proportion of
apparently disturbed dwarfs is also much higher than elsewhere in
the cluster (see Fig. 4). We quantified this trend by plotting the
disturbed fraction as a function of the tidal susceptibility n of each
dwarf (equation 29), revealing a clear rising trend detected at 2.9¢
significance in ACDM and 3.5¢ in MOND (Fig. 5). These arguments
suggest that the dwarf galaxy population in the FDS catalogue has
been significantly shaped by tides, as previously argued by Venhola
et al. (2022).

However, the overall distribution of 7 only goes up to ~0.5 in
ACDM (Fig. 2). We expect a dwarf to be destroyed or severely
disturbed only if n ~ 1, as indicated by ACDM N-body simulations
(Pefiarrubia et al. 2009; van den Bosch et al. 2018). We quantified this
discrepancy using our MCMC analysis, which shows that the tidal
stability limit of the Fornax dwarfs should be ngeqr = 0.257003 to
match observations. Therefore, ACDM dwarfs should be destroyed
when the tidal force that they experience is ~0.25° = 1.56 x 1072
times smaller than their internal gravity (tidal force/internal gravity
~ n%). Not only is this unrealistic, but also such a low 7ngeg 1S in
>50 tension with the nge value of 1 inferred from ACDM N-
body simulations (Fig. 14). The highest nqes value achieved with
our MCMC analysis for ACDM is only 0.60. This corresponds
to the 4.42¢ upper limit because we ran 10> MCMC trials. Since
the uncertainty on ngesr towards higher values from the mode is
only 0.07, it is clear that ngs, = 1 is strongly excluded by the
observations if the tidal susceptibilities are calculated within the
ACDM framework.

2The tidal stress Agc/Ar is related to the cluster mass profile M.(<R) by
Ag/Ar=GM (2 — «)/R3, from which it follows that rgd/dearf ~ R3/Mc.
Thus, a dwarf with r, & rig has Mawart/ri ~ Mc/R>.
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Figure 14. Joint inference on nmin, disc and ngestr (Section 5.2.4). We show the
lo (inner solid line), 30 (dashed line), and 5o (outer dotted line) confidence
region for MOND (blue) and ACDM (orange). The thick orange line shows
the ACDM expectation that ngesr & 1. For MOND, the corresponding expec-
tation from our N-body simulations (Section 7) is that ngesr = 1.70 £ 0.30
(horizontal blue stripe). The grey shaded region below the line of equality is
not allowed by our choice of prior because it is unphysical.

These calculations are based on equation (11), which can be
written in the alternative form

dearf
BM:(< R)

T'tid, ACDM (

1/3
2 ) , B=2Q2—-a), (63)

where « = 1.1 (defined in equation 8) is the logarithmic slope
of the Fornax Cluster mass profile M.(<R) based on hydrostatic
equilibrium of the gas around its central galaxy (Paolillo et al. 2002).
This implies B = 1.8. Other workers use slightly different definitions
for the tidal radius, which affects the results somewhat because
the calculated 1 oc B3, For example, equation (6) of Wasserman
et al. (2018) gives B = 2 — o = 0.9 for radial orbits and 8 = 3
— a = 1.9 for circular orbits. Allowing even a modest amount of
eccentricity, it is clear that g in their tidal radius definition is smaller
than our adopted 1.8, so their formula generally gives even lower
values, worsening the problem for ACDM. Meanwhile, equation (3)
of Pefarrubia et al. (2009) gives B = 3, though this is for circular
orbits and lacks a rigorous derivation (see section 3.1 of Pefiarrubia,
Navarro & McConnachie 2008). 8 = 2 is more appropriate to account
for elongation in the potential along the radial direction (Innanen,
Harris & Webbink 1983; Zhao & Tian 2006). However, even if we
adopt B = 3, this would only raise our calculated n values by a factor
of (3/1.8)"3, or equivalently imply that we can keep our definition
but should consider dwarfs to be destroyed at ngeq, = (1.8/3) =
0.84. This is still well above the value given by any of the 10° trials in
the MCMC analysis. A more recent detailed derivation affirms that
for circular orbits, the appropriate value of f =3 — o = 1.9 in the
Fornax case (equation 5 of van den Bosch et al. 2018), which is very
similar to our adopted value of 1.8. Although this could be somewhat
higher with a lower value for «, we can get 8 = 3 only for circular
orbits around a point mass (¢ = 0), which is not consistent with
the Fornax Cluster having an extended dark matter halo. Moreover,
a dwarf on an elliptical orbit is exposed to the pericentre value of
n for only a short time. We may intuitively expect that a dwarf
would be disrupted only if it experiences n > 1 for a significant
duration, since otherwise there is not enough time for tidal forces
to disrupt the dwarf. This could explain why van den Bosch et al.
(2018) found that dwarfs are actually quite robust to tides, more so
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than in many numerical simulations where apparent tidal destruction
could be a numerical artefact (see also Webb & Bovy 2020). It
could well be that the appropriate nge is slightly above 1, as in
the MOND case. Moreover, van den Bosch et al. (2018) found that
galaxy—galaxy harassment is much less damaging than the tidal shock
from pericentre passage. While their work addressed subhaloes in a
MW-like halo and neglected hydrodynamics, it is still very useful
in showing that a subhalo can resist disruption even if the energy
it gains from harassment exceeds the binding energy, justifying our
neglect of the harassment scenario (Section 4.1).

In MOND, we obtained a tidal stability limit with the MCMC
analysis of Ngesr = 1.881’8:22, which is closer to the expected value
of ~1 based on analytic arguments (equation 20). To check if this
limitis accurate, we performed several N-body simulations of a dwarf
orbiting a central potential similar to the Fornax Cluster (Section 7).
These simulations suggest that cluster tides would make Fornax
dwarfs appear disturbed when nyindgise = 0.6 and destroy them at
Ndesr = 1.70 £ 0.30, which is in good agreement with our MCMC
results (see Fig. 14).

We considered several possible explanations for the discrepancy
between the low tidal susceptibility values of ACDM dwarfs and
the fact that some of the observed Fornax dwarfs appear disturbed.
This could be due to the fact that cluster tides are not the main effect
responsible for the observed morphological disturbances. However,
there are several trends in the FDS that suggest exactly this. These
trends are as follows:

(i) There are fewer low surface brightness dwarfs towards the
centre of the cluster, where they are most susceptible to tides (Fig.
3). Since such dwarfs are detectable further out, this feature cannot
be ascribed to selection effects. A related finding is that FDS dwarfs
are typically larger towards the cluster centre, which could be related
to tidal heating (for a more detailed discussion, see section 7.4 of
Venhola et al. 2022); and

(ii) The algorithm in charge of fitting the simulated Fornax system
to the observations clearly noticed a rising trend between 7 and the
probability of disturbance (Pgis). This is shown by the fact that the
algorithm chose Puig, ceiling > Plist, fioor With 230 confidence in both
ACDM and MOND (see Fig. 15), even though we did not impose
this condition a priori.

We have seen that these trends cannot be understood in ACDM
as a direct consequence of cluster tides given the very low 1 values.
Moreover, the other major environmental effect that could be causing
the observed disturbance (galaxy—galaxy harassment) also presents
very low 7 values (see Section 4.1).

Another possibility is that our results could be affected by some
of the assumptions or choices that we made during the analysis.
To check if this is the case, we repeat the procedures described
in Section 5 but change some of the assumed conditions and/or
parameters in the following ways:

(i) Considering that the FDS dwarfs could have a lower dark matter
fraction within their optical radii: We consider the possibility that
the dark matter fraction of the FDS dwarfs is lower than assumed in
our nominal case (this is motivated in Section 8.1.1). Assuming that
ACDM explains the properties of isolated dwarfs, we use the velocity
dispersions of nearby isolated dwarfs to estimate their typical dark
matter fraction, which returns a somewhat lower value than assumed
in our nominal analysis. Substituting this fit (equation 65) into our
MCMC chain raises nges slightly, but it is still only 0.33700¢. We
then consider a very conservative scenario in which there is only 10 x
as much dark matter as stars within the optical extent of each dwarf,
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Figure 15. Joint inference on Pyist, floor and Puist, ceiling (Section 5.2.4). We
show the 1o (inner solid line), 20 (dashed line), and 30 (outer dotted line)
confidence region for MOND (blue) and ACDM (orange). Physically, we
expect to get values above the solid red line of equality (Puis, ceiling >
Puist, floor), though this is not imposed as a prior. Even so, this is favoured
by the MCMC analysis, which gives a likelihood that Py, ceiling < Pist, floor
of only 3.14 x 1073 (2.950') in MOND and 6.43 x 1073 (2.73¢') in ACDM.
Both theories prefer a non-zero false positive rate of Pyig, floor &~ 0.1, which is
related to the similar fraction of dwarfs classified as disturbed in the outskirts
of the Fornax Cluster where tides should be unimportant (Fig. 4).

which requires altering equation (10) to Mawart, acom = 11 M,. For
this very low dark matter fraction, we obtain that ngesy = 0.54f8:(1]g,
which reduces the tension between observations and ngese = 1 (as
expected from N-body simulations) to 2.29¢ (the triangle plot for this
analysis is shown in Fig. F1). While this is a significant improvement
with respect to the >5¢ tension in the nominal case, we see that even
when considering one of the most conservative assumptions for the
amount of dark matter contained within the optical radius of a dwarf,
Naesr > 1 1s still excluded at 97.8 per cent confidence. Moreover, we
show in Section 8.1.1 that in a recent high-resolution cosmological
ACDM simulation, the dark matter fraction within the stellar r, of a
dwarf is far higher than this at the relevant M,, and is actually quite
close to our nominal assumption;

(i1) Changing the lower limit to the distribution of dwarf densities
in the test mass simulation: To check if the adopted detection limit
to the density of the Fornax dwarfs significantly affects the results,
we repeat the analysis using a density threshold p, that is 5o below
the mean logarithmic density. We also consider a density limit of
Pmean (grey line in Fig. 6). For reference, the nominal p, in MOND
is 2.88¢ below the mean logarithmic density, while pmean is 1.910
below. The corresponding values in ACDM are 3.58¢0 and 2.560,
respectively (see Appendix E). Fig. F2 shows the triangle plots
comparing the results obtained using these two density limits with
the nominal one for ACDM and MOND. From these plots (described
further in Appendix F), we can see that choosing a lower p, worsens
the tension for ACDM while maintaining consistency in MOND.
Using a higher p; helps to increase the estimated values for ngeg:
in ACDM. However, even if we use py = Pmean, the inferred ngesy
is still significantly below the threshold of ~1 required in N-body
simulations, while the inference on 9, gist hardly changes. Thus,
choosing even higher p, could perhaps help ACDM to reach a
reasonable n¢eqr. However, taking such high values for p, would
be in disagreement with observations as the whole point of p; is that
dwarfs are not detectable if they have a lower density, but dwarfs
with a lower density are clearly observed if we adopt such a high p;
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(iii) Changing the values of the deprojection parameters (see
Appendix A): The deprojection parameters in our nominal analysis
were offset = 0.4° and nnucq,,; = 1.2° based on fig. 6 of Venhola
et al. (2019). We repeat our analysis using deprojection values at the
upper limit of the envelope in this figure: offset = 0.5° and nnucgoor =
1.5°. Fig. F3 shows the triangle plots comparing the results for these
two different deprojections in ACDM and MOND. From these plots,
we can see that these two deprojections give almost the same results
in either theory;

(iv) Changing the ratio between present and pericentre distances
(see Appendix B): A related change we could make is to consider
altering the assumed ratio of 0.29 between the average R and
the pericentre distance. This is valid for a thermal eccentricity
distribution with Slope, = 2, which is expected theoretically but
is the highest possible value (equation 41). With a lower Slope 5, the
ratio would rise as orbits would typically be more circular, reducing
the calculated tidal susceptibility at pericentre. This would worsen
the problem for ACDM; and

(v) Increasing the resolution: In Section 5.1, we created a grid of
100 x 100 cells for different values of the orbital eccentricity (e) and
initial distance to the cluster centre (R;). We increase the resolution
to 200 x 200 and repeat the analysis to check if this has any effect
on the results. The triangle plots showing the results in ACDM and
MOND for these two resolutions are shown in Fig. F4. From these
plots, we can see that the results are nearly identical for the high-
and low-resolution cases.

From these tests, we infer that our results are not significantly
affected by modelling assumptions.

8.1 The dark matter content of dwarf galaxies in ACDM

Our conclusion that ACDM is inconsistent with the FDS dwarfs
relies heavily on their low values of 7 in this paradigm, which in
turn relies on the assumption that they should be dominated by dark
matter. We therefore explore whether consistency could be gained by
partially relaxing this assumption in a manner consistent with other
constraints.

To try and raise 1 while continuing to use Newtonian gravity, we
consider the possibility that the FDS dwarfs are TDGs. Our results
are presented in Appendix D. We see that this scenario is also not
viable because the elliptical galaxies in the cluster must still contain
substantial dark matter haloes, leading to highly efficient disruption
of dwarfs through galaxy—galaxy harassment.

It thus seems clear that the FDS dwarfs should be primordial. In this
case, we may consider whether the dark matter density in their central
regions could be substantially less than assumed here, raising their
tidal susceptibility within the ACDM framework. The transformation
of central cusps in the dark matter density profile into cores is
expected to be rather inefficient for dwarfs with M, < 1072 Mg
(Di Cintio et al. 2014; Dutton et al. 2016; Tollet et al. 2016).
Most FDS dwarfs have a lower M, (i.e. they lie below the red
line in Fig. 7). This makes it unlikely that baryonic feedback has
substantially reduced the central dark matter density of most FDS
dwarfs, especially at the low-mass and low surface brightness end
important to our argument about tidal stability. Adiabatic contraction
could actually raise the central dark matter density (Forouhar Moreno
et al. 2022; Li et al. 2022), as could tidal stripping of the dark matter
halo (Pefarrubia et al. 2008). The colours of the FDS dwarfs also
indicate that star formation stopped early, most likely due to ram
pressure stripping of the gas (Section 3). Thus, it would only be
possible for strong feedback to substantially reduce the baryonic
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potential depth once. This is insufficient to substantially affect the
central dark matter density even in the extreme case that the entire
gas disc is instantaneously removed (Gnedin & Zhao 2002). Multiple
bursts of star formation would be required to substantially affect the
dominant dark matter halo (Pontzen & Governato 2012), but it is
very unlikely that this occurred in most FDS dwarfs. Consequently,
they should still have a significant amount of dark matter in their
central regions, as is the case with Galactic satellites whose star
formation ended early (Read, Walker & Steger 2019). Moreover, the
low surface brightness nature of the FDS dwarfs considered here
implies an atypically large size at fixed M,, causing the baryonic
portion of the dwarf to enclose a larger amount of dark matter than
for the more typical Illustris galaxies considered by Diaz-Garcia et al.
(2016).

Another way in which FDS dwarfs could lose dark matter is
through interactions with a massive elliptical galaxy. This scenario
has been shown to lead to a dwarf like DF2 with an unusually
low dark matter content (Shin et al. 2020). However, such exam-
ples are rare in cosmological simulations (Haslbauer et al. 2019a;
Moreno et al. 2022). In addition, the possibility that most FDS
dwarfs lack dark matter altogether runs into severe difficulties based
on simple analytic arguments: Newtonian TDGs would be very
fragile and easily disrupted by interactions with massive cluster
ellipticals, which must have substantial dark matter haloes in a
ACDM context (Appendix D). MOND seems to offer the right
level of tidal stability: neither too much such that all the dwarfs
are completely shielded from tides and the observed signs of tidal
disturbance remain unexplained, nor too little such that the dwarfs
would have been destroyed by now in the harsh cluster environment
studied here. The FDS dwarfs behave just as they ought to in
MOND.

This conclusion is in agreement with the recent work of Keim
et al. (2022), which used the observed tidal disturbance of the dwarf
galaxies NGC 1052-DF2 and NGC 1052-DF4 to argue that they must
be ‘dark matter free’, since otherwise their dark matter halo would
have shielded them from tides. Phrased in a less model-dependent
way, these observations indicate much weaker self-gravity than for a
typical isolated dwarf, which is a clear prediction of MOND due to
the EFE (Famaey et al. 2018; Kroupa et al. 2018; Haghi et al. 2019a).
In the more isolated galaxy DF44, the self-gravity is stronger despite
a similar baryonic content (van Dokkum et al. 2019), but this too
is in line with MOND expectations (Bilek et al. 2019; Haghi et al.
2019b). Strong evidence for the EFE has also been reported from
the outer rotation curves of spiral galaxies, which tend to be flat
for isolated galaxies but have a declining trend for galaxies in a
more crowded environment (Haghi et al. 2016; Chae et al. 2020,
2021).

Our results with the FDS are similar to those of Chilingarian
et al. (2019) and Freundlich et al. (2022), who also report signs
of tidal disturbance in some of the dwarf galaxies in the Coma
cluster. Another case in point is the recent study of the dwarf galaxy
population in the Hydra I cluster, where the proximity to the cluster
centre seems to be affecting the morphology of the dwarfs in a
manner suggestive of tidal effects (e.g. larger half-mass radii for
dwarfs closer to the cluster centre; La Marca et al. 2022). Closer
to home, the MW satellites also show signs of tidal disturbance
like elliptical isophotes (McGaugh & Wolf 2010). There is a good
correlation between these features and the value of n in MOND,
which moreover has a maximum value very close to 1 (see their
fig. 6). However, the maximum 7 in ACDM is <0.2, making it
difficult to understand the observations in this framework.
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Figure 16. The relation between stellar mass and Newtonian dynamical
mass (equation 64). The semi-transparent coloured dots represent galaxies
from four different galaxy surveys as indicated in the legend (Falcon-Barroso
et al. 2011; McConnachie 2012; Rys, van de Ven & Falcon-Barroso 2014,
Toloba et al. 2014). The cyan dots with error bars represent the logarithmic
mean and dispersion of the total/stellar mass ratio within the stellar r, of
the dwarfs in each M, bin in the ACDM cosmological simulation Illustris
TNGS50 (Pillepich et al. 2018, 2019; Nelson et al. 2019a,b). These bins have
a width of 0.25 dex and cover the mass range logjo(M,/Mg) = 4.5-12. The
solid black line represents the expected trend in ACDM with the nominal
dark matter fraction from abundance matching (equation 10). The dashed
black line represents the fit to the dwarfs from the aforementioned galaxy
surveys in the mass range covered by the FDS dwarfs. The horizontal blue
line at logjol1 shows our conservative assumption that Mpy = 10 M,. In
these three cases, the relations are only plotted over the M, range of the
FDS dwarfs. Their median mass is shown with the dashed green vertical line.
The solid red vertical line corresponds to the stellar mass below which core
formation is inefficient in ACDM (see the text).

8.1.1 Revised dark matter fraction in ACDM dwarfs

Throughout our analysis, we followed the Diaz-Garcia et al. (2016)
prescription that 4 per cent of the total dark matter halo of each
dwarf lies within its optical radius, with the total halo mass My,
following from M, through the Moster et al. (2010) abundance
matching relation. The factor of 4 per cent was obtained by fitting to
the dynamically inferred dark matter masses Mpy; within the optical
radii of S*G galaxies, as shown in fig. 6 of Diaz-Garcfa et al. (2016).
In this figure, we can see that for low-mass galaxies (M, < 10°My),
the Mpm/M, versus M, relation seems to flatten at Mpy ~ 10 M,.
However, this is unclear because S*G has very few well-observed
galaxies with such a low mass.

We can use other surveys to extend the S*G results to even
lower mass by using measurements of the baryonic properties of
dSph galaxies and their line-of-sight velocity dispersion .. The
Newtonian dynamical mass of galaxies from the other surveys are
found using equation (2) in Wolf et al. (2010):

3rn(o2,)
G
where Mayn(<r) is the mass within the baryonic ry,. Note that when
using this to estimate Mpy/M,., we account for the fact that only half
the stellar mass is enclosed within ry,.

To check the consistency between the assumed dark matter fraction
and observations of isolated dwarfs, we use Fig. 16 to plot Myy,/M,
of the galaxies in four different galaxy surveys (semi-transparent
coloured dots), assuming the Diaz-Garcia et al. (2016) result for

Mdyn (< rh) = (64)
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the dark matter fraction as used in our nominal analysis (black
line; equation 10), and assuming conservatively that Mpyv = 10 M,
(blue line). We can see that it is rather unlikely that the FDS dwarfs
generally have much less dark matter in their baryonic region than
we assumed, since the linear regression to the survey data over the
M, range of the FDS dwarfs (dashed black line) is quite close to our
nominal dark matter fraction. We can also use the Illustris TNG50
cosmological simulation (Pillepich et al. 2018, 2019; Nelson et al.
2019a,b) to check the dark matter fraction that we expect dwarfs to
have in the ACDM paradigm. We do this in Fig. 16, where we show
the mean and standard deviation of Mpy/M, + 1 within the stellar
r in M, bins of width 0.25 dex (cyan dots with error bars). The
trend followed by these simulated dwarfs is even steeper than that
given by the observed dwarfs, though both give a similar dark matter
fraction at the low-mass end crucial to our analysis (the median M,
of the FDS dwarfs is shown by the vertical dashed green line at
logo(M,/Mg) = 6.96). This further supports our nominal choice
for the dark matter fraction of FDS dwarfs. One reason for their
high expected dark matter fraction is that the vast majority of them
have too little stellar mass for efficient core formation, the threshold
for which is shown by the red vertical line at log;o(M,/Mg) =
7.2 for the reasons discussed above. All these arguments highlight
that the Mpy = 10 M, case is clearly very conservative given the
steep relation followed by low-mass galaxies that we expect from
abundance matching arguments, Illustris TNG50 results, and the
velocity dispersions of nearby dwarfs.

To assess the sensitivity of our analysis in Section 5 to the assumed
dark matter fraction, we repeat it with the dark matter fraction given
by the linear fit (equations 18 and 19 of Banik & Zhao 2018b) to the
observed isolated dwarfs in Fig. 16:

M Mi
log,, (% + 1) = —0.396 + 4.089 log,, (M—> : (65)
* ©

where Mpy/M, is the ratio of dark matter to stars within the stellar ry,.
The typical dwarf densities in this case are about 0.5 dex lower than
with the nominal dark matter fraction. As a result, the logarithmic
mean is lower than in the nominal case by a similar amount: It is now
logyy p (Mg pe™?) = —1.41. In this case, the density threshold p, =
5.85 x 107* Mg, pc is 2.440 below the mean. To keep our statistical
analysis comparable to our nominal one, we use the same six bins
in 7nebs as before. In this way, we obtain that equation (65) gives a
slightly higher ngesy = 0.331’8;8‘5‘. The maximum value achieved by
the MCMC chain is only 0.59, which implies that the ACDM model
is still in >5¢ tension with the expected value of 1.

For completeness, we repeat our analysis with the very conserva-
tive assumption that Mpy = 10 M,. In this case, the distribution of
dwarf densities is similar to that in MOND (Fig. 6) but scaled up
11x. Thus, the logarithmic dispersion remains o = 0.57 dex and the
density threshold p, = 4.66 x 10™* M, pc~3 is still 2.880 below the
mean log,, p, whichis now —1.69 in these units. As expected, the p;
value is 11 x higher than in the MOND model — and thus much less
than in our nominal ACDM analysis. We found that in this reduced
density case, Ngesr = o.54t3;33 and the probability that ngesr > 1 is
2.23 x 1072 (2.290).

Appendix F shows the complete triangle plot with the distributions
of the model parameters and parameter pairs for the nominal ACDM
analysis and the two revised cases described above. There is little
impact to the inferences on parameters other than 9gesir, min, dist» and
Slopep, -

Therefore, it is clear that assuming a lower dark matter fraction for
the ACDM dwarfs helps to alleviate the tension between observations
and N-body simulations only if this fraction is reduced significantly.
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However, having a dark matter fraction of Mpy/M, = 10 within
the optical radius is a very conservative assumption at odds with
many other lines of evidence, including cosmological simulations.
Even with this assumption, 7gesir > 1 is still excluded by our MCMC
analysis of the FDS at 97.8 per cent confidence.

9 CONCLUSIONS

We studied the tidal susceptibility of dwarf galaxies in the Fornax
Cluster to gravitational effects of the cluster environment in both
ACDM and MOND. In both theories, we found cluster tides to be
the main effect. Thus, cluster tides should be able to explain the
observed morphological disturbance of some Fornax dwarfs and the
lack of low surface brightness dwarfs towards the cluster centre
(Fig. 3). By constructing a test mass simulation of the Fornax system
and performing a statistical analysis using the MCMC method, we
constrained the tidal susceptibility (n = ru/r4g) value at which a
Fornax dwarf should get destroyed in order to match the observations,
which we call nges.. We found that ngeg, = 0.25f8;8§ in ACDM and
1.8879% in MOND.

The 1gesie value in ACDM falls significantly below analytic expec-
tations (equation 11) and is in >5¢ tension with N-body simulation
results, which indicate that g ~ 1 (Pefiarrubia et al. 2009; van
den Bosch et al. 2018). In other words, the very low n values of
FDS dwarfs imply that they should be unaffected by cluster tides,
contradicting the observed signs of tidal disturbance. We also found
that the other major environmental influence of interactions with
individual massive galaxies in the cluster should not be a significant
process in ACDM (see also section 7.3.3 of Venhola et al. 2019).
We discarded the possibility that the above-mentioned discrepancy
is due to the minimum allowed density of the simulated sample of
dwarfs being too low, the deprojection parameters being different
from our nominal ones, the resolution of the test mass simulation not
being high enough to get reliable results, and the dwarfs having less
dark matter than we assumed (Section 8). In particular, the velocity
dispersions of nearby isolated dwarfs suggest a slightly lower dark
matter fraction (dashed line in Fig. 16). Using this only slightly raises
Ndestr 1O 0.33f8:8‘5‘. Even if we conservatively assume that the FDS
dwarfs have only 10x as much dark matter as stars within their optical
radius, we still get a 2.29¢0 tension with expectations (equation 11).
Therefore, our results reliably show that the ACDM paradigm is in
serious tension with observations of perturbed dwarf galaxies in the
Fornax Cluster (observations which are strongly suggestive of tidal
effects, see also section 7.4 of Venhola et al. 2022).

An alternative model that assumes different properties for the dark
matter particles could perhaps reconcile the basics of the ACDM
cosmology with the observed morphological disturbances of some
Fornax dwarfs. One of the most popular alternatives is the ‘superfluid
dark matter’ model (Berezhiani & Khoury 2015; Hossenfelder &
Mistele 2020). Like most hybrid models, it attempts to reconcile
the successes of MOND on galaxy scales with the advantages of
dark matter on larger scales, especially with regards to the CMB
anisotropies and galaxy cluster dynamics. However, this model also
presents its own problems, including orbital decay of stars in the
Galactic disc from Cherenkov radiation (Mistele 2021) and that
the LG satellite planes extend beyond the estimated superfluid core
radii of the MW and M31, making it difficult to explain the high
observed internal velocity dispersions of the satellites in these planes
(see section 5.6 of Roshan et al. 2021a). There are also difficulties
explaining the observed regularities in rotation curves consistently
with gravitational lensing results in a theory where baryons feel
extra non-gravitational forces that do not affect photons (Mistele,
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McGaugh & Hossenfelder 2022). Another possibility is that the dark
matter particles are fuzzy with a low mass and thus a long de Broglie
wavelength, reducing their density in the central region of a dwarf
galaxy. However, ultralight bosons (Hu, Barkana & Gruzinov 2000;
Hui et al. 2017) are in significant tension with observations of the
Lyman-« forest (Rogers & Peiris 2021). More generally, reducing
the ability of dark matter to cluster on small scales would make it
difficult to form dwarf galaxies at high redshift and to explain their
high Newtonian dynamical M/L ratios.

This brings us to the MOND case, in which the inferred 7geg 1S
much more consistent with analytic expectations (equation 20). In
order to compare 1ngeqy With the results of N-body simulations as we
did for ACDM, we had to perform numerical MOND simulations
ourselves (though one pioneering study exists, see Brada & Milgrom
2000). From our simulations tailored to the properties of a typical
dwarf galaxy in the Fornax Cluster, we obtained that ngesy =
1.70 £ 0.30, in excellent agreement with the value required to
fit the observational data according to the MCMC method. We
therefore conclude that MOND performs significantly better than
ACDM and is clearly the preferred model in all the tests that we
conducted throughout this work, even though it was not designed
with the FDS in mind. Nevertheless, MOND still needs an additional
ingredient to explain some of the observations on larger scales,
especially the temperature and pressure profiles in galaxy clusters
and the CMB power spectrum (Famaey & McGaugh 2012). For this,
several models have been proposed that complement MOND. Some
of the most promising ones are the relativistic MOND theory which
can fit the speed of gravitational waves and the CMB anisotropies
but likely cannot explain the dynamics of virialized galaxy clusters
(Skordis & Ztosnik 2021); and the vHDM model that assumes
MOND gravity and 11 eV sterile neutrinos (Angus 2009). These
proposed particles would play the role of a collisionless component
that only aggregates at the scale of galaxy clusters, helping to
explain the Bullet Cluster (Angus et al. 2007) and other virialized
galaxy clusters (Angus et al. 2010), where the MOND corrections
to Newtonian gravity are generally small. MOND has also proved
capable of explaining several physical phenomena that ACDM has
been failing to describe, including the planes of satellite galaxies
in the LG and beyond (Pawlowski 2021a,b), the weakly barred
morphology of M33 (Sellwood, Shen & Li 2019; Banik et al. 2020),
and the pattern speeds of galaxy bars (Roshan et al. 2021a,b). Using
the vYHDM extension, MOND can also explain the CMB (Angus &
Diaferio 2011), the KBC void and Hubble tension (Haslbauer et al.
2020), and the early formation of the interacting galaxy cluster
El Gordo (Katz et al. 2013; Asencio, Banik & Kroupa 2021).
Therefore, this later model is capable of explaining both the CMB
and the dynamics of galaxy clusters while preserving the successes
of MOND at galaxy scales (Banik & Zhao 2022, and references
therein). In this study, we have shown that it should also be capable of
resolving the problem faced by ACDM with regards to the observed
signs of tidal disturbance in Fornax Cluster dwarf galaxies.

ACKNOWLEDGEMENTS

EA is supported by a stipend from the Stellar Populations and
Dynamics Research Group at the University of Bonn. IB is supported
by Science and Technology Facilities Council grant ST/V000861/1,
which also partially supports HZ. IB acknowledges support from
a ‘Pathways to Research’ fellowship from the University of
Bonn. PK acknowledges support through the Deutscher Akademis-
cher Austauschdienst-Eastern European Exchange Programme. EA
would like to thank Prof. Xufen Wu for providing the initial

220z Jaquiaidag 90 uo Jasn Ausiaaiun NiNO Aq 2008 199/1862/2/S 1 S/0ne/seiuw/woo dnooiwepese//:sdiy woll papeojumod



conditions templates of the dwarf galaxy used in the MOND N-body
simulations. The authors are grateful to Sara Eftekhari for providing
the table of literature data shown in Fig. 16. They are also grateful to
the referee for comments which substantially improved this paper.

DATA AVAILABILITY

The results presented can be reproduced by using the data available
in the Vizier catalogue'? and following the methods described in this
paper. For a user guide describing how to install POR and providing
links from which it can be downloaded, we refer the reader to Nagesh
et al. (2021).

REFERENCES

Aaronson M., 1983, ApJ, 266, L11

Aguirre A., Schaye J., Quataert E., 2001, ApJ, 561, 550

Ambartsumian V. A., 1937, Astron. Zh., 14, 207

Angus G. W., 2009, MNRAS, 394, 527

Angus G. W,, Diaferio A., 2011, MNRAS, 417, 941

Angus G. W,, Shan H. Y., Zhao H. S., Famaey B., 2007, ApJ, 654, L13

Angus G. W., Famaey B., Diaferio A., 2010, MNRAS, 402, 395

Asencio E., Banik I., Kroupa P., 2021, MNRAS, 500, 5249

Babcock H. W., 1939, Lick Obs. Bull., 498, 41

Banik I., Zhao H., 2018a, SF J. Astrophys., 1, 1000008

Banik I., Zhao H., 2018b, MNRAS, 473, 419

Banik I., Zhao H., 2018c, MNRAS, 480, 2660

Banik I., Zhao H., 2022, Symmetry, 14, 1331

Banik I., O’Ryan D., Zhao H., 2018, MNRAS, 477, 4768

Banik 1., Thies I., Candlish G., Famaey B., Ibata R., Kroupa P., 2020, ApJ,
905, 135

Banik I., Haslbauer M., Pawlowski M. S., Famaey B., Kroupa P., 2021,
MNRAS, 503, 6170

Banik I., Thies I., Truelove R., Candlish G., Famaey B., Pawlowski M. S.,
Ibata R., Kroupa P., 2022a, MNRAS, 513, 129

Banik I., Nagesh S. T., Haghi H., Kroupa P., Zhao H., 2022b, MNRAS, 513,
3541

Barnes J. E., Hernquist L., 1992, Nature, 360, 715

Baumgardt H., Parmentier G., Gieles M., Vesperini E., 2010, MNRAS, 401,
1832

Begeman K. G., Broeils A. H., Sanders R. H., 1991, MNRAS, 249, 523

Bekenstein J., Milgrom M., 1984, AplJ, 286, 7

Berezhiani L., Khoury J., 2015, Phys. Rev. D, 92, 103510

Berryman J. M., Coloma P., Huber P., Schwetz T., Zhou A., 2022, J. High
Energy Phys., 2022, 55

Bilek M., Thies I., Kroupa P., Famaey B., 2018, A&A, 614, A59

Bilek M., Miiller O., Famaey B., 2019, A&A, 627, L1

Bilek M., Thies I., Kroupa P., Famaey B., 2021, Galaxies, 9, 100

Binney J., Tremaine S., 2008, Galactic Dynamics, 2nd edn. Princeton Univ.
Press, Princeton, NJ

Blakeslee J. P. et al., 2009, ApJ, 694, 556

Bocquet S., Carter F. W., 2016, J. Open Source Softw., 1, 46

Borukhovetskaya A., Navarro J. F., Errani R., Fattahi A., 2022, MNRAS,
512, 5247

Bosma A., 1978, PhD thesis, Groningen Univ.

Bosma A., 1981, AJ, 86, 1825

Brada R., Milgrom M., 2000, ApJ, 541, 556

Caldwell N. et al., 2017, ApJ, 839, 20

Chae K.-H., Bernardi M., Sheth R. K., 2018, ApJ, 860, 81

Chae K.-H., Lelli F., Desmond H., McGaugh S. S., Li P, Schombert J. M.,
2020, ApJ, 904, 51

Bhttps://vizier.u-strasbg.fr/viz-bin/VizieR-3?-source=J/A~per~cent2bA/6
20/A165/dwarf&-out.max=50&-out.form=HTML~per~cent20Table&-out.
add=_r&-out.add=_RAJ, _DEJ&-sort=_r&-oc.form = sexa

The tidal stability of Fornax Cluster dwarfs

3007

Chae K.-H., Desmond H., Lelli F., McGaugh S. S., Schombert J. M., 2021,
ApJ, 921, 104

Chilingarian I. V., Afanasiev A. V., Grishin K. A., Fabricant D., Moran S.,
2019, ApJ, 884,79

Clowe D., Brada¢ M., Gonzalez A. H., Markevitch M., Randall S. W., Jones
C., Zaritsky D., 2006, ApJ, 648, L109

de Vaucouleurs G., 1948, Ann. Astrophys., 11, 247

Di Cintio A., Brook C. B., Maccio A. V., Stinson G. S., Knebe A., Dutton A.
A., Wadsley J., 2014, MNRAS, 437, 415

Diaz-Garcia S., Salo H., Laurikainen E., Herrera-Endoqui M., 2016, A&A,
587, A160

Drinkwater M. J., Gregg M. D., Colless M., 2001, ApJ, 548, L139

Dutton A. A. et al., 2016, MNRAS, 461, 2658

Efstathiou G., Sutherland W. J., Maddox S. J., 1990, Nature, 348, 705

Errani R., Navarro J. F., Ibata R., Pefnarrubia J., 2022, MNRAS, 511, 6001

Faber S. M., Gallagher J. S., 1979, ARA&A, 17, 135

Falcon-Barroso J. et al., 2011, MNRAS, 417, 1787

Famaey B., Binney J., 2005, MNRAS, 363, 603

Famaey B., McGaugh S. S., 2012, Living Rev. Relativ., 15, 10

Famaey B., McGaugh S., Milgrom M., 2018, MNRAS, 480, 473

Ferguson H. C., 1989, AJ, 98, 367

Fletcher R., Powell M. J. D., 1963, Comput. J., 6, 163

Forouhar Moreno V. J., Benitez-Llambay A., Cole S., Frenk C., 2022,
MNRAS, 511, 3910

Freundlich J., Famaey B., Oria P. A., Bilek M., Miiller O., Ibata R., 2022,
A&A, 658, A26

Gao L., White S. D. M., Jenkins A., Stoehr F., Springel V., 2004, MNRAS,
355, 819

Gelman A., Gilks W. R., Roberts G. O., 1997, Ann. Appl. Probab., 7, 110

Gentile G., Famaey B., de Blok W. J. G., 2011, A&A, 527, A76

Gnedin O. Y., Zhao H., 2002, MNRAS, 333, 299

Grebel E. K., 2001, in de Boer K. S., Dettmar R.-J., Klein U., eds, 40th
Meeting of the Graduiertenkolleg ‘The Magellanic Clouds and Other
Dwarf Galaxies’ Vol. 40, Dwarf Galaxies and their Environment. Shaker
Verlag GmbH, Germany, p. 45

Gunn J. E., Gott J. Richard 1., 1972, ApJ, 176, 1

Haghi H., Bazkiaei A. E., Zonoozi A. H., Kroupa P., 2016, MNRAS, 458,
4172

Haghi H. et al., 2019a, MNRAS, 487, 2441

Haghi H., Amiri V., Hasani Zonoozi A., Banik I., Kroupa P., Haslbauer M.,
2019b, ApJ, 884, L.25

Hammer F., Yang Y., Arenou F., Wang J., Li H., Bonifacio P., Babusiaux C.,
2020, ApJ, 892, 3

Haslbauer M., Banik I., Kroupa P., Grishunin K., 2019a, MNRAS, 489, 2634

Haslbauer M., Dabringhausen J., Kroupa P., Javanmardi B., Banik I., 2019b,
A&A, 626, A4T

Haslbauer M., Banik I., Kroupa P., 2020, MNRAS, 499, 2845

Hees A., Folkner W. M., Jacobson R. A., Park R. S., 2014, Phys. Rev. D, 89,
102002

Hees A., Famaey B., Angus G. W., Gentile G., 2016, MNRAS, 455, 449

Hossenfelder S., Mistele T., 2020, MNRAS, 498, 3484

Hoyt T. J. et al., 2021, ApJ, 915, 34

Hu W., Barkana R., Gruzinov A., 2000, Phys. Rev. Lett., 85, 1158

Hui L., Ostriker J. P, Tremaine S., Witten E., 2017, Phys. Rev. D, 95, 043541

Ibata R. A. et al., 2013, Nature, 493, 62

Ibata R. A., Ibata N. G., Lewis G. F., Martin N. F., Conn A., Elahi P., Arias
V., Fernando N., 2014, AplJ, 784, L6

Innanen K. A., Harris W. E., Webbink R. F., 1983, AJ, 88, 338

Tocco F.,, Pato M., Bertone G., 2015, Phys. Rev. D, 92, 084046

Todice E. et al., 2019, A&A, 627, A136

Jeans J. H., 1919, MNRAS, 79, 408

Kahn F. D., Woltjer L., 1959, ApJ, 130, 705

Katz H., McGaugh S., Teuben P., Angus G. W., 2013, ApJ, 772, 10

Kazantzidis S., Mayer L., Mastropietro C., Diemand J., Stadel J., Moore B.,
2004, Apl, 608, 663

Keim M. A. et al., 2022, preprint (arXiv:2109.09778)

Kent S. M., 1987, AJ, 93, 816

Kim S. Y., Peter A. H. G., Hargis J. R., 2018, Phys. Rev. Lett., 121, 211302

MNRAS 515, 2981-3013 (2022)

220z Jaquiaidag 90 uo Jasn Ausiaaiun NiNO Aq 2008 199/1862/2/S 1 S/0ne/seiuw/woo dnooiwepese//:sdiy woll papeojumod


http://dx.doi.org/10.1086/183969
http://dx.doi.org/10.1086/323376
http://dx.doi.org/10.1111/j.1365-2966.2008.14341.x
http://dx.doi.org/10.1111/j.1365-2966.2011.19321.x
http://dx.doi.org/10.1086/510738
http://dx.doi.org/10.1111/j.1365-2966.2009.15895.x
http://dx.doi.org/10.1093/mnras/staa3441
http://dx.doi.org/10.5479/ADS/bib/1939LicOB.19.41B
http://dx.doi.org/10.1093/mnras/stx2350
http://dx.doi.org/10.1093/mnras/sty2007
http://dx.doi.org/10.3390/sym14071331
http://dx.doi.org/10.1093/mnras/sty919
http://dx.doi.org/10.3847/1538-4357/abc623
http://dx.doi.org/10.1093/mnras/stab751
http://dx.doi.org/10.1093/mnras/stac722
http://dx.doi.org/10.1093/mnras/stac1073
http://dx.doi.org/10.1038/360715a0
http://dx.doi.org/10.1111/j.1365-2966.2009.15758.x
http://dx.doi.org/10.1093/mnras/249.3.523
http://dx.doi.org/10.1086/162570
http://dx.doi.org/10.1103/PhysRevD.92.103510
http://dx.doi.org/10.1007/JHEP02(2022)055
http://dx.doi.org/10.1051/0004-6361/201731939
http://dx.doi.org/10.1051/0004-6361/201935840
http://dx.doi.org/10.3390/galaxies9040100
http://dx.doi.org/10.1088/0004-637X/694/1/556
http://dx.doi.org/10.21105/joss.00046
http://dx.doi.org/10.1093/mnras/stac653
http://dx.doi.org/10.1086/113063
http://dx.doi.org/10.1086/309475
http://dx.doi.org/10.3847/1538-4357/aa688e
http://dx.doi.org/10.3847/1538-4357/aac1b9
http://dx.doi.org/10.3847/1538-4357/abbb96
https://vizier.u-strasbg.fr/viz-bin/VizieR-3?-source=J/A~per~cent2bA/620/A165/dwarf&-out.max=50&-out.form=HTML~per~cent20Table&-out.add=_r&-out.add=_RAJ,_DEJ&-sort=_r&-oc.form=sexa
http://dx.doi.org/10.3847/1538-4357/ac1bba
http://dx.doi.org/10.3847/1538-4357/ab4205
http://dx.doi.org/10.1086/508162
http://dx.doi.org/10.1093/mnras/stt1891
http://dx.doi.org/10.1051/0004-6361/201526161
http://dx.doi.org/10.1086/319113
http://dx.doi.org/10.1093/mnras/stw1537
http://dx.doi.org/10.1038/348705a0
http://dx.doi.org/10.1093/mnras/stac476
http://dx.doi.org/10.1146/annurev.aa.17.090179.001031
http://dx.doi.org/10.1111/j.1365-2966.2011.19372.x
http://dx.doi.org/10.1111/j.1365-2966.2005.09474.x
http://dx.doi.org/10.12942/lrr-2012-10
http://dx.doi.org/10.1093/mnras/sty1884
http://dx.doi.org/10.1086/115152
http://dx.doi.org/10.1093/comjnl/6.2.163
http://dx.doi.org/10.1093/mnras/stac312
http://dx.doi.org/10.1051/0004-6361/202142060
http://dx.doi.org/10.1111/j.1365-2966.2004.08360.x
http://dx.doi.org/10.1214/aoap/1034625254
http://dx.doi.org/10.1051/0004-6361/201015283
http://dx.doi.org/10.1046/j.1365-8711.2002.05361.x
http://dx.doi.org/10.1086/151605
http://dx.doi.org/10.1093/mnras/stw573
http://dx.doi.org/10.1093/mnras/stz1465
http://dx.doi.org/10.3847/1538-4357/ab77be
http://dx.doi.org/10.1093/mnras/stz2270
http://dx.doi.org/10.1051/0004-6361/201833771
http://dx.doi.org/10.1093/mnras/staa2348
http://dx.doi.org/10.1103/PhysRevD.89.102002
http://dx.doi.org/10.1093/mnras/stv2330
http://dx.doi.org/10.1093/mnras/staa2594
http://dx.doi.org/10.3847/1538-4357/abfe5a
http://dx.doi.org/10.1103/PhysRevLett.85.1158
http://dx.doi.org/10.1103/PhysRevD.95.043541
http://dx.doi.org/10.1038/nature11717
http://dx.doi.org/10.1088/2041-8205/784/1/L6
http://dx.doi.org/10.1086/113320
http://dx.doi.org/10.1103/PhysRevD.92.084046
http://dx.doi.org/10.1051/0004-6361/201935721
http://dx.doi.org/10.1093/mnras/79.6.408
http://dx.doi.org/10.1086/146762
http://dx.doi.org/10.1088/0004-637x/772/1/10
http://dx.doi.org/10.1086/420840
http://arxiv.org/abs/2109.09778
http://dx.doi.org/10.1086/114366
http://dx.doi.org/10.1103/PhysRevLett.121.211302

3008 E. Asencio et al.

KleynaJ. T., Geller M. J., Kenyon S. J., Kurtz M. J., Thorstensen J. R., 1998,
AJ, 115, 2359

Kroupa P., 1997, New Astron., 2, 139

Kroupa P., 2008, The Cambridge N-Body Lectures, Lecture Notes in Physics.
Springer, Berlin, p. 181

Kroupa P, 2012, Publ. Astron. Soc. Aust., 29, 395

Kroupa P, Theis C., Boily C. M., 2005, A&A, 431, 517

Kroupa P. et al., 2018, Nature, 561, E4

La Marca A. et al., 2022, A&A, 659, A92

Lelli F,, McGaugh S. S., Schombert J. M., Pawlowski M. S., 2017, ApJ, 836,
152

Li P, Lelli F., McGaugh S., Schombert J., 2018, A&A, 615, A3

Li H., Hammer F., Babusiaux C., Pawlowski M. S., Yang Y., Arenou F., Du
C., WangJ., 2021, ApJ, 916, 8

Li P, McGaugh S. S., Lelli F, Tian Y., Schombert J. M., Ko C.-M., 2022,
ApJ, 927, 198

Libeskind N. L., Frenk C. S., Cole S., Helly J. C., Jenkins A., Navarro J. F.,
Power C., 2005, MNRAS, 363, 146

Loni A. et al., 2021, A&A, 648, A31

Liighausen F., Famaey B., Kroupa P., 2015, Can. J. Phys., 93, 232

Lynden-Bell D., 1976, MNRAS, 174, 695

McConnachie A. W., 2012, AJ, 144, 4

McGaugh S., Milgrom M., 2013a, ApJ, 766, 22

McGaugh S., Milgrom M., 2013b, ApJ, 775, 139

McGaugh S. S., Wolf J., 2010, ApJ, 722, 248

McGaugh S., Lelli F., Schombert J., 2016, Phys. Rev. Lett., 117,201101

McGaugh S. S., Lelli F., Schombert J. M., Li P., Visgaitis T., Parker K. S.,
Pawlowski M. S., 2021, AJ, 162, 202

Machacek M., Dosaj A., Forman W., Jones C., Markevitch M., Vikhlinin A.,
Warmflash A., Kraft R., 2005, ApJ, 621, 663

Méndez A., Rivera-Valentin E. G., 2017, ApJ, 837, L1

Milgrom M., 1983, Apl, 270, 365

Milgrom M., 1984, ApJ, 287, 571

Milgrom M., 1986, ApJ, 302, 617

Milgrom M., 1994, Apl, 429, 540

Milgrom M., 1999, Phys. Lett. A, 253, 273

Milgrom M., 2021, Phys. Rev. D, 103, 044043

Mistele T., 2021, preprint (arXiv:2103.16954)

Mistele T., McGaugh S., Hossenfelder S., 2022, A&A, in press

Moore B., Ghigna S., Governato F., Lake G., Quinn T., Stadel J., Tozzi P.,
1999, Apl, 524, L19

Moreno J. et al., 2022, Nature Astron., 6, 496

Moster B. P., Somerville R. S., Maulbetsch C., van den Bosch F. C., Maccio
A. V., Naab T., Oser L., 2010, ApJ, 710, 903

Miiller O., Pawlowski M. S., Jerjen H., Lelli F.,, 2018, Science, 359,
534

Miiller O. et al., 2021, A&A, 645, L5

Nagesh S. T., Banik I., Thies I., Kroupa P., Famaey B., Wittenburg N., Parziale
R., Haslbauer M., 2021, Can. J. Phys., 99, 607

Nelson D. et al., 2019a, Comput. Astrophys. Cosmol., 6, 2

Nelson D. et al., 2019b, MNRAS, 490, 3234

Ostriker J. P., Steinhardt P. J., 1995, Nature, 377, 600

Paolillo M., Fabbiano G., Peres G., Kim D. W., 2002, ApJ, 565, 883

Pawlowski M. S., 2018, Mod. Phys. Lett. A, 33, 1830004

Pawlowski M. S., 2021a, Nature Astron., 5, 1185

Pawlowski M. S., 2021b, Galaxies, 9, 66

Pawlowski M. S., Kroupa P., 2020, MNRAS, 491, 3042

Pawlowski M. S., Tony Sohn S., 2021, ApJ, 923, 42

Pawlowski M. S., Kroupa P., de Boer K. S., 2011, A&A, 532, A118

Pawlowski M. S. et al., 2014, MNRAS, 442, 2362

Penarrubia J., Navarro J. E,, McConnachie A. W., 2008, AplJ, 673, 226

Pefiarrubia J., Navarro J. F., McConnachie A. W., Martin N. F., 2009, ApJ,
698, 222

Peng C. Y., Ho L. C., Impey C. D., Rix H.-W., 2002, AJ, 124, 266

Penner A. R., 2020, Ap&SS, 365, 154

Pillepich A. et al., 2018, MNRAS, 473, 4077

Pillepich A. et al., 2019, MNRAS, 490, 3196

Planck Collaboration XIII, 2016, A&A, 594, A13

MNRAS 515, 2981-3013 (2022)

Ploeckinger S., Sharma K., Schaye J., Crain R. A., Schaller M., Barber C.,
2018, MNRAS, 474, 580

Pontzen A., Governato F., 2012, MNRAS, 421, 3464

Rakos K., Schombert J., Maitzen H. M., Prugovecki S., Odell A., 2001, AJ,
121, 1974

Read J. I, Erkal D., 2019, MNRAS, 487, 5799

Read J. I., Walker M. G., Steger P., 2019, MNRAS, 484, 1401

Renaud F., Famaey B., Kroupa P., 2016, MNRAS, 463, 3637

Roberts M. S., Whitehurst R. N., 1975, ApJ, 201, 327

Rogers K. K., Peiris H. V., 2021, Phys. Rev. Lett., 126, 071302

Rogstad D. H., Shostak G. S., 1972, ApJ, 176, 315

Roshan M., Banik I., Ghafourian N., Thies I., Famaey B., Asencio E., Kroupa
P, 2021a, MNRAS, 503, 2833

Roshan M., Ghafourian N., Kashfi T., Banik I., Haslbauer M., Cuomo V.,
Famaey B., Kroupa P., 2021b, MNRAS, 508, 926

Rubin V. C., Ford W. K. Jr, 1970, ApJ, 159, 379

Rys$ A., van de Ven G., Falcon-Barroso J., 2014, MNRAS, 439, 284

Samurovi¢ S., 2016, Ap&SS, 361, 199

Sand D. J., Strader J., Willman B., Zaritsky D., McLeod B., Caldwell N.,
Seth A., Olszewski E., 2012, Apl, 756, 79

Sanders R. H., 1999, ApJ, 512, .23

Sanders R. H., 2000, MNRAS, 313, 767

Sellwood J. A., Shen J., Li Z., 2019, MNRAS, 486, 4710

Senay M., Mohammadi Sabet M., Moradpour H., 2021, Phys. Scr., 96,075001

SérsicJ. L., 1963, Boletin de la Asociacion Argentina de Astronomia La Plata
Argentina, 6, 41

Sheardown A. et al., 2018, ApJ, 865, 118

Sheth K. et al., 2010, PASP, 122, 1397

Shin E.-J., Jung M., Kwon G., Kim J.-h., Lee J., Jo Y., Oh B. K., 2020, ApJ,
899, 25

Skordis C., Ztosnik T., 2021, Phys. Rev. Lett., 127, 161302

Smith R. et al., 2015, MNRAS, 454, 2502

Smith R., Choi H., Lee J., Rhee J., Sanchez-Janssen R., Yi S. K., 2016, ApJ,
833, 109

Taylor E. N. et al., 2011, MNRAS, 418, 1587

Teyssier R., 2002, A&A, 385, 337

Thomas G. F., Famaey B., Ibata R., Liighausen F., Kroupa P., 2017, A&A,
603, A65

Thomas G. F., Famaey B., Ibata R., Renaud F., Martin N. F., Kroupa P., 2018,
A&A, 609, Ad4

Tollet E. et al., 2016, MNRAS, 456, 3542

Toloba E. et al., 2014, ApJS, 215, 17

Torrealba G., Koposov S. E., Belokurov V., Irwin M., 2016, MNRAS, 459,
2370

Tully R. B., Libeskind N. I., Karachentsev I. D., Karachentseva V. E., Rizzi
L., Shaya E. J., 2015, ApJ, 802, L25

van den Bosch F. C., Ogiya G., Hahn O., Burkert A., 2018, MNRAS, 474,
3043

van Dokkum P. et al., 2018, Nature, 555, 629

van Dokkum P. et al., 2019, ApJ, 880, 91

Venhola A. et al., 2017, A&A, 608, A142

Venhola A. et al., 2018, A&A, 620, A165

Venhola A. et al., 2019, A&A, 625, A143

Venhola A. et al., 2020, A&A, 633, C2

Venhola A. et al., 2022, A&A, 662, A43

Walcher C. J., Fried J. W., Burkert A., Klessen R. S., 2003, A&A, 406, 847

Wasserman A., Romanowsky A. J., Brodie J., van Dokkum P., Conroy C.,
Abraham R., Cohen Y., Danieli S., 2018, ApJ, 863, L15

Watson M. G. et al., 2009, A&A, 493, 339

Webb J. J., Bovy J., 2020, MNRAS, 499, 116

Wetzstein M., Naab T., Burkert A., 2007, MNRAS, 375, 805

White S. D. M., Rees M. J., 1978, MNRAS, 183, 341

Willmer C. N. A., 2018, ApJS, 236, 47

Wittenburg N., Kroupa P., Famaey B., 2020, ApJ, 890, 173

Wolf J., Martinez G. D., Bullock J. S., Kaplinghat M., Geha M., Mufioz R.
R., Simon J. D., Avedo F. E,, 2010, MNRAS, 406, 1220

Wu X., Kroupa P., 2013, MNRAS, 435, 728

Wu X., Wang Y., Feix M., Zhao H., 2017, ApJ, 844, 130

220z Jaquiaidag 90 uo Jasn Ausiaaiun NiNO Aq 2008 199/1862/2/S 1 S/0ne/seiuw/woo dnooiwepese//:sdiy woll papeojumod


http://dx.doi.org/10.1086/300360
http://dx.doi.org/10.1016/S1384-1076(97)00012-2
http://dx.doi.org/10.1071/AS12005
http://dx.doi.org/10.1051/0004-6361:20041122
http://dx.doi.org/10.1038/s41586-018-0429-z
http://dx.doi.org/10.1051/0004-6361/202141901
http://dx.doi.org/10.3847/1538-4357/836/2/152
http://dx.doi.org/10.1051/0004-6361/201732547
http://dx.doi.org/10.3847/1538-4357/ac0436
http://dx.doi.org/10.3847/1538-4357/ac52aa
http://dx.doi.org/10.1111/j.1365-2966.2005.09425.x
http://dx.doi.org/10.1051/0004-6361/202039803
http://dx.doi.org/10.1139/cjp-2014-0168
http://dx.doi.org/10.1093/mnras/174.3.695
http://dx.doi.org/10.1088/0004-6256/144/1/4
http://dx.doi.org/10.1088/0004-637X/766/1/22
http://dx.doi.org/10.1088/0004-637X/775/2/139
http://dx.doi.org/10.1088/0004-637X/722/1/248
http://dx.doi.org/10.1103/PhysRevLett.117.201101
http://dx.doi.org/10.3847/1538-3881/ac2502
http://dx.doi.org/10.1086/427548
http://dx.doi.org/10.3847/2041-8213/aa5f13
http://dx.doi.org/10.1086/161130
http://dx.doi.org/10.1086/162716
http://dx.doi.org/10.1086/164021
http://dx.doi.org/10.1086/174341
http://dx.doi.org/10.1016/S0375-9601(99)00077-8
http://dx.doi.org/10.1103/PhysRevD.103.044043
http://arxiv.org/abs/2103.16954
http://dx.doi.org/10.1051/0004-6361/202243216
http://dx.doi.org/10.1086/312287
http://dx.doi.org/10.1038/s41550-021-01598-4
http://dx.doi.org/10.1088/0004-637X/710/2/903
http://dx.doi.org/10.1126/science.aao1858
http://dx.doi.org/10.1051/0004-6361/202039973
http://dx.doi.org/10.1139/cjp-2020-0624
http://dx.doi.org/10.1186/s40668-019-0028-x
http://dx.doi.org/10.1093/mnras/stz2306
http://dx.doi.org/10.1038/377600a0
http://dx.doi.org/10.1086/337919
http://dx.doi.org/10.1142/S0217732318300045
http://dx.doi.org/10.1038/s41550-021-01452-7
http://dx.doi.org/10.3390/galaxies9030066
http://dx.doi.org/10.1093/mnras/stz3163
http://dx.doi.org/10.3847/1538-4357/ac2aa9
http://dx.doi.org/10.1051/0004-6361/201015021
http://dx.doi.org/10.1093/mnras/stu1005
http://dx.doi.org/10.1086/523686
http://dx.doi.org/10.1088/0004-637X/698/1/222
http://dx.doi.org/10.1086/340952
http://dx.doi.org/10.1007/s10509-020-03870-x
http://dx.doi.org/10.1093/mnras/stx2656
http://dx.doi.org/10.1093/mnras/stz2338
http://dx.doi.org/10.1051/0004-6361/201525830
http://dx.doi.org/10.1093/mnras/stx2787
http://dx.doi.org/10.1111/j.1365-2966.2012.20571.x
http://dx.doi.org/10.1086/319955
http://dx.doi.org/10.1093/mnras/stz1320
http://dx.doi.org/10.1093/mnras/sty3404
http://dx.doi.org/10.1093/mnras/stw2331
http://dx.doi.org/10.1086/153889
http://dx.doi.org/10.1103/PhysRevLett.126.071302
http://dx.doi.org/10.1086/151636
http://dx.doi.org/10.1093/mnras/stab651
http://dx.doi.org/10.1093/mnras/stab2553
http://dx.doi.org/10.1086/150317
http://dx.doi.org/10.1093/mnras/stt2417
http://dx.doi.org/10.1007/s10509-016-2789-x
http://dx.doi.org/10.1088/0004-637X/756/1/79
http://dx.doi.org/10.1086/311865
http://dx.doi.org/10.1046/j.1365-8711.2000.03272.x
http://dx.doi.org/10.1093/mnras/stz1145
http://dx.doi.org/10.1088/1402-4896/abf618
http://dx.doi.org/10.3847/1538-4357/aadc0f
http://dx.doi.org/10.1086/657638
http://dx.doi.org/10.3847/1538-4357/aba434
http://dx.doi.org/10.1103/PhysRevLett.127.161302
http://dx.doi.org/10.1093/mnras/stv2082
http://dx.doi.org/10.3847/1538-4357/833/1/109
http://dx.doi.org/10.1111/j.1365-2966.2011.19536.x
http://dx.doi.org/10.1051/0004-6361:20011817
http://dx.doi.org/10.1051/0004-6361/201730531
http://dx.doi.org/10.1051/0004-6361/201731609
http://dx.doi.org/10.1093/mnras/stv2856
http://dx.doi.org/10.1088/0067-0049/215/2/17
http://dx.doi.org/10.1093/mnras/stw733
http://dx.doi.org/10.1088/2041-8205/802/2/L25
http://dx.doi.org/10.1093/mnras/stx2956
http://dx.doi.org/10.1038/nature25767
http://dx.doi.org/10.3847/1538-4357/ab2914
http://dx.doi.org/10.1051/0004-6361/201730696
http://dx.doi.org/10.1051/0004-6361/201833933
http://dx.doi.org/10.1051/0004-6361/201935231
http://dx.doi.org/10.1051/0004-6361/201935231e
http://dx.doi.org/10.1051/0004-6361/202141756
http://dx.doi.org/10.1051/0004-6361:20030768
http://dx.doi.org/10.3847/2041-8213/aad779
http://dx.doi.org/10.1051/0004-6361:200810534
http://dx.doi.org/10.1093/mnras/staa2852
http://dx.doi.org/10.1111/j.1365-2966.2006.11360.x
http://dx.doi.org/10.1093/mnras/183.3.341
http://dx.doi.org/10.3847/1538-4365/aabfdf
http://dx.doi.org/10.3847/1538-4357/ab6d73
http://dx.doi.org/10.1111/j.1365-2966.2010.16753.x
http://dx.doi.org/10.1093/mnras/stt1332
http://dx.doi.org/10.3847/1538-4357/aa7b8a

Zabel N. et al., 2019, MNRAS, 483, 2251

Zentner A. R., Kravtsov A. V., Gnedin O. Y., Klypin A. A., 2005, ApJ, 629,
219

Zhao H. S., 2005, A&A, 444, 1.25

Zhao H., Tian L., 2006, A&A, 450, 1005

Zhao H., Famaey B., Liighausen F., Kroupa P., 2013, A&A, 557, L3

Zwicky F., 1933, Helv. Phys. Acta, 6, 110

APPENDIX A: DEPROJECTING DISTANCES IN
THE SKY PLANE TO 3D DISTANCES

In order to convert an observed 2D projected distance Ry, into a 3D
distance R, we use a simplified version of the deprojection method
applied in Venhola et al. (2019). For convenience, we normalize
distances to dromax = 20 Mpc, the distance to the Fornax Cluster
(Blakeslee et al. 2009). Thus, we define

Ry R
Op = al , Op = . (A1)

Fornax dF ornax

Fig. 6 of Venhola et al. (2019) shows the relation between these
quantities for nucleated and non-nucleated dEs.!* The relation for
nucleated dwarfs is almost parallel to the line of equality, but with
an offset of ~0.4°. Therefore, we deproject a dwarf labelled as
‘nucleated’ using

03p = thp + offset, (A2)

with offset = 0.4° in our nominal analysis.

In the case of non-nucleated dwarfs, 63p has a constant floor value
of ~1.2° until it joins the relation between 63p and 0,p followed
by nucleated dwarfs at 6,p > nnucg,,, — offset. Therefore, for the
non-nucleated dwarfs, we apply the following deprojection:

Orpy — nnuCoor,
P 1 6ap + offset,

if ,p < nnucgy,, — offset,

if 6,p > nnucg,,, — offset, (A3)

where nnucg,o, = 1.2° in our nominal analysis. As with the nucleated
dwarfs, we use offset = 0.4°.

APPENDIX B: OBTAINING Rpgr FROM A 3D
DISTANCE

Assuming a thermal eccentricity distribution (Jeans 1919; Ambart-
sumian 1937; Kroupa 2008), we have that the probability distribution
of eccentricities is P, = 2e. If the orbits are approximately Keplerian,
the pericentre distance Rper = a(l — e), where a is the semimajor axis
and e is the eccentricity. The time-average distance can be calculated
as (R) = a(1 + €*/2) (section 3 of Méndez & Rivera-Valentin 2017).
To obtain the relation between (R) and Ry, we integrate over the
whole eccentricity distribution:

1 _
Roer :/ it Pede:/ L= ) gede—020.  (BY)
(R) (R} |e o \1+%

2
We assume that the 3D distance of a dwarf inferred from its observed
projected distance (Appendix A) is about the same as its time-average
distance. We therefore obtain that for the FDS dwarfs, Rp.r = 0.29 R.

14Results are also shown for dwarf irregulars, but we removed these from our
sample.
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APPENDIX C: DO TWO EXPERIMENTS HAVE
THE SAME PROPORTION OF SUCCESSES?

In Section 4.3, we encountered the problem that one experiment
gives Sops, 1 ‘successes’ out of T trials while another experiment
gives Sqbs, 2 successes out of 75 trials, with a success defined as a
dwarf galaxy that appears disturbed. The problem is to test the null
hypothesis that the proportion of successes (x) is the same in both
experiments assuming that 7'} and 7, are set in advance independently
of the actual number of successes. We consider this problem in
following two stages as follows:

(i) Keeping x fixed, we evaluate the likelihood P, of obtaining
data as bad as or worse than the observed combination (Sops, 1, Sobs, 2)
for the null hypothesis; and

(i1) We then obtain a weighted mean value for P, by considering all
plausible x, each time weighting by the likelihood that the observed
(Sobs, 1> Sobs, 2) arises with that x.

If we know x, we can use binomial statistics (equation 48) to find
the likelihood of obtaining any combination (S, S,). We obtain P,
by adding the probabilities of all (S}, S») combinations which are as
likely as or less likely than the observed combination (Sops, 1, Sobs, 2)-
This follows the usual principle that if the data seems unlikely given
the null hypothesis, we should consider all the ways in which it could
look as bad or even worse.

If the null hypothesis were true, the probability distribution of
its parameter x can be found more accurately by combining the
two experiments to obtain a single experiment with (Sops, 1 4+ Sobs, 2)
successes out of (7'} + T>) trials. We use equation (32) to calculate the
mean xo and uncertainty o, of the resulting posterior inference on x
assuming a uniform prior. We then consider all values of x within the
range xo £ 5o, provided this does not go outside the mathematically
allowed range (0-1). Within the considered range of x, we weight
each P, determination by the binomial likelihood Py (x) of obtaining
the observed combination (Sobs, 1, Sobs, 2), SO Pobs(x) is a product of
the binomial likelihood from each of the experiments. The idea is
that each P, should be weighted by how plausible the corresponding
x is given the data in the context of the null hypothesis. This leads to
our estimated P-value:

_ foPobs(x) dx

P= fPobs(-x)dx

(CH

Since it is possible that no value of x matches the observations very
well because the null hypothesis is wrong, P (x) might not integrate
to 1.

In the particular case of Section 4.3, calculating the significance
P in this way only tells us how plausible it is that f; is the same
in the low 1 and high 1 subsamples, which is the null hypothesis.
Our alternative hypothesis specifies that fg should be higher in the
high 1 subsample on physical grounds, not merely that f; should
have some sort of correlation with n. Since the inferred fy indeed
rises with 1, we should bear in mind that the low likelihood of the
null hypothesis is caused by a deviation in just the sense expected
on physical grounds under the alternative hypothesis where tides are
relevant. On the other hand, we tried all possible choices of 1, to
maximize the significance of the signal, leading to a look-elsewhere
effect.
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APPENDIX D: TIDAL SUSCEPTIBILITY OF
NEWTONIAN TDGS

As discussed in Section 8, our results indicate a higher level of tidal
susceptibility than is expected in ACDM. This could be a sign that
the Fornax dwarfs lack dark matter altogether, which is possible
in this framework if the FDS dwarfs are mostly TDGs. These are
expected to be rather rare in ACDM, so the scenario is not very
plausible (Haslbauer et al. 2019b). We none the less consider it for
completeness.

If the dwarfs are of tidal origin, they would be free of dark matter
(Barnes & Hernquist 1992; Wetzstein et al. 2007). However, the
massive cluster galaxies would still be surrounded by a dark matter
halo. In this scenario, the mass ratio between the dwarfs and the
massive galaxies would be rather extreme, suggesting a serious
problem with the stability of the dwarfs.

To quantify this, we obtain the tidal radius of a dwarf by applying
equation (11) considering only its baryonic mass. Similarly, we
can obtain the disruption time-scale by applying equation (13) and
accounting for the fact that the terms referring to the dwarf (those
labelled with a subindex ‘dwarf”) should be purely baryonic while
the terms referring to the large galaxies (labelled with a subindex ‘p’)
should still account for the dark matter contribution to the mass and
half-mass radius. We can then substitute in these results to obtain
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Figure D1. The distribution of tidal susceptibility values of Fornax Cluster
dwarfs in a Newtonian TDG scenario to cluster tides (top panel) and
harassment (bottom panel), with a bin width of 0.05 and 0.5, respectively.
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the susceptibility to cluster tides (equation 29) and galaxy—galaxy
harassment (equation 31). The results are shown in Fig. D1.

As expected, the dwarfs are now much more susceptible to cluster
tides (higher 74 than in Fig. 2). The distribution of 1,;q becomes
very similar to MOND, suggesting that maybe the Newtonian TDG
scenario is plausible. However, the tidal susceptibility to harassment
(har) 18 very large in this scenario and greatly exceeds 1 for the vast
majority of the dwarfs. The high 7y, values arise because the dwarfs
are completely unprotected: They do not have a boost to their self-
gravity either from MOND or from a dark matter halo. Given their
low surface brightness, this leads to very weak self-gravity. However,
in a ACDM universe, the large galaxies must still have dark matter
haloes. As a result, purely baryonic dwarfs governed by Newtonian
gravity should have already been destroyed by encounters with the
massive cluster galaxies. Therefore, we can consider that the TDG
scenario in ACDM is extremely unlikely. Note that in MOND, our
analysis is not sensitive to whether the dwarfs are TDGs or formed
primordially — they are purely baryonic in either case.

APPENDIX E: DISTRIBUTION OF DWARF
DENSITIES IN ACDM

Our MCMC analysis relies on an assumed distribution for the dwarf
densities, which are crucial to their tidal stability. We therefore
need to repeat the steps discussed in Section 5.2.3 for the case
of ACDM. For this model, we show the mass—luminosity relation
(Fig. E1), the surface density—volume density relation (Fig. E2), and
the histogram of volume densities of the dwarfs in the FDS catalogue
(Fig. E3). The main difference is that the mass of the dwarfs is
higher since it includes the contribution of the dark matter component
within the optical radius (equation 10). This raises their surface and
volume density. We found that M /L, = 74.92 £ 52.38 Mg /Lo,
indicating a rather high dispersion. Moreover, we can no longer
approximate that the slope of the relation is 1 on logarithmic axes,
indicating non-linearity.

Due to these difficulties, we found that it would be unsuitable
to repeat the steps described in Section 5.2.3. To enable a fair
comparison with MOND, we none the less used as similar a
procedure as possible. For this, we fixed the logarithmic offset
between the density of the least dense dwarf in our sample (Omin, FDS)
and the adopted density threshold of the survey (p;). As a result,
the minimum observational limit (black line in Fig. E3) is 0.09 dex

10.01 =
Lol
e
. 9.5 1 "‘.w?"
©
= ¢
% 9.0 J’f
S . ..Faf"‘
Eg @S
8.5 S
v
804" &
6 7 8 9

logyo (L7‘//L®)

Figure E1. Similar to Fig. 7, but for ACDM instead of MOND and showing
only the linear regression.
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Figure E2. Similar to Fig. 8, but for ACDM instead of MOND and showing
only the linear regression.
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Figure E3. The distribution of each dwarf galaxy’s mean density within its
half-mass radius, accounting for both baryonic and dark matter. The orange
vertical line at —0.99 shows the sample mean, while the magenta lines offset
by £0.54 dex show the standard deviation around it. Other lines have a similar
meaning to Fig. 6 and have been obtained similarly to the MOND case to
allow a fair comparison (see the text).

below pmin, Fps, the mean observational limit (grey line in this figure)
is 0.46 dex above pmin rps, and the maximum observational limit
(dashed black line in this figure) is 0.79 dex above pmin, rps. As in
the MOND case, we choose the minimum observational limit (black
line in Fig. E3) as our nominal density limit for the distribution since
it is the only one of these three choices that implies o < Pmin, FDs»
which is required of a realistic detection threshold. Assuming instead
the mean observational limit would make us lose two observed dwarf
galaxies from the low-density tail of the distribution. Note also that
these dwarfs have a clear tidal morphology because we removed any
dwarfs where this is unclear (Section 2.1).
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To summarize, our nominal p, in ACDM is 3.58¢ below the mean
logarithmic density, while ppean 18 2.560 below.

APPENDIX F: TRIANGLE PLOTS WITH
ALTERNATIVE MODELLING CHOICES

In this appendix, we rerun our MCMC analysis with different

modelling assumptions and show their impact using triangle plots
similar to Fig. 10. Instead of showing ACDM and MOND results

on the same graph as done there, our approach will be that each
graph shows results for different modelling assumptions but within
the context of the same theory. We will use different panels for the
different theories. As before, we show only the 1o contour for each
pair of parameters, though the full probability distribution is shown
when considering the posterior on one parameter marginalized over
all others. The results presented here are discussed in more detail in
Section 8.

In Fig. F1, we check how decreasing the dark matter fraction
within the optical radius of the FDS dwarfs affects the results. In
particular, we consider the revised dark matter fraction given in
equation (65) based on the observed velocity dispersions of nearby
dwarfs (Section 8.1.1). As discussed there, we also consider the
very conservative case Mpy = 10 M,. The main impact is on the
parameters Ngesr and Nmin, dist. Lhe inference on the slope of the
eccentricity distribution is rather different for the case Mpy = 10 M,,
but otherwise the posteriors are not much different to the nominal
ACDM case in both revised analyses shown here.

In Fig. F2, we compare the parameter inferences resulting from
the MCMC analysis assuming three different lower limits (p, values)
to the density distribution of the dwarfs:

(i) The lowest considered p, is set at So below the mean logarith-
mic density;

(i1) The second-lowest considered p; is the nominal value used in
the main analysis; and

(iii) The highest considered p; is the mean observational limit
(Pmean)> Which we obtained in Section 5.2.3 and Appendix E for
MOND and ACDM, respectively.

In Fig. F3, we compare ACDM and MOND while assuming two
different values for the deprojection parameters ‘offset’ and ‘non-
nucleated floor’ (see Appendix A). In addition to the nominal values
used in the main analysis, we also consider a higher set of values
corresponding to the highest plausible 3D distance given the sky-
projected distance (see fig. 6 of Venhola et al. 2019). This entails
setting nnucge,, = 1.5° and offset = 0.5° instead of the nominal
NNUCHyr = 1.2° and offset = 0.4°.

In Fig. F4, we check if increasing the resolution of the orbital
elements in the test mass simulation affects the results for ACDM
and MOND. The nominal resolution used is a grid of size 100 x 100
for the eccentricity e and initial distance from the cluster centre
(R;), which also corresponds to the semimajor axis. In the higher
resolution case, this is raised to 200 x 200.

MNRAS 515, 2981-3013 (2022)
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Figure F1. Triangle plot showing the inferred parameter values in the
ACDM model constrained by our statistical analysis assuming the nominal
dark matter fraction (equation 10; blue), our fit to the empirically determined
dark matter fractions of nearby isolated dwarfs (equation 65; orange), and a
very conservative scenario in which the mass of dark matter within the optical

radius of each dwarf is only 10x that of the baryons (green).
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the difference in the final results when using three different lower limits to the density distribution of the simulated Fornax dwarfs. The results for the 5o lower
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Figure F3. Similar to Fig. F2, but showing the difference in the final results for ACDM (left-hand panel) and MOND (right-hand panel) when two different
sets of values for the parameters ‘offset’ and ‘non-nucleated floor’ are used to deproject distances (Appendix A). Results for the nominal deprojection (offset =
0.4°, non-nucleated floor = 1.2°) are shown in blue, while results with the revised deprojection parameters (offset = 0.5°, non-nucleated floor = 1.5°) are shown

in orange.
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Figure F4. Similar to Fig. F2, but showing the difference in the final results for ACDM (left-hand panel) and MOND (right-hand panel) with two different
resolutions in orbital elements. The nominal resolution case (blue) uses a grid of 100 x 100 bins to generate orbits with different eccentricities and initial
positions/semimajor axes. The high-resolution case (orange) uses a grid of 200 x 200 bins.
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