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A B S T R A C T 

Due to their low surface brightness, dwarf galaxies are particularly susceptible to tidal forces. The expected degree of disturbance 
depends on the assumed gravity law and whether they have a dominant dark halo. This mak es dw arf galaxies useful for testing 

different gravity models. In this project, we use the Fornax Deep Survey (FDS) dwarf galaxy catalogue to compare the properties 
of dwarf galaxies in the Fornax Cluster with those predicted by the Lambda cold dark matter ( � CDM) standard model of 
cosmology and Milgromian dynamics (MOND). We construct a test particle simulation of the Fornax system. We then use 
the Markov Chain Monte Carlo (MCMC) method to fit this to the FDS distribution of tidal susceptibility η (half-mass radius 
divided by theoretical tidal radius), the fraction of dwarfs that visually appear disturbed as a function of η, and the distribution 

of projected separation from the cluster centre. This allows us to constrain the η value at which dwarfs should get destroyed by 

tides. Accounting for an r 
′ 
-band surface brightness limit of 27.8 magnitudes per square arcsec, the required stability threshold 

is ηdestr = 0 . 25 

+ 0 . 07 
−0 . 03 in � CDM and 1 . 88 

+ 0 . 85 
−0 . 53 in MOND. The � CDM value is in tension with previous N -body dwarf galaxy 

simulations, which indicate that ηdestr ≈ 1. Our MOND N -body simulations indicate that ηdestr = 1.70 ± 0.30, which agrees well 
with our MCMC analysis of the FDS. We therefore conclude that the observed deformations of dwarf galaxies in the Fornax 

Cluster and the lack of low surface brightness dwarfs towards its centre are incompatible with � CDM expectations but well 
consistent with MOND. 

Key w ords: (cosmolo gy:) dark matter – galaxies: clusters: individual: Fornax – galaxies: dwarf – galaxies: interactions –
galaxies: statistics – gravitation. 
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 I N T RO D U C T I O N  

warf galaxies are the smallest and most common type of galaxy. 
hey are characterized by their low mass ( M < 10 9 M �) and low
etallicity. Most dwarfs are found in galaxy clusters or near a larger

alaxy, making them potentially susceptible to the gravitational 
ffect of these larger structures. The currently standard Lambda cold 
ark matter ( � CDM) cosmological model (Efstathiou, Sutherland & 

addox 1990 ; Ostriker & Steinhardt 1995 ) provides two different 
cenarios by which dwarf galaxies can be formed (the dual dwarf 
alaxy theorem; Kroupa 2012 ): 

(i) From the collapse of dark matter particles into haloes, which 
hen accrete baryonic matter into their potential wells (White & Rees
978 ). Such dwarfs are known as ‘primordial dwarf galaxies’ and 
re expected to be dark matter-dominated; and 

(ii) From the collapse of o v erdense re gions in tidal tails generated
y an interaction between larger, g as-rich g alaxies. These so-called 
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tidal dwarf galaxies’ (TDGs) must be free of dark matter as the
elocity dispersion of the dark matter particles surrounding the 
ost galaxy is too high to allow for their efficient capture by the
hallow potential wells of substructures in the tidal tail (Barnes &
ernquist 1992 ; Wetzstein, Naab & Burkert 2007 ). In recent years,

osmological � CDM simulations have advanced to the point where 
he y can resolv e TDGs (Ploeckinger et al. 2018 ; Haslbauer et al.
019b ). 

Dwarf galaxies can also be classified according to their morphol- 
gy into early and late types depending on whether the y hav e star-
orming regions, which are present only for late-type dwarfs. This 
ategory includes blue compact dwarfs and dwarf irregular galaxies 
ike the Magellanic Clouds, while early-type dwarfs include dwarf 
lliptical (dE) and dwarf spheroidal (dSph) galaxies, with dSphs 
enerally having a lower stellar mass ( M � ). The lowest M � dwarfs
end to have velocity dispersions ( σ ) which are too high if one
ssumes virial equilibrium, with σ sometimes even exceeding the 
scape velocity (Aaronson 1983 ; Grebel 2001 ). 

This discrepancy relies on the validity of General Relativity and 
ur ability to detect nearly all the matter. � CDM is a cosmological
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odel based on General Relativity in which the addition of the
ark matter component was moti v ated by the mismatch between the
bserved baryonic mass and the mass calculated dynamically from
he observed σ assuming the virial theorem (Zwicky 1933 ). Such
cceleration discrepancies are also apparent in the gravity between
he Milky Way (MW) and Andromeda (M31; Kahn & Woltjer 1959 )
nd in the outer rotation curves of galaxies (e.g. Babcock 1939 ;
ubin & Ford 1970 ; Rogstad & Shostak 1972 ; Roberts & Whitehurst
975 ; Bosma 1978 , 1981 ), as re vie wed in Faber & Gallagher ( 1979 ).
herefore, the natural � CDM explanation for dSphs having such
igh σ is to assume that most of their mass is in the form of dark
atter, in which case they must be primordial dwarfs. 
� CDM predicts that primordial dwarfs should be distributed

early isotropically around galaxies (Moore et al. 1999 ; Gao et al.
004 ). Ho we ver, the dwarf satellite galaxies of the MW, M31, and
entaurus A preferentially align in flattened planes (Lynden-Bell
976 ; Ibata et al. 2013 ; Tully et al. 2015 ; M ̈uller et al. 2018 ). This
s in significant tension with the � CDM model (Kroupa, Theis &
oily 2005 ). While it was later shown that the distribution of dark
atter subhaloes is not supposed to be exactly isotropic due to the

referential accretion of subhaloes along cosmic filaments and the
ntrinsic triaxiality of dark matter haloes (Libeskind et al. 2005 ;
entner et al. 2005 ), the mild expected flattening is not sufficient to
xplain the strong correlation in position and velocity space observed
n nearby satellite systems (Ibata et al. 2014 ; P a wlowski et al. 2014 ;
 a wlowski & Kroupa 2020 ; M ̈uller et al. 2021 ; P a wlowski & Ton y
ohn 2021 ). The satellite plane problem is re vie wed in P a wlowski
 2021b ), which also considers tentative evidence for more satellite
lanes beyond the three mentioned abo v e. The Local Group (LG)
atellite planes are each in 3.55 σ tension with � CDM (table 3 of
anik et al. 2021 , and references therein), while the satellite plane
round Centaurus A is only 0.2 per cent (3.09 σ ) likely to arise in this
aradigm (M ̈uller et al. 2021 ). These are the only three host galaxies
ear enough for us to reliably know the phase-space distribution of
heir satellites. We can approximately combine their low likelihoods
n � CDM using Gaussian statistics. Since we ef fecti v ely hav e χ2 =
.55 2 + 3.55 2 + 3.09 2 = 34.75, the combined tension can be
stimated as the likelihood of the χ2 statistic exceeding this value for
hree degrees of freedom. This suggests that the LG and Centaurus A
atellite planes combined cause a tension of 1.40 × 10 −7 (5.27 σ ). A
ew interpretation is thus needed to explain the origin of the observed
atellite galaxy planes. 

Another less widely known problem is the distorted morphologies
f MW satellites, which strongly imply that they have been affected
y tidal forces (Kleyna et al. 1998 ; Walcher et al. 2003 ; Sand et al.
012 ). Because the inner region of a satellite galaxy can hardly be
ffected by tides if it is protected by a dominant dark matter halo
Kazantzidis et al. 2004 ), � 10 per cent of the MW satellites are
xpected to be distorted in this paradigm (Kroupa 2012 ). Ho we ver,
cGaugh & Wolf ( 2010 ) found that the majority of the MW satellites

resent signs of being disturbed, both in their ele v ated σ and in their
bserved ellipticity. More recently, Hammer et al. ( 2020 ) pointed out
hat the high σ of dSphs surrounding the MW and their proximity
o perigalacticon makes it extremely unlikely for them to be dark
atter dominated. 
An alternativ e e xplanation for the planar distribution of the satellite

alaxies is that they are of tidal origin. This is because TDGs are
xpected to be phase-space correlated (Pawlowski, Kroupa & de
oer 2011 ; Kroupa 2012 ; P a wlowski 2018 ; Haslbauer et al. 2019b ).
ut if the observed satellites are of tidal origin, they would be dark
atter free, in which case their high σ for their low M � should be

xplained in a different way. Kroupa ( 1997 ) proposed that due to
NRAS 515, 2981–3013 (2022) 
lose encounters of the TDGs with their parent galaxy, the TDGs are
ighly perturbed. As a result, they should be significantly anisotropic
oth in terms of their internal structure and their velocity dispersion
ensor. More generally, they should not be in dynamical equilibrium,
aking it incorrect to directly apply the virial theorem to infer the
ass from σ as this could cause a significant o v erestimate. Ho we ver,

urely baryonic dwarfs would be very fragile and easily destroyed,
aking it unlikely that so many of them exist in the LG right

ow (Haslbauer et al. 2019a , b ). Even if this scenario can explain
he high σ of all observed dSphs, � CDM would still struggle to
xplain why almost all observed dwarf satellites of the MW, M31,
nd Centaurus A are of tidal origin − the quenching mechanisms
nvoked to solve the missing substructure problem are not expected
o be so destructive as to get rid of all observable primordial dwarfs
Kim, Peter & Hargis 2018 ; Read & Erkal 2019 ; Webb & Bovy
020 ). 
Gi ven these dif ficulties, it is important to note that the proper-

ies of both primordial and tidal dSphs can be explained without
esorting to the assumption of a surrounding dark matter halo.
his entails discarding the � CDM cosmological model and using

nstead an alternative framework, the currently leading contender
eing Milgromian dynamics (MOND; Milgrom 1983 ). MOND
roposes that the deviations from Newtonian behaviour in the
otation curves of galaxies should be attributed to a departure
rom Newtonian gravity in the regime of weak gravitational fields
 g � a 0 = 1 . 2 × 10 −10 m s −2 = 3.9 pc Myr −2 ; Begeman, Broeils &
anders 1991 ; Gentile, F amae y & de Blok 2011 ; McGaugh, Lelli &
chombert 2016 ). The gravity boost that dwarf galaxies experience

n this regime would explain their high σ (McGaugh & Wolf 2010 ;
cGaugh & Milgrom 2013a , b ; McGaugh et al. 2021 ). It would

lso make the dwarfs less vulnerable to tides and stellar feedback
han Newtonian TDGs, which are expected to be extremely fragile.

oreo v er, MOND offers an elegant scenario for the origin of the LG
atellite planes by means of a past flyby encounter between M31 and
he MW 9 ± 2 Gyr ago, which is required in MOND (Zhao et al.
013 ) and seems to reproduce important aspects of their satellite
lanes (Banik, O’Ryan & Zhao 2018 ; B ́ılek et al. 2018 , 2021 ; Banik
t al. 2022a ). Therefore, we will focus mainly on � CDM and MOND
n this contribution. 

The planes of satellites problem is one of the most well-
nown challenges to � CDM on galaxy scales (Kroupa et al. 2005 ;
 a wlowski 2018 , 2021a , b ). It provides a compelling motivation to
urther investigate dwarf galaxies and question their very nature.
ortunately, the properties of dwarf galaxies make them very suitable
or testing different gravity theories. Due to their low mass and
specially their low surf ace brightness, dw arf galaxies can be very
usceptible to the effects of gravitational tides. Depending on whether
e assume the � CDM or MOND model to be valid significantly

ffects the expected influence of tides on dwarfs. These expectations
an then be compared with observations to try and distinguish the
odels. 
Since MOND is a non-linear theory of gravity, the internal

ynamics of an object can be affected by the presence of an
xternal field (Bekenstein & Milgrom 1984 ). This is because the
nhancement to the self-gravity depends on the total strength of g ,
ncluding an y e xternal sources. In a dwarf galaxy that experiences
 strong gravitational field (usually from a nearby massive galaxy),
he MOND boost to the self-gravity will be limited by the dominant
xternal field from the larger central galaxy. This effect becomes
tronger as the dwarf gets closer to the central galaxy, to the point
hat the dwarf can become almost fully Newtonian. Because of this,
warfs are expected to be more vulnerable to tides in MOND than
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n � CDM, where they would be shielded by their dark matter halo
hroughout their whole trajectory (Brada & Milgrom 2000 ). 1 

In this project, we use the Fornax Deep Surv e y (FDS) dwarf
alaxy catalogue (Venhola et al. 2018 , 2019 ) to compare the observed
orphological properties of Fornax Cluster dwarf galaxies with the 

roperties predicted by � CDM and MOND. Our aim is to find out
f the observed level of disturbance in the Fornax dwarfs is similar
o that expected in � CDM or MOND, or if neither model works
ell. � CDM could provide too much protection against tides such 

hat it underpredicts the observed level of disturbance in the Fornax 
warfs population. Meanwhile, the lack of protective dark matter 
aloes around all dwarf galaxies and their reduced self-gravity due 
o the background cluster gravity could mean that in the MOND 

cenario, dwarfs are too fragile to survive in the harsh Fornax 
luster environment. Determining which of these scenarios is more 

ik ely w ould help to clarify the physics go v erning the formation and
ynamics of galaxies, whose dominant source of gravity remains 
nknown. 
The layout of this paper is as follows: In Section 2 , we describe

he FDS dwarf galaxy catalogue and the selection criteria that we 
pply to it (Section 2.1 ). In Section 3 , we explain the rele v ant
ypes of gravitational interactions that dwarfs might experience in 
his cluster: disruption from cluster tides (Section 3.1 ) and galaxy–
alaxy harassment (Section 3.2 ). These sections consider only 
ewtonian gravity − the generalization to MOND is presented in 
ection 3.3 . In Section 4 , we provide the equations describing the
usceptibility of dwarfs to tidal forces in the � CDM and MOND
odels, obtain the tidal susceptibility of the dwarfs in the FDS 

atalogue for each model (Section 4.1 ), and show how this theoretical
uantity is related to the distribution of the dwarfs (Section 4.2 ) and
hether their observed morphology appears disturbed or undisturbed 

Section 4.3 ). In Section 5 , we construct a test particle simulation of
he orbits of Fornax dwarfs and, using the Markov Chain Monte 
arlo (MCMC) method, fit it to the real Fornax system using

he FDS catalogue. In Section 6 , we present the results obtained
rom our MCMC analysis and how they compare to the results
f N -body simulations, which we complement with our own N -
ody simulations of a typical Fornax dwarf in MOND (Section 7 ).
e then discuss our results in Section 8 before concluding in 

ection 9 . 

 T H E  FDS  

he Fornax Cluster is one of the nearest galaxy clusters ( d Fornax =
0.0 ± 0.3 Mpc; Blakeslee et al. 2009 ). It is named after its sky
osition in the Southern hemisphere constellation of Fornax. The 
luster is structured into two main components: the main Fornax 
luster centred on NGC 1399, and an infalling subcluster (Fornax A) 
entred 3 ◦ to the south-west in which NGC 1316 is the central galaxy
Drinkwater, Gregg & Colless 2001 ). The Fornax Cluster contains 
 significant number of dwarf galaxies with different luminosities, 
olours, shapes, sizes, and distances to the cluster centre, making it
ery valuable for studying the properties of dwarf galaxies. 

The FDS is the most recent surv e y of the Fornax Cluster. It
ncludes the main Fornax Cluster and part of the Fornax A sub-
luster, with a total sky coverage of 26 deg 2 (Venhola et al. 2018 ).
he FDS represents a significant impro v ement in resolution and 
 For an isolated dwarf, the dark matter halo in � CDM and the correction 
o Newtonian gravity in MOND both provide a similar enhancement to the 
elf-gravity. 

u  

e  

a  

c  

W

mage depth with respect to the previous spatially complete Fornax 
luster Catalog (FCC; Ferguson 1989 ). This has allowed the FDS

o identify a large number of previously unknown faint galaxies, 
hich can be useful to test the effects of the cluster environment on

maller, more vulnerable galaxies. The FDS reaches the 50 per cent
ompleteness limit at an apparent (absolute) magnitude in the red 
and of M r ′ = −10 . 5 ( m r ′ = 21), while the corresponding surface
rightness limit is μe ,r ′ = 26 mag arcsec −2 . Ho we ver, the FDS can
till clearly detect some dwarf galaxies down to M r ′ = −9 and
e ,r ′ = 27 . 8 mag arcsec −2 (Venhola et al. 2018 ). 
The FDS catalogue of dwarf galaxies (Venhola et al. 2017 , 2018 ,

019 ) includes 564 dwarf galaxies with 2 × 10 5 < M � /M � < 2 × 10 9 ,
ome in the main Fornax Cluster and others in the infalling subcluster.
s in other galaxy clusters, dEs and dSphs are the most common

ypes of dwarf galaxy that can be found in the Fornax Cluster. These
re estimated to have an age of t Fornax = 10 ± 1 Gyr (Rakos et al.
001 ), where t Fornax is the age of the elliptical galaxies in Fornax,
hich we assume to have a similar age to that of the dwarf galaxies.
ecause of the similarities in some of their morphological properties, 

he FDS classifies dE and dSph galaxies as one single type, dE. The
DS catalogue also provides information about other properties of 

he dwarfs. The ones which are rele v ant for this project are: M � , the
f fecti ve radius, the right ascension (RA) and declination (Dec),
he apparent surface brightness in the r 

′ 
band, the S ́ersic index

f the surface brightness profile (S ́ersic 1963 ), the morphological
ype, the nucleated flag indicating if the dwarf is nucleated or non-
ucleated, and the tidal morphology (undisturbed, possibly/mildly 
isturbed, very disturbed, or unclear; Venhola et al. 2022 ). The
f fecti ve radius, the S ́ersic index, and the apparent brightness in
he r 

′ 
-band are obtained by fitting the data to a two-dimensional (2D)

 ́ersic profile (Venhola et al. 2018 ) using the GALFIT software (Peng
t al. 2002 ). M � is obtained from the empirical relation between the
 

′ − i 
′ 

colour and mass-to-light ( M / L ) ratio (Taylor et al. 2011 ;
or further details, see Venhola et al. 2019 ). The morphological
lassifications such as the nucleated flags, the Hubble type (Venhola 
t al. 2018 , 2019 ), and the tidal morphologies are done visually. The
idal morphology is classified in Venhola et al. ( 2022 ) based on the
ollowing criteria: 

(i) Undisturbed: Dwarf galaxies that do not present irregularities, 
istortions to their shape, or tidal tails; 
(ii) Possibly/mildly disturbed: Hints of irregularities are present 

n the outskirts of the dwarf galaxy; 
(iii) Very disturbed: Dwarf galaxies with tidal tails and/or very 

lear distortion in the shape; and 
(iv) Unclear: Nearby bright objects or data artef acts mak e the

lassification difficult. 

Fig. 1 shows some illustrative examples of dwarfs in these 
ategories. 

.1 Data selection 

rom the 564 FDS dwarfs, we remo v e those which are classified as
ate-type as there is a high chance that these are not physically in the
luster but instead represent line-of-sight contamination (Venhola 
t al. 2019 ). We also remo v e dwarfs which have an ‘unclear’ tidal
orphology because they are not useful for the analysis. This leaves

s with 456 dwarfs. We then obtain the angular distance between
ach dwarf and the centre of the Fornax Cluster based on the RA
nd Dec of the dwarf and that of the Fornax Cluster, whose sky
oordinates are RA centre = 54.6 ◦, Dec centre = −35.5 ◦ (table D1 of
atson et al. 2009 ). 
MNRAS 515, 2981–3013 (2022) 
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M

Figure 1. Images of three FDS dwarfs presenting different levels of distur- 
bance in different colour bands and filters. Each row shows the same dwarf 
as a red-green-blue colour image (left-hand column) and in the r 

′ 
band with 

a filter enhancing the dwarf’s low surface brightness features (right-hand 
column). The dwarf in the first, second, and third row is classified as ‘very 
disturbed’, ‘mildly disturbed’, and ‘undisturbed’, respectively. The horizontal 
red lines show an angular scale of 10 arcsec, which corresponds to 970 pc at 
the 20 Mpc distance to the Fornax Cluster. 
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 RA ≡ RA − RA centre , (1) 

 Dec ≡ Dec − Dec centre , (2) 

 

′ RA = � RA · cos 

(
Dec + Dec centre 

2 

)
, (3) 

ngular distance = 

√ 

( � 

′ RA ) 2 + ( � Dec ) 2 . (4) 

xpressing this angular distance in radians and multiplying it by the
0 Mpc distance to Fornax (Blakeslee et al. 2009 ) then gives the
warf’s sky-projected distance R sky from the centre of the Fornax
luster. 

 sky = d Fornax × ( Angular distance ) . (5) 

We remo v e dwarfs with R sky > 800 kpc as dwarfs further out
ostly belong to the subcluster Fornax A, so including these would

ontaminate our sample of dwarfs belonging to the main Fornax
luster (see fig. 4 of Venhola et al. 2019 ). This leaves us with 353
warf galaxies. 
NRAS 515, 2981–3013 (2022) 
 EFFECTS  O F  G R AV I TAT I O NA L  

N T E R AC T I O N S  O N  DWARFS  

efore discussing the gravitational perturbations experienced by
ornax Cluster dwarf galaxies, we first discuss why non-gravitational
orces are not expected to perturb Fornax Cluster dwarfs today. Old
warf galaxies in a cluster environment are expected to be gas-
oor. Most dwarfs in the FDS catalogue are classified as early-type
alaxies, implying that they are dominated by old stellar populations
nd are not currently forming new stars. The scarcity of star-forming
warfs in the Fornax Cluster is consistent with the fact that they are
ikely to be gas-poor. One important reason for this is ram pressure
tripping (Gunn & Gott 1972 ). This takes place when a galaxy
ontaining a large amount of cold gas mo v es through a galaxy cluster
ull of hot gas. The temperature difference and motion between the
wo gas components generate a pressure gradient that strips the cold
as from the galaxy. Venhola et al. ( 2020 ) estimated in the left-hand
anel of their fig. 21 that ram pressure stripping of Fornax Cluster
warfs at the low masses relevant to our analysis should have been
uite efficient − the vast majority of the dwarfs in our sample have
 � < 10 8 M � (Section 2.1 ). The fact that the Fornax dwarfs are

as-poor has been observationally confirmed by Zabel et al. ( 2019 ),
ho studied the molecular gas in the Fornax Cluster and showed that

ts dwarfs are gas deficient. Loni et al. ( 2021 ) showed the same for
eutral hydrogen in FDS dwarfs with M � down to a few times 10 7 M �,
elow which theoretical arguments indicate that the gas reservoir
hould have been ram pressure stripped by now (see section 7.3.1 of
enhola et al. 2019 ). Moreo v er, the colours of the FDS dwarfs also
uggest a lack of recent star formation (see their fig. 18). Ongoing
as loss is thus very unlikely to explain the observed disturbances to
he structures of some Fornax Cluster dwarfs. We therefore conclude
hat their internal structure is to a good approximation only affected
y gravity from surrounding structures. 
The main types of gravitational interaction that can disturb and

ransform the structure of a dwarf galaxy in the Fornax Cluster
re tidal disruption from the cluster’s tidal field and g alaxy–g alaxy
arassment due to encounters with the cluster’s massive elliptical
alaxies (see section 7 of Venhola et al. 2019 ). In the following, we
iscuss these processes in the context of Newtonian gravity before
eriving their generalization to MOND (Section 3.3 ). 

.1 Disruption from cluster tides 

n this type of interaction, the structure of a dwarf with mass M dwarf 

s affected by gravitational tides coming from the o v erall cluster
otential, i.e. from the difference in the cluster gravity across the
nite size of the dwarf. We quantify the influence of cluster tides
n a dwarf using the concept of its tidal radius r tid . This is defined
uch that if r tid were the dwarf’s actual size, then the tidal force of
he cluster and the self-gravity of the dwarf would have the same
trength. We can intuitively see that 

GM dwarf 

r 2 tid 

≈ r tid 

Tidal stress ︷ ︸︸ ︷ (
�g c 

�R 

)
, (6) 

⇒ r tid ≈
(

GM dwarf 

�g c /�R 

)1 / 3 

, (7) 

here G is the Newtonian constant of gravitation and � g c / � R is
he tidal stress from the cluster potential, with g c and R being the
luster gravity and the 3D distance to the cluster centre, respectively.
ince we want to find out the maximum degree of disturbance that a
warf can experience due to the cluster potential, we obtain g c and its
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radient when the dwarf is at pericentre ( R = R per ). In order to obtain
 per for each dwarf from its projected distance in the FDS, we use
 per = 0 . 29 R (see Appendix B ), with R obtained by deprojecting
 sky using the method described in Appendix A . 
As in Venhola et al. ( 2019 ), we assume that the galaxy number

ensity and cluster potential have remained constant over time. This 
pproximation is reasonable because the orbital periods of galaxies 
n the Fornax Cluster are typically much shorter than a Hubble time:
he estimated 1D velocity dispersion of 370 km s −1 (Drinkwater 
t al. 2001 ) combined with a maximum size of 800 kpc (Section 2.1 )
mplies a crossing time of only 1.2 Gyr. We assign the cluster a
ewtonian dynamical mass profile given by 

 c ( < θ3D ) = M norm 

(
θ3D 

θnorm 

)α

, (8) 

here θ3D ≡ R / d Fornax is the 3D angular distance to the Fornax Cluster
entre. The parameters are: M norm 

= 3 × 10 10 M �, θnorm 

= 10 arcsec,
nd α = 1.1. This radial mass dependency is obtained from fitting 
he abo v e power la w to the mass profile derived in fig. 17b of Paolillo
t al. ( 2002 ), which uses the X-ray surface brightness distribution of
he central Fornax galaxy and its gas temperature profile to find the
as density distribution. The mass profile is then derived assuming 
ydrostatic equilibrium by applying the spherical Jeans equation. 
ote that the mass derived here is a Newtonian dynamical mass.
 more model-independent way to describe the observations is in 

erms of the cluster gravity g c ≡ GM c / R 

2 . This method of obtaining
 c relies on the well-understood physical process of thermal X-ray 
mission from hot gas. Its temperature and density profile require a 
articular radial run of g c regardless of the gravity law. Therefore, it
s not rele v ant whether g c has been enhanced by a dark matter halo
r by MOND (or indeed by some elements of both, as argued in
ection 3.3 ). Consequently, g c will be the same in the � CDM and
OND scenarios, as will the resulting tidal stress on each dwarf. 
This is not the case for M dwarf . The FDS catalogue gives only M � 

or each dwarf. This can be equated with M dwarf in MOND, but not
n � CDM where each dwarf is expected to have a substantial dark
alo of mass M halo . We find this using the same abundance matching
rocedure as Venhola et al. ( 2019 ). We first find M halo from the
elation between M � and M halo given in equation (2) of Moster et al.
 2010 ): 

M � 

M halo 
= 2 

(
M � 

M halo 

)
0 

[ (
M halo 

M 1 

)−β

+ 

(
M halo 

M 1 

)−γ
] −1 

. (9) 

heir table 1 clarifies that the parameters in this equation are: 
M � 

M halo 

)
0 

= 0 . 0282, M 1 = 10 11.884 M �, β = 1.057, and γ = 0.556.

s the dark halo of each dwarf is not observable and remains
ypothetical, we are only interested in whether tides are perturbing 
he dwarf’s stellar component (which they might not be even if its
ark matter halo is being stripped; see Smith et al. 2016 ). For this,
he Shell theorem indicates that we only need to consider the dark

atter within the dwarf’s optical radius. Following Venhola et al. 
 2019 ), we assume that this is only 4 per cent of the total halo mass

D ́ıaz-Garc ́ıa et al. ( 2016 ) found this fraction to be consistent with
he dark matter masses within the optical radii of S 

4 G galaxies (Sheth
t al. 2010 ). Adding the halo contribution to M � , the total mass of the
warf in � CDM for the purposes of our analysis is therefore 

 dwarf, � CDM 

= M � + 0 . 04 M halo . (10) 

n Section 8.1.1 , we consider other possible choices for the fraction
f the halo mass within the optical radius of a dwarf. 
Equation ( 7 ) is only a very crude estimate for the tidal radius of
 dwarf. While it should capture the essential physics, we expect a
ore careful treatment to yield an additional factor of order unity.
umerical simulations are required to capture the details of mass 

oss from a dwarf undergoing tidal disruption, which is expected 
o substantially distort its shape. To account for this, the � CDM
xpression for r tid in equation (1) of Baumgardt et al. ( 2010 ) includes
n extra factor of 2 −1/3 . Taking this into consideration, we adopt the
ollowing expression for r tid in � CDM: 

 tid, � CDM 

= 

(
G M dwarf, � CDM 

2 �g c /�R 

)1 / 3 

. (11) 

his is based on using their study to obtain the numerical pre-factor
n equation ( 7 ) for circular orbits in a central potential with a flat
otation curve ( α = 1) − other approaches are discussed below 

quation ( 63 ). Notice that g c itself does not directly affect the tidal
adius: The cluster gravity only affects the dwarf through the tidal
tress it creates on the dwarf. This is not so in the corresponding
xpression for MOND (equation 20 ), which we derive in Section 3.3 .

.2 Galaxy–galaxy harassment 

he morphology of the Fornax Cluster dwarf galaxies can also be
isrupted by gravitational interactions with individual large galaxies 
n the cluster. This effect is called harassment (Venhola et al. 2019 ).
ssuming a high relativ e v elocity between the dwarf galaxy and the

arger galaxy, we can use the impulse approximation to estimate the
mpact of each encounter on the internal structure of the dwarf. We
hen need to combine the effects of many such interactions, each
ime adding the squares of the velocity perturbations as these would
enerally be in random directions, leading to a process resembling 
 dif fusi ve random walk. Equi v alently, we should add the energy
ained by the dwarf from each encounter, leading to the concept of
 heating rate Ė (equation 8.52 of Binney & Tremaine 2008 ). The
isruption time-scale t d, � CDM 

is the time-scale o v er which putting
nergy into the dwarf at the presently calculated Ė would cause it to
ecome unbound given its present gravitational binding energy per 
nit dwarf mass of 

 E| = 

GM dwarf, � CDM 

2 r h , dwarf 
, (12) 

here r h, dwarf is the half-mass radius of the dwarf. Since only the
aryons are visible, we again restrict our attention to the baryonic
omponent of each dwarf, so r h, dwarf refers to only its visible
omponent and M dwarf, � CDM 

is again found using equation ( 10 ).
ividing the magnitude of the binding energy by the heating rate
ives the disruption time-scale (equation 8.54 of Binney & Tremaine 
008 ): 

 d ,� CDM 

≡ | E| 
Ė 

= 

0 . 043 

W p 

√ 

2 σM dwarf, � CDM 

r 2 h , p , � CDM 

GM 

2 
p ,� CDM 

n p r 
3 
h , dwarf 

. (13) 

he ‘p’ subscript denotes the massive galaxy (perturber), while 
dwarf’ refers to the dwarf galaxy that is being perturbed. W p is
 factor accounting for the shape of the perturber galaxy’s mass
istribution. We choose W p = 1 as an intermediate value between
hat of the Plummer and Hernquist models (chapter 8.2 of Binney &
remaine 2008 ). n p is the number density of perturbers, which
enhola et al. ( 2019 ) estimated to be 25 Mpc −3 by counting 48

arge galaxies inside the virial volume of the Fornax Cluster ( R vir =
.77 Mpc). Its 1D velocity dispersion is σ = 370 km s −1 (Drinkwater
t al. 2001 ), with the extra factor of 

√ 

2 accounting for the fact that
e need to consider the dwarf–perturber relative velocity. M p, � CDM 
MNRAS 515, 2981–3013 (2022) 
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nd r h, p, � CDM 

are the perturber galaxy’s mass and half-mass radius,
espectively. Note that we use r h for the deprojected half-mass radius
f the baryonic component. r h does not include the dark matter
alo unless we explicitly say so and label it accordingly as r h, � CDM 

.
enhola et al. ( 2019 ) use r h for the radius containing half of the

otal mass including dark matter, so our notation is different in this
espect. 

To obtain r h, dwarf from the projected ef fecti ve radius r e containing
alf of the dwarf’s total stellar mass, we use equation (B3) of Wolf
t al. ( 2010 ), though a good approximation is that r h, dwarf ≈ (4/3) r e .
ur adopted M p, ∗ = 10 10 M � is the median stellar mass of the large
alaxies catalogued in table C1 of Iodice et al. ( 2019 ) and in the
CC. In the � CDM case, the contribution of the dark halo should
e added to this mass. Unlike with the dwarf galaxies, the full extent
f the dark halo is considered for the large galaxies because these
re expected to be quite robust to cluster tides, so the full halo mass
hould be considered when estimating the perturbation to a passing
warf. Venhola et al. ( 2019 ) found M p, � CDM 

= 10 11.6 M � following
his procedure, which we also verified. 

Using a single M p value for all perturbers gives only an ap-
roximate estimate of the heating rate. A more accurate calculation
hould use the power-law distribution of all the galaxies and make
redictions based on that, but this would be extremely difficult.
oreo v er, the other simplifications assumed throughout the whole

alculation of t d have a larger impact on the result than taking
nto account the right distribution of perturbing galaxy masses.
ortunately, we will see that t d greatly exceeds a Hubble time, a
onclusion which should remain valid even with small adjustments
o the calculation. In particular, we will show that considering the

ass spectrum of perturbers should affect the estimated heating rate
y only a small factor such that t d remains very long (Section 4.1 ). 
The r h, p value of the large galaxies is also obtained from the median

f all the documented large galaxies (perturbers) in the cluster,
ielding r h, p = 4 kpc based on the luminous matter. This is applicable
o MOND, but in the � CDM case, the r h, p of the large galaxies
hould account for half of the perturber’s total mass, not only the
tellar mass given in the catalogues. This is because the gravitational
ffect of the dark matter halo also contributes to perturb the stellar
ontent of a passing dwarf. To find out the relation between r h, p and
 h, p, � CDM 

, Venhola et al. ( 2019 ) looked into the Illustris cosmological
imulations (Pillepich et al. 2018 ) to infer the relation between these
wo quantities in simulated large galaxies in a galaxy group with a
imilar mass to the Fornax Cluster, yielding r h, p, � CDM 

/ r h, p = 3.6.
herefore, the half-mass radius of the perturbers in � CDM is taken

o be r h, p, � CDM 

= 14.4 kpc. 
To summarize, the disruption time-scale in � CDM can be found

y directly applying equation ( 13 ) once we include the contribution
f the dark matter halo to M dwarf , M p , and r h, p . In Section 3.3.2 ,
e describe how to obtain the corresponding disruption time-scale

xpression in MOND. 

.3 Generalization to MOND 

he MOND model proposes that Newtonian gravity breaks down
n the limit of low accelerations such that the actual gravitational
eld g is related to the Newtonian field g N according to g = 

√ 

a 0 g N .
ilgrom’s constant a 0 = 1 . 2 × 10 −10 m s −2 is a new fundamental

cceleration scale added by MOND. Its value has been empirically
etermined by matching observed galaxy rotation curves (Begeman
t al. 1991 ; Gentile et al. 2011 ; McGaugh et al. 2016 ), which MOND
oes extremely well (Famaey & McGaugh 2012 ; Lelli et al. 2017 ;
i et al. 2018 ). Due to the very small numerical value of a (which
NRAS 515, 2981–3013 (2022) 

0 
ay be related to the quantum vacuum, see Milgrom 1999 ; Senay,
ohammadi Sabet & Moradpour 2021 ), the behaviour of gravity

as never been directly tested in the deep-MOND regime ( g 
 a 0 ).
ndeed, Solar system tests are typically only sensitive to the behaviour
f gravity in the regime where g exceeds a 0 by many orders of
agnitude (though for a proposed Solar system test in the MOND

egime, see Penner 2020 ). 
For an isolated spherically symmetric problem, the expression for

he MOND gravitational field g as a function of the Newtonian field
 N can be written as 

 = g N ν
(
g N 

)
, (14) 

here ν is the interpolating function with argument g N . To satisfy
olar system constraints and the observed flat rotation curves in

he outskirts of galaxies, this function must have the following
symptotic limits: 

→ 

{ 

1 , if g N � a 0 , √ 

a 0 
g N 

, if g N 
 a 0 . 
(15) 

he first case is the Newtonian regime in which ν = 1 and g = g N 
o a very good approximation. In the MOND regime, g = 

√ 

a 0 g N .
his causes the gravity from an isolated point mass M to decline as
/ r beyond its MOND radius r MOND ≡

√ 

GM/a 0 , which is necessary
o explain the rotation curve data using only the luminous matter.
everal forms of the MOND interpolating function have been
roposed (Kent 1987 ; Hees et al. 2014 , 2016 ; McGaugh et al. 2016 ).
mong these, the simple interpolating function (F amae y & Binney
005 ) seems to work better with recent observations (Iocco, Pato &
ertone 2015 ; Banik & Zhao 2018c ; Chae, Bernardi & Sheth 2018 ).
herefore, we will use the simple interpolating function 

(
g N 

) = 

1 

2 
+ 

√ 

1 

4 
+ 

a 0 

g N 
. (16) 

It is well known that although MOND is capable of fitting the
otation curves of galaxies without dark matter (see the re vie w by
 amae y & McGaugh 2012 ), it cannot fit the temperature and density
rofiles of galaxy clusters using only their visible mass − MOND still
eeds an additional contribution to the gravitational field (Sanders
999 ; Aguirre, Schaye & Quataert 2001 ). The central galaxy of
he Fornax Cluster (NGC 1399) is no exception (Samurovi ́c 2016 ).
o solve this discrepancy and to account for other observations
inting at the presence of collisionless matter in galaxy clusters
most famously in the Bullet cluster; Clowe et al. 2006 ), it has been
roposed that MOND should be supplemented by sterile neutrinos
ith a rest energy of 11 eV, a paradigm known as the neutrino hot
ark matter ( νHDM) cosmological model (Angus 2009 ). νHDM
an fit observations of virialized galaxy clusters using the MOND
ravity of their directly detected baryons plus the sterile neutrinos
Angus, F amae y & Diaferio 2010 ). It can also fit the power spec-
rum of anisotropies in the cosmic microwave background (CMB)
ecause the typical gravitational field at the epoch of recombination
as ≈20 a 0 and the cosmic expansion history would be standard.
eutrino free streaming reduces the power on small scales compared

o � CDM, but this is consistent with CMB observations provided
he rest energy of the neutrinos exceeds 10 eV (see section 6.4.3
f Planck Collaboration XIII 2016 ). The gravitational fields from
ensity perturbations would enter the MOND regime only when
he redshift � 50 , before which the MOND corrections to General
elativity should be small (for a more detailed explanation of this
odel, see Haslbauer, Banik & Kroupa 2020 ). νHDM relies on the

xistence of eV-scale sterile neutrinos, but these are also hinted at
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y several terrestrial experiments (for a recent re vie w, see Berryman
t al. 2022 ). 

Equation ( 16 ) shows that unlike Newtonian gravity, MOND is a
on-linear theory of gravity. A physical consequence of this non- 
inearity is the so-called external field effect (EFE; Milgrom 1986 ). 
his implies that the internal gravity of a system can be weakened by a
onstant gravitational field from its external environment even if this 
s completely uniform, violating the strong equi v alence principle. 
he reason is that the MOND boost to the Newtonian gravity is
pproximately given by ν, which is damped due to the external field.
n MOND, the EFE explains why some galaxies like NGC 1052-DF2 
ave a very low observed velocity dispersion (Famaey, McGaugh & 

ilgrom 2018 ; Kroupa et al. 2018 ; van Dokkum et al. 2018 ; Haghi
t al. 2019a ), even though other galaxies like DF44 with similar
roperties but in a more isolated environment have a much higher 
elocity dispersion (B ́ılek, M ̈uller & Famaey 2019 ; Haghi et al.
019b ; van Dokkum et al. 2019 ). 2 Strong evidence for the EFE has
ecently been obtained based on the outer rotation curves of galaxies 
howing a declining trend if the galaxy experiences a significant EFE,
hile galaxies in more isolated environments have flat outer rotation 

urves (Haghi et al. 2016 ; Chae et al. 2020 , 2021 ). For a discussion
f observ ational e vidence relating to the EFE, we refer the reader to
ection 3.3 of Banik & Zhao ( 2022 ). 

The EFE is also important to Fornax Cluster dwarfs because their 
ow surface brightness implies rather little self-gravity, allowing the 
ravitational field of the cluster to dominate o v er that of the dwarf.
s a result, the dwarf is in the quasi-Newtonian (QN) regime where

ts internal dynamics are similar to a Newtonian dwarf but with a
enormalized gravitational constant G eff > G . We need to determine 
 eff from the cluster gravitational field g c . We do this by writing

quation ( 16 ) in the inverse form: 

 N = g μ ( g ) , where (17) 

( g ) = 

g 

g + a 0 
. (18) 

s the cluster gravity is dominant o v er the self-gravity of the dwarf,
e can set g = g c , with g c obtained from observations as described

n Section 3.1 . Since the Newtonian gravity of the cluster is directly
roportional to the Newtonian gravitational constant ( g c, N ∝ G ), the
f fecti ve gravity of a dwarf in the cluster will be directly proportional
o an analogous constant parameter G eff defined such that g c = 

 G eff / G ) g c, N . From equation ( 18 ), we infer G eff to be 

 eff = 

(
a 0 + g c 

g c 

)
G . (19) 

ote that replacing G → G eff can only be applied if the dwarf’s
elf-gravity is dominated by the external field of the cluster, so that
he combined gravitational field of the dwarf and cluster will remain 
pproximately constant with increasing distance with respect to the 
warf’s centre. 

.3.1 Tidal radius 

t the tidal radius of a dwarf, the difference in cluster gravity across
he dwarf is comparable to its self-gravity. Therefore, the total cluster 
ravity g c dominates o v er the dwarf’s self-gravity. Thus, the MOND
 In a conventional gravity context, the very low observed velocity dispersion 
f NGC 1052-DF2 implies a lack of dark matter, which ho we ver is not easily 
xplained in � CDM (Haslbauer et al. 2019a ; Moreno et al. 2022 ). 

3

w
b
o

idal radius of any dwarf is necessarily in the EFE-dominated/QN 

egime where its dynamics are approximately Newtonian but with 
 → G eff . Substituting this into equation ( 7 ) gives an approximate

xpression for the MOND tidal radius. Accounting for additional 
etails like the non-spherical nature of the point mass potential in the
N regime (discussed further in section 2.4 of Banik & Zhao 2022 ),

he MOND tidal radius can be expressed as (equations 26 and 36 of
hao & Tian 2006 ) 

 tid, MOND = 

2 

3 

√ 

∂ ln g 

∂ ln g N 

∣∣∣∣∣
g= g c 

[(
2 − α

3 − α

)
G eff M dwarf 

�g c /�R 

]1 / 3 

, (20) 

here the factor of order unity is the MOND Roche lobe scaling
actor accounting for such subtleties. Note that we have generalized 
heir equation (26) to write the result in terms of G eff and the tidal
tress. The parameter α ≡ 2 + 

d ln g c 
d ln r has the same meaning as in

quation ( 8 ), so its value remains 1.1. For the case of a dwarf orbiting
 point mass in the deep-MOND limit ( α = 1), the numerical factors
ombine to give 2 1/6 /3, matching equation (44) of Zhao ( 2005 ). 3 

.3.2 Galaxy–galaxy harassment 

hen a dwarf interacts with a massive galaxy in the Fornax
luster environment, we need to consider both the gravity from 

he elliptical and the background EFE due to the cluster potential.
s in Section 3.2 , we estimate the perturbation to the dwarf by

ssuming it is a collection of test particles that receive some impulse
 from the elliptical, with the heating rate of the dwarf proportional

o the square of | � u | , the spread in u across the dwarf. Once it has
o v ed a way from the elliptical, the binding energy of the dwarf is

iven by equation ( 12 ) but with G → G eff as discussed above. The
ain difficulty lies in estimating the energy gained by the dwarf due

o interactions with impact parameter b , which for a high-velocity
ncounter is approximately the same as the closest approach distance 
etween the dwarf and the elliptical. 

We need to consider encounters in two different regimes: 

(i) The QN regime in which g c 
 a 0 dominates over gravity from
he elliptical; and 

(ii) The isolated deep-MOND (IDM) regime in which the gravity 
rom the elliptical dominates o v er g c but is still much weaker than
 0 . 

We do not need to consider the Newtonian regime because the
erturbers have a radius that is numerically similar to their MOND
adius for the parameters given in Section 3.2 . This is not unique to
he Fornax Cluster: Elliptical galaxies generally have a size similar 
o their MOND radius (Sanders 2000 ). This is because if the initial
adius was much smaller and the system is nearly isothermal, then a
ignificant proportion of the mass in the outskirts would be moving
aster than the Newtonian escape velocity, causing the system to 
xpand to its MOND radius (Milgrom 1984 , 2021 ). 

The QN and IDM regimes are separated by encounters with b =
 EFE , the distance from the elliptical beyond which the cluster gravity
ominates. 

 EFE = 

√ 

GM p 

g c , N 
, (21) 
MNRAS 515, 2981–3013 (2022) 

 Equation ( 20 ) is the extent of the Roche Lobe in the tangential direction 
ithin the orbital plane. The extent along the orbital pole is similar, and in 
oth cases is smaller than the extent along the radial direction (see section 4.2 
f Zhao & Tian 2006 ). 
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here g c, N ≡ g c μ( g c ) is the Newtonian gravity of the cluster at the
ocation of the dwarf-elliptical encounter. These encounters would
enerally not occur when the dwarf is at the pericentre of its orbit
round the Fornax Cluster. Ho we ver, encounters at this point would
e more damaging because the dwarf’s self-gravity would be weaker.
e therefore assume that the encounters with ellipticals take place at

 typical distance from the cluster of R enc = 0 . 5 R, which is slightly
ore than the pericentre distance of 0 . 29 R (Appendix B ) but less

han the present distance. 
We will first consider the heating rate Ė QN from encounters in the

N regime before turning to the heating rate Ė IDM 

from encounters
n the IDM regime. The total heating rate is then 

˙
 MOND ≡ Ė Newt × CF = Ė QN + Ė IDM 

, (22) 

here CF is the correction factor that needs to be applied to the
ewtonian Ė to make it MONDian. Our approach is to assume a

harp transition between the QN and IDM regimes such that the EFE
s completely dominant in the former and completely negligible in
he latter. This approximate approach should be accurate to within a
actor of order unity, which we will argue later is sufficient for our
urposes. 
In all regimes, the heating rate due to encounters with an impact

arameter in the range b ± db /2 ( db 
 b ) is Ė b = Ċ 〈 � ̃

 E 〉 , where
˙
 ∝ b db is the average rate of such encounters and 〈 � ̃

 E 〉 is the
verage energy gain of the dwarf per unit mass due to each such
ncounter. Since accelerating the dwarf as a whole does not alter
ts internal structure, we only need to consider the variation in
he impulse u across the dwarf, so 〈 � ̃

 E 〉 ∝ | � u | 2 . In Newtonian
ynamics, the magnitude of the impulse on a passing test particle is
 ∝ 1/ b , so | � u | ∝ 1 /b 2 (equation 8.41 of Binney & Tremaine 2008 )
nd 〈 � ̃

 E 〉 ∝ 1 /b 4 . This explains the 1/ b 3 scaling in the integrand in
quation (8.53) of Binney & Tremaine ( 2008 ), which states that the
ewtonian heating rate per unit dwarf mass is 

˙
 Newt = 

14 

3 

√ 

2 π
G 

2 M 

2 
p n p r 

2 
h , dwarf √ 

2 σ︸ ︷︷ ︸ 
A 

∫ ∞ 

r h ,p 

db 

b 3 
= 

A 

2 r 2 h ,p 

, (23) 

here A is a constant. 
We are now in a position to MONDify this result for the QN

egime. Both the dwarf’s self-gravity and the elliptical’s gravity on
he dwarf are similar to the Newtonian result but with G → G eff .
he heating rate in the QN regime is thus similar to equation ( 23 ),
ut using G eff instead of G in the calculation of the normalization
onstant. To distinguish this result from the Newtonian case, we call
he QN normalization constant A 

′ = A ( G eff / G ) 2 . Since by definition
he QN regime involves only those encounters with b > r EFE , the
otal heating rate from encounters in this regime is 

˙
 QN = A 

′ 
∫ ∞ 

r EFE 

db 

b 3 
= 

A 

′ 

2 r 2 EFE 

. (24) 

In the IDM regime, the scalings are different because the gravity
rom the elliptical follows an inverse distance law. Since the inter-
ction time-scale rises linearly with the closest approach distance,
he impulse becomes independent of this ( u ∝ b 0 ). Ho we ver, as the
irection from the elliptical to the dwarf is still different for different
arts of the dwarf, the variation in the impulse across it scales as
 � u | ∝ 1 /b, implying that the energy gain per encounter scales as
 � ̃

 E 〉 ∝ | � u | 2 ∝ 1 /b 2 . Since the encounter rate again behaves as
˙
 ∝ b db due to the geometry being the same in both models, we
btain 
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˙
 IDM 

= 

A 

′ 

r 2 EFE 

∫ r EFE 

r MOND 

db 

b 
(25) 

= 

A 

′ 

r 2 EFE 

ln 

(
r EFE 

r MOND 

)
. (26) 

he normalization of the integrand ensures continuity of the specific
eating rate per unit b between the QN and IDM regimes. 
Inserting our results for Ė QN and Ė IDM 

into equation ( 22 ) and
oting that A 

′ = A ( G eff / G ) 2 , we obtain that 

F = 

[
1 + ln 

(
a 0 

g c , N 

)](
G eff r h,p 

G r EFE 

)2 

. (27) 

ince t d ≡ | E| / ̇E and the MONDian binding energy of the dwarf
xceeds the Newtonian result (equation 12 ) by a factor of ( G eff / G ),
he effect of the MOND corrections to Newtonian gravity amount
o multiplying the Newtonian t d (equation 13 ) by a factor of
F 

−1 ( G eff / G ). 

 d , MOND ≡ | E| MOND 

Ė MOND 

= 

0 . 043 

W p 

√ 

2 σ M dwarf r 
2 
EFE 

G eff M 

2 
p n p r 

3 
h , dwarf 

[ 
1 + ln 

(
a 0 

g c , N 

)] . (28) 

e assume W p = 1 as in the Newtonian case. Our deri v ation assumes
hat g c , N 
 a 0 , which is valid in the Fornax Cluster. In general, we
ecommend that the logarithmic term be omitted if g c , N > a 0 . 

 TI DAL  SUSCEPTIBILITY  

ow that we have defined the main effects which can disturb the
tructure of a dwarf in a galaxy cluster, we estimate the susceptibility
f a dwarf to these effects in both � CDM and MOND. To quantify
he disturbance caused by tides from the global cluster potential,
e define the tidal susceptibility as the ratio between the half-mass

adius r h and the tidal radius r tid of a dwarf: 

rtid ≡ r h 

r tid 
. (29) 

rom the definition of r tid in both � CDM (equation 11 ) and MOND
equation 20 ), we have that r tid ∝ M 

1/3 . This implies that 

rtid ∝ 

r h 

M 

1 / 3 
∝ ρ−1 / 3 . (30) 

herefore, only the density ρ of the dwarf is rele v ant to its tidal
usceptibility in both � CDM and MOND. 

If a dwarf has strong self-gravity (e.g. due to being surrounded
y a dark matter halo or being in the deep-MOND regime), then the
oint at which the tidal force of the cluster will start to dominate o v er
he self-gravity of the dwarf will be far from the centre of the dwarf.
herefore, the dwarf’s r tid will be large and its tidal susceptibility will
e low. Such a dwarf should be little disturbed by the cluster tides. If
nstead the dwarf has only weak self-gravity (e.g. because it is a TDG
ith little dark matter or because it is a MONDian dwarf but the EFE

rom the cluster is very significant), then the point at which the tidal
orce of the cluster will start to dominate o v er the self-gravity of the
warf will be close to the dwarf’s centre. Its r tid will then be small
nd its tidal susceptibility high. Such a dwarf would be significantly
isturbed by tides. In the extreme case that r tid 
 r h ( ηrtid � 1), the
warf will be destroyed within a few dynamical times. As a result,
e need to consider the maximum value of ηrtid attained throughout

he trajectory, i.e. we need to e v aluate ηrtid at pericentre. 
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Figure 2. Histogram of the tidal susceptibility values of Fornax Cluster dwarfs in � CDM (left-hand column) and MOND (right-hand column) to tides from 

the o v erall cluster potential (top row) and harassment by interactions with indi vidual massi ve galaxies (bottom ro w). The bin widths are: 0.01 (top-left panel), 
0.05 (top-right panel), 0.01 (bottom-left panel), and 0.005 (bottom-right panel). Notice the different ηrtid scales for � CDM and MOND. In both theories, we 
typically have ηhar 
 ηrtid . 
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If the disturbance is caused by interaction with massive galaxies 
harassment), we define the tidal susceptibility as the ratio between 
he age of the elliptical galaxies in the Fornax Cluster ( t Fornax ≈
0 Gyr; Rakos et al. 2001 ) and the disruption time-scale t d of the
warf, which we assume to typically be about as old as the cluster
tself. 

har ≡ t Fornax 

t d 
. (31) 

ccording to this definition, if t Fornax 
 t d for a dwarf, then it will
ardly be susceptible to the effect of g alaxy–g alaxy harassment. 
f instead t Fornax � t d for a dwarf, then we expect that it will be
ignificantly disturbed due to this process. 

Although our definitions for ηrtid and ηhar dif fer some what because 
he former is a ratio of radii while the latter is a ratio of time-scales,
oth definitions share the feature that low values of η indicate that 
 dwarf should be little affected by the process under consideration. 
n principle, there should not be any dwarf galaxies for which 
ither η � 1. It is possible to have η slightly abo v e 1 due to
rojection effects and other subtleties like the time required to 
chieve destruction, which can be significant for ηrtid as multiple 
ericentre passages may be required and the orbital period can be 
ong (Section 3.1 ). Ho we v er, we should v ery seriously doubt the
alidity of any theory which tells us that a significant fraction of
he dwarf galaxies in a galaxy cluster have ηrtid � 1 or ηhar �
. It is harder to falsify a theory in the opposite limit where it
ields very low values for both measures of η for all the dwarfs
n a galaxy cluster. In this case, we could gain evidence against the
heory if there is strong evidence that the dwarf galaxy population
as been significantly affected by tides. In this project, we apply
hese considerations to the dwarf galaxy population in the Fornax 
luster. 

.1 Tidal susceptibility of the Fornax dwarfs 

ur first quantitative result is the susceptibility of dwarfs in the
DS catalogue to cluster tides, which we calculate in � CDM and
OND using equations ( 11 ) and ( 20 ), respecti vely. We sho w the

esults as histograms in the top row of Fig. 2 , with � CDM shown
n the left-hand panel and MOND in the right-hand panel. The ηrtid 

alues are ≈5 × higher in MOND than in � CDM. Since an isolated
warf has a similar amount of self-gravity in both frameworks by
onstruction, the difference in ηrtid values is primarily caused by 
he EFE weakening the self-gravity of a MONDian dwarf as it
pproaches the cluster centre (Section 1 ). This effect does not exist
or a � CDM dwarf, which would retain the same dark matter fraction
ithin its baryonic extent throughout its trajectory. 
MNRAS 515, 2981–3013 (2022) 
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Figure 3. Distribution of the projected distances of Fornax Cluster dwarfs 
against r e / r max , where r e is the projected half-light radius and r max is the 
maximum r e at fixed M � that the dwarf can have to remain detectable given 
the surface brightness limit of the surv e y of 27.8 mag arcsec −2 in the r 

′ 

band. Dwarfs visually classified as ‘undisturbed’ are shown in blue, while 
those classified as ‘disturbed’ are shown in red. Notice the lack of low surface 
brightness dwarfs near the cluster centre. We have emphasized this by drawing 
a dashed grey line for illustrative purposes, which we interpret as a tidal edge. 
This interpretation is bolstered by the lack of dwarfs abo v e this line and the 
high proportion of disturbed dwarfs just below this line. 
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The bottom row of Fig. 2 shows the susceptibility of FDS dwarfs
o g alaxy–g alaxy harassment according to � CDM (equation 13 ) and

OND (equation 28 ). In both theories, the histogram of ηhar peaks at
ery low values such that ηhar 
 ηrtid and ηhar 
 1. Therefore, both
rameworks predict that the FDS dwarfs should be little affected by
nteractions with massive elliptical galaxies in the Fornax Cluster. 

This implies at face value that in � CDM, the observed signs
f tidal disturbance (section 7.4 of Venhola et al. 2022 ) cannot be
ssigned to either cluster tides or to harassment. Since we explore
he impact of cluster tides more carefully later in this contribution,
e briefly reconsider our calculation of ηhar . As explained in
ection 3.2 , one simplifying assumption we made is that there are
8 equal mass and equal size perturbers within the 0.77 Mpc virial
adius of the Fornax Cluster. Ho we ver, the heating rate due to any
ndividual perturber scales as Ė ∝ 

(
M p /r h , p 

)2 
(equation 23 ). We

an use this to find the ratio Ė / ̇E fid between the heating rate due
o individual perturbers and the assumed heating rate Ė fid for an
average’ perturber with M � = 10 10 M � and r h, p = 4 kpc, taking
nto account that the actual mass and size are larger in � CDM and
ssuming a de Vaucouleurs profile for the stars (de Vaucouleurs
948 ). We obtain that in descending order of M � , the ratio Ė / ̇E fid for
he perturbers listed in table C1 of Iodice et al. ( 2019 ) is 14.7 (FCC
19), 42.7 (FCC 167), 10.3 (FCC 184), 4.76 (FCC 161), 5.41 (FCC
47), 11.8 (FCC 170), 1.06 (FCC 276), 1.93 (FCC 179), and 0.13
FCC 312). Other perturbers have M � < 10 10 M �, so we assume
heir contribution to the heating rate is small. Adding up the abo v e
atios and averaging over 48 perturbers (many of which are too low
n mass to appreciably harass Fornax dwarfs), we get that Ė / ̇E fid is
n average 1.9. Therefore, using a more accurate treatment of the
eating rate would not change our conclusion that the FDS dwarfs
re not really susceptible to g alaxy–g alaxy harassment: Doubling all
he ηhar values would still lead to its distrib ution ha ving a mode < 0.1
nd all the dwarfs having ηhar < 1. 

Moreo v er, using t Fornax as the time-scale for interactions is an
ptimistic assumption − dwarfs in � CDM may have been accreted
y the cluster long after they formed, while in MOND they could be
DGs that formed more recently (Renaud, F amae y & Kroupa 2016 ).
his implies that the dwarfs would not have experienced that many
ncounters with elliptical galaxies, which themselves might only
ave been accreted 
10 Gyr ago. As an example, we may consider
he case of FCC 219 ≡ NGC 1404, the most massive perturber listed
n table C1 of Iodice et al. ( 2019 ) in terms of M � . Its radial velocity
xceeds that of the brightest cluster galaxy NGC 1399 by 522 km s −1 ,
ut modelling indicates that the relative velocity could be higher still
s most of it should lie within the sky plane (Machacek et al. 2005 ).
oreo v er, NGC 1404 appears to lie in front of the Fornax Cluster:

ts heliocentric distance is only 18.7 ± 0.3 Mpc (Hoyt et al. 2021 ),
hereas the distance to NGC 1399 is 20.0 ± 0.3 Mpc (Blakeslee

t al. 2009 ). Detailed modelling in a � CDM context indicates that
lthough NGC 1404 is not on a first infall, it has likely spent �3 Gyr
ithin the cluster (Sheardown et al. 2018 ). During this time, the high

elativ e v elocity would hav e reduced the heating rate on an y dwarf
alaxy that it came near (equation 23 ). It is therefore clear that ηhar is
 v erestimated by assuming that both all the dwarfs and all 48 massive
llipticals were in the virial volume of the Fornax Cluster over the
ast 10 Gyr. 

Based on this, we will neglect the role of harassment in what
ollows and focus on cluster tides. 4 Thus, η will be used to mean
NRAS 515, 2981–3013 (2022) 

 This is consistent with the previous � CDM result that harassment is not 
ery significant for dwarfs in a Virgo-like cluster (Smith et al. 2015 ). 

w  

(  

d  

c  
rtid unless stated otherwise. An important example of this is our
iscussion of Newtonian TDGs that are purely baryonic, where ηhar 

lays an important role (Appendix D ). 

.2 Testing the effect of cluster tides on Fornax dwarfs 

 significant fraction of the FDS dwarfs appear disturbed in a
anual visual classification (Fig. 1 , see also Venhola et al. 2022 ).
o check if cluster tides are truly the main mechanism responsible
or the apparent disturbance of the Fornax dwarfs − as our results
n Fig. 2 seem to suggest − in Fig. 3 we plot the projected
istance of the selected Fornax dwarfs against the ratio between
heir ef fecti ve radius r e and r max , where r max is the maximum r e 
hat the dwarf could have to remain detectable given its M � and
he FDS detection limit of 27.8 mag arcsec −2 . Dwarfs with larger
ize at fixed stellar mass − i.e. lower surface brightness dwarfs −
re more susceptible to tides and will be more easily destroyed,
specially near the cluster centre where the tides are stronger.
n Fig. 3 , we can see a deficit of low surface brightness dwarfs
ear the cluster centre. The absence of dwarfs in this region of
he parameter space cannot be explained by the survey detection
imit as we find an increasing number of dwarfs with the same
r lower surface brightness at larger R sky , e.g. if we consider
 horizontal line at r e / r max = 0.4. This tendency is highlighted
n Fig. 3 using a sloped dotted line that appears to be a tidal
dge. Further from the cluster, its tides become weaker, so it is
uite possible that dwarfs in this region are not much affected by
ides. 

Additional evidence for the importance of tides towards the cluster
entre comes from the colours of the dots in Fig. 3 , which indicate
hether the dwarf visually appears disturbed (red) or undisturbed

blue). Just below the claimed tidal edge, we would expect that the
warfs are much more likely to appear disturbed as they should be
lose to the threshold of being destroyed altogether. This is indeed
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Figure 4. The proportion of Fornax dwarfs that appear disturbed in different 
projected separation bins of width 200 kpc. The error bars show the binomial 
uncertainty assuming the likelihood of appearing disturbed is the same as the 
proportion of disturbed dwarfs. 6 
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pparent: The proportion of disturbed galaxies is much higher in this
art of the parameter space. 5 

To emphasize this trend further, we use Fig. 4 to show the observed
raction of disturbed dwarfs ( f d ) in different R sky bins. This is found as
 d = S / T , with the uncertainties calculated using binomial statistics as

 

S ( T − S ) /T 3 , where T is the number of galaxies in each R sky bin
nd S ≤ T is the number of these galaxies which appear disturbed. 6 

s expected from our previous results, f d is very high in the central
00 kpc of the Fornax Cluster. Although f d is very low further out, it
s still non-zero and remains so out to the largest distances co v ered
y our data set. We attribute this to the complexities of visually
ssessing whether a dwarf is tidally disturbed: If a dwarf appears 
symmetric due to observ ational dif ficulties or due to a dense star
luster on one side, this could lead to a false positive. It is also
ossible that the dwarf is genuinely disturbed due to a recent close
ncounter with a massive galaxy in the cluster, which could happen 
ven in the cluster outskirts. When we construct a detailed model of
he Fornax Cluster dwarf galaxy population in Section 5.2.4 , we will
eed to allow a non-zero likelihood that a dwarf appears disturbed 
ven if it is unaffected by cluster tides. 

.3 Correlating tidal susceptibility with the obser v ed lev el of 
isturbance 

aving obtained the tidal susceptibility η of each Fornax dwarf in 
ur sample (Section 4.1 ), we can compare this to its visual level of
isturbance. We do so using the proportion of dwarfs classified as
isturbed in each η bin, which is similar to the analysis shown in
ig. 4 but binning in η instead of R sky . We consider each η bin as
n experiment with T trials (dwarfs) out of which S are ‘successes’
disturbed-looking dwarfs). We then use binomial statistics to infer 
he probability distribution of the disturbed fraction f d assuming a 
 This is not expected if the disturbances are due to harassment because dwarfs 
ubject to this would be well mixed throughout the cluster (Smith et al. 2015 ). 
 This is based on the binomial uncertainty in S assuming that the probability 
f a galaxy appearing disturbed in each R sky bin is f d = S / T . In reality, f d is 
ot precisely constrained by the observations − we handle this complexity 
ater (equation 32 ). 

b  

d  

r  

c  

7

b

niform prior o v er the range 0–1 and applying Bayes’ theorem. The
ean and standard deviation of f d are 

mean = 

S + 1 

T + 2 
, 

tandard deviation = 

1 

T + 2 

√ 

( S + 1 ) ( T − S + 1 ) 

( T + 3 ) 
. (32) 

 or the e xtreme case S = T = 0, we expect that the probability
istribution of f d is uniform o v er the range 0–1 as there is no data.
n this case, we reco v er the standard result that the mean of this
istribution is 1/2 and its variance is 1/12. 
We use Fig. 5 to plot the mean and standard deviation obtained in

his way against the central η value for the bin under consideration.
n both � CDM and MOND, a clear trend is apparent whereby dwarfs
ith higher η are more likely to appear disturbed. We quantify this
y dividing the FDS sample into two subsamples where η is below
r abo v e some threshold ηt , thereby assuming only a monotonic
elation between f d and η that is not necessarily linear. Appendix C
xplains how we obtain the likelihood that the same f d can explain
he number of disturbed dwarfs and the total number of dwarfs in
oth subsamples given binomial uncertainties. Using this method, 
e find that the ‘signal’ is maximized in � CDM if we use ηt =
.36, in which case the null hypothesis of f d being the same in both
ubsamples can be rejected at a significance of P = 4.1 × 10 −3 

2.87 σ ). If instead we use MOND, the optimal ηt = 0.85 and the
ignificance rises to P = 4.4 × 10 −4 (3.52 σ ). 7 Though both theories
mply that f d is higher in the high η subsample, f d starts rising at a
uch lower value of η in � CDM than in MOND, as clearly shown

y the optimal ηt values. We may expect that dwarfs start to look
isturbed when their half-mass radius is about the same as their tidal
adius, so f d should start rising only when η � 0 . 5. This is not the
ase in � CDM, which implies that dwarfs are more likely to be
MNRAS 515, 2981–3013 (2022) 

 Section 8 provides a more rigorous quantification of how confident we can 
e that f d rises with η. 
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lassified as disturbed once their η � 0 . 1 −0 . 2. A dwarf with such
 low η should be little affected by tides, indicating a problem for
his framework. In the MOND case, we see that dwarfs start being
lassified as disturbed more often once their η � 1 −1 . 5, which is
uch more plausible physically. 
Another important aspect is the o v erall distribution of η, whose

ecline towards the highest bin is responsible for a larger uncertainty
n the probability of appearing disturbed. The distribution of η is
hown explicitly in the top row of Fig. 2 . There are no � CDM
warfs with η > 0.7, even though a dwarf with η = 0.7 should
till be tidally stable. In MOND, the maximum η ≈ 3, though there
re very few dwarfs with η > 1.5. The high calculated η for these
warfs could indicate that they lie very close to the cluster centre in
rojection but not in reality. To handle such projection effects and
ther uncertainties like the unknown orbital eccentricity distribution
f the dwarfs, we next construct a test mass simulation of the dwarf
alaxy population in the Fornax Cluster. 

 TEST  MASS  SIMULATION  O F  T H E  F O R NA X  

LUSTER  

n order to quantify the aforementioned trends and thereby obtain
he range of values that the minimum η required for disturbance
nd the η required for destruction can have to be consistent with
bservations − both in � CDM and in MOND − we need to construct
 forward time-evolution model of the Fornax Cluster. With this
orward model, we can also account for projection effects that can
ak e dw arfs appear closer to the cluster centre than they actually are.

n this section, we describe the set-up of the simulated Fornax system
ith test masses, as well as the methods that we use to quantify the
roperties of the Fornax dwarfs and their orbits. Here, we focus only
n those dwarfs classified as ‘non-nucleated’ as this type of galaxy
s more numerous than the ‘nucleated’ type. Moreo v er, having the
ame deprojection method (Appendix A ) for all dwarfs will simplify
he analysis. Removing the nucleated dwarfs from the sample leaves
s with 279 dwarfs. 

.1 Orbit integration 

he first step in building a simulation of test masses orbiting in the
bserved cluster potential is to generate a grid of orbits for a wide
ange of semimajor axis ( R i ) and eccentricity ( e ) values, with the
ntegrations started at R = R i . The initial radii have a range of values
rom 15 to 2015 kpc, while the eccentricities co v er the full range of
alues for an ellipse (0 < e < 1). The grid is divided into 100 × 100
ells. Initially, we assign the test mass a mass and half-mass radius
hich are typical for a Fornax dwarf ( M dwarf = 3.16 × 10 7 M � and
 h = 0.84 kpc), but these values are not relevant as the results will be
escaled later according to the distribution of dwarf densities in the
ystem (Section 5.2.3 ). 

We initialize the simulated dwarfs for every possible combination
f R i and e as described below. We start the simulation at the
emimajor axis of the orbit, where the velocity v satisfies 

 = v c = 

√ −r · g . (33) 

s discussed in section 2.3.1 of Banik & Zhao ( 2018c ), the eccen-
ricity e is defined such that 

 ≡ | ̂  r · ̂ v | , (34) 

here r = R i ̂  r and g = −g c ̂  r , with ̂ v indicating the unit vector
arallel to any vector v of length v. The modulus is not required in
ur case because we start with the dwarf going away from the cluster
NRAS 515, 2981–3013 (2022) 
f e > 0. Using Cartesian coordinates, we define the initial positions
nd velocities of the orbit as 

 = R i , (35) 

 = 0 , (36) 

 x = ve , (37) 

 y = v 
√ 

1 − e 2 . (38) 

quation ( 33 ) defines v and equation ( 34 ) sets the component of v 
long the radial direction. v y is the remaining tangential velocity. 

In order to obtain the positions and velocities of the simulated
warf at each point of the orbit, we implement a fourth-order Runge–
 utta inte grator in 2D. To ensure that the time-step we use for each

teration is computationally efficient but also small enough to yield
ccurate results, we use an adaptive time-step that depends on the
ynamical time-scale at the instantaneous orbital radius R : 

t = 0 . 01 

√ 

R 

g c 
. (39) 

e evolve the system for t Fornax = 10 Gyr, the estimated age of
he system (Rakos et al. 2001 ). At each time-step, we calculate
he tidal radius of the simulated dwarf at its current position and, by
omparing this with the half-mass radius, we obtain its instantaneous
idal susceptibility η. We record the e value of each simulated orbit
nd its final R , the distance with respect to the cluster centre at which
e should be seeing the dwarf today. We also record two η values

n each orbit simulation: the maximum η o v er the whole simulation
 ηmax ), and the maximum η in the last 2 Gyr ( ηmax, recent ). We use ηmax 

o decide whether the dwarf is destroyed and should be remo v ed
rom our statistical analysis. If not, then ηmax, recent is used to set the
ikelihood that the dwarf appears disturbed. This is because we expect
 dwarf to return to a nearly undisturbed appearance if it experiences
nly lo w η v alues along its orbit for o v er 2 Gyr, pro vided η is nev er
o high as to destroy the dwarf. 

.2 Assigning probabilities to the orbits 

he orbital and internal properties of the Fornax dwarfs (e.g. the
adial profile of the orbits, the distribution of their eccentricities,
nd the likelihood of appearing perturbed) follow certain probability
istributions. Because of this, we assign probabilities to each of our
imulated orbits by fitting them to a few crucial observed properties
next subsection) in order to make our simulated system as similar as
ossible to the observ ed F ornax dwarf galaxy system. The parameters
o v erning these probability distributions are described below. 

.2.1 Number density of dwarfs 

he number density n of dwarfs is assumed to be a function only of the
istance R from the cluster centre. It is related to the radial probability
istribution P r as: n ∝ P r / R 

2 . We assume that P r is described by a
ouble power law: 

 r = R 

2 ( R + r core ) 
Slope P r , (40) 

here r core is the radius of the constant density central region of
he Fornax Cluster and Slope P r is the power-law slope of the radial
rofile in the cluster outskirts. To obtain a convergent number of
warfs, Slope P r < −3. 
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Figure 6. The distribution of each dwarf galaxy’s mean baryonic density ρ
within its half-mass radius. The orange vertical line shows the sample mean, 
while the magenta lines offset by ±0.57 dex show the standard deviation 
around it. The grey line shows the density of a dwarf corresponding to 
the observational surface density detection limit of � min = 0.26 M � pc −2 

assuming the mean M/L r ′ = 1 . 10 and mean ρ/� = 0 . 59 kpc −1 . If instead 
we add (subtract) the standard deviation in the M/L r ′ ratios, we have that 
� min = 0 . 35 ( 0 . 17 ) M � pc −2 . From these and by adding (subtracting) the 
standard deviation in the ρ/ � ratios, we obtain the ρ v alue gi ven by the 
dashed (solid) black line. 
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Figure 7. The relation between mass and luminosity in the r 
′ 

band for the 
non-nucleated sample of dwarfs in the FDS catalogue, with both shown on 
a log 10 scale. The assumed M / L ratios are based on empirical relations with 
the colour (Section 2 ). The dotted grey line shows the linear regression, 
while the solid grey line shows our adopted fit assuming a slope of 1. The 
dashed (solid) black line shows one standard deviation abo v e (below) the 
mean M � /L r ′ . The horizontal red line at 10 7 . 2 M � shows the stellar mass 
below which core formation is inefficient in � CDM (Section 8 ). 
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.2.2 The eccentricity distribution 

or the probability distribution of the orbital eccentricities, we 
ssume a linear function as in Banik & Zhao ( 2018c ): 

 e = 1 + Slope P e 

(
e − 1 

2 

)
, (41) 

here Slope P e is the slope of the eccentricity probability distribution. 

.2.3 Distribution of dwarf densities 

he tidal susceptibility of a dwarf depends on both its mass and
ts radius, which in general differ from the values assumed in our
est mass simulation. As discussed below equation ( 29 ), the mass
nd radius of a dwarf affect its tidal susceptibility only to the
 xtent that the y affect its density ρ. Therefore, the η values that
e recorded in Section 5.1 should be multiplied by a density-related 

actor accounting for the difference between the intended density ρ
nd the fixed value ρ0 assumed in that section. We therefore set 

max = ηmax, 0 

(
ρ

ρ0 

)−1 / 3 

, (42) 

max, recent = ηmax, recent, 0 

(
ρ

ρ0 

)−1 / 3 

, (43) 

here the ‘0’ subscript denotes values obtained in Section 5.1 . The
1/3 exponent comes from the fact that η ∝ r h / M 

1/3 in both theories.
The density ρ of each Fornax dwarf within its r h can be inferred

rom the data in the FDS catalogue using ρ = 3 M � / 
(
8 πr 3 h 

)
. Fig. 6

hows a histogram of the so-obtained densities of these dwarfs, from
hich it can be seen that the FDS distribution of log 10 ρ follows
 Gaussian distribution with mean −2.74 in units of M � pc −3 .
herefore, when we assign a density to each of the simulated 
warfs obtained in Section 5.1 , we associate a probability to this
ensity according to a lognormal distribution. This is assumed to be 
ndependent of R i since the central region of a cluster should be able
o accrete dwarfs that formed further out, leading to mixing of dwarfs
hat formed in different positions within the cluster. 

In order to set the lowest density that can be assigned to a dwarf
n a way that is consistent with the observational constraints of the
DS, we check down to which surface brightness μ dwarfs can be
etected in this surv e y. The limiting μ is given by the 1 σ signal-to-
oise threshold per pixel, which in the FDS is 27.8 mag arcsec −2 

n the red band (section 4.1 of Venhola et al. 2018 ). To infer the
orresponding ρ, we first convert this μ value to astronomical units 
L � pc −2 ): 

log 10 μ
[
L � pc −2 

] = 

μ
[
mag arcsec −2 

] − 21 . 57 − Mag �
−2 . 5 

, (44) 

here Mag � = 4.65 is the absolute magnitude of the Sun in the
ed band (table 3 of Willmer 2018 ). This gives μmin = 0 . 23 L � pc −2 .

e then use the mass–luminosity relation (solid grey line in Fig. 7 )
o obtain that M/L r ′ = 1 . 10 ± 0 . 38 M �/ L �,r ′ . From this we can
onvert μmin to a surface density � min with some error due to the
catter in M/L r ′ , yielding � min = 0 . 26 ± 0 . 09 M � pc −2 . Finally, we
an convert this � min to a threshold density ρ t by plotting the surface
ensity of the Fornax dwarfs against their volume density and doing
 linear regression (Fig. 8 ). Since the slope is very close to 1, we
x it to 1 for simplicity, leading to a fixed ratio of ρ/� = 0 . 59 ±
 . 33 kpc −1 . The limiting ρ of the Fornax survey that we obtain with
his method is ρt = 1 . 51 + 1 . 67 

−1 . 09 × 10 −4 M � pc −3 considering the 1 σ
ower and upper limits to both M/L r ′ and ρ/ �. From Fig. 6 , we can
ee that the distribution of dwarfs is only included in its entirety if
e take the lower limit and thus adopt a threshold of ρt = ρmin =
 . 2 × 10 −5 M � pc −3 . Given that the images of the dwarfs have been
arefully analysed by observers and labelled as ‘unclear’ whenever 
he image was not clear enough, we assume that all the considered
warfs were observed without difficulty by the FDS. Therefore, we 
onsider that a reasonable lower limit for the density distribution in
ur statistical analysis should encompass all the dwarfs in the data
et, so we take ρ t = ρmin = 4.2 × 10 −5 M � pc −3 (black line in Fig. 6 )
s our nominal lower limit to the density distribution. This choice of
t is 0.09 dex below ρmin, FDS , the lowest ρ of any considered dwarf
MNRAS 515, 2981–3013 (2022) 
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Figure 8. The relation between the average 3D mass density of baryons 
within their half-mass radius and their surface mass density within their 
projected half-light radius for our galaxy sample. The dotted grey line shows 
the linear regression, while the solid grey line shows our adopted fit assuming 
a slope of 1. The dashed (solid) black line shows one standard deviation abo v e 
(below) the mean ρ/ �. The red star shows the values for the dwarf galaxy 
used in our N -body simulations (Section 7 ). 
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n the FDS. If instead we had assumed that ρ t = ρmean = 1.51 × 10 −4 

 � pc −3 (grey line in Fig. 6 ), we would have needed to discard seven
f the observed dwarfs in the FDS. These and other choices for ρ t 

re discussed in Section 8 . 
In the � CDM case, we need to include the halo mass within the

aryonic extent of each dwarf (equation 10 ), leading to higher volume
ensities. This causes a steeper slope and a larger amount of scatter in
he mass–luminosity relation, making it dif ficult to follo w the abo v e-

entioned method. To keep the procedure similar, we set ρmin to a
alue 0.09 dex below ρmin, FDS as this is the gap assumed for MOND.
he steps involved with this model are shown in Appendix E . 

.2.4 Disturbance to the dwarf structure 

ssuming that tides are the main cause of the apparent disturbance
o the structure of many Fornax dwarfs, we expect the probability of
 dwarf appearing perturbed to grow with its tidal susceptibility. We
ssume a linear relation between η and the probability of disturbance
 P dist ) with slope 

lope P dist 
= 

P dist, ceiling − P dist, floor 

ηdestr − ηmin, dist 
, (45) 

here ηmin, dist is the lowest η value at which the dwarf is disturbed
y tides, ηdestr is the η value at which the dwarf is destroyed (the
lgorithm rejects all simulated orbits in which ηmax surpasses this
alue), P dist, ceiling is the probability for a dwarf to appear disturbed
ight before it gets destroyed at η = ηdestr , and P dist, floor is the
inimum probability for a dwarf to appear disturbed if ηmax, recent 

 ηmin, dist . We allow P dist, floor > 0 to capture the possibility that a
warf appears disturbed for reasons unrelated to cluster tides, e.g.
symmetric star formation. Similarly, we expect that P dist, ceiling < 1
ecause a significantly perturbed dwarf might be elongated along the
ine of sight and thus appear circular. For a dwarf with ηmax, recent ≥
min, dist , the probability of disturbance is 

 = P + Slope 
(
η − η

)
. (46) 
NRAS 515, 2981–3013 (2022) 

dist dist, floor P dist max, recent min, dist 
.3 Comparison with obser v ations 

he observed parameters of the Fornax dwarfs that we aim to
eproduce in our simulation are: 

(i) The distribution of sky-projected distances ( R sky ) to the cluster
entre; 

(ii) The distribution of apparent η values at pericentre ( ηobs ); and 
(iii) The disturbed fraction of dwarfs as a function of ηobs . 

Because these quantities are projected or depend on the depro-
ection method, we need to obtain the R sky values of our simulated
warfs and then deproject them using the same method that we use for
he observed dwarfs. To obtain the R sky values for each 3D distance
 of the simulated dwarf, we consider the view if it is observed from
ll possible angles 0 ◦ ≤ θ ≤ 90 ◦ in steps of 1 ◦, where θ is the angle
etween R and the line of sight. The projected distance is given by 

 sky = R sin θ . (47) 

ach value of θ is statistically weighted by the difference in cos θ
cross the corresponding bin. We then apply the deprojection method
escribed in Appendix A and obtain the corresponding distance at
ericentre (Appendix B ). With this, we can calculate R tid and η at
ericentre in a similar way to that in which we obtain these parameters
or the observed dwarfs. We name the new η parameter that we
btain with this method ηobs . Therefore, the simulated quantities that
e compare to the previously mentioned observables are: R sky , the
istribution of ηobs , and the probability of disturbance at each ηobs . 
To do the comparison, we start by dividing the range of R sky and

obs into several bins. We then classify the observed dwarfs into these
ins according to their values of projected distance or estimated η at
ericentre. To obtain the probability for a dwarf to have a projected
istance or ηobs which falls in the range of values delimited by
ach of these bins, we count the number of dwarfs in each bin and
ompare it to the total number of dwarfs. To obtain the probability of
isturbance, we count the number of dwarfs classified as disturbed
n each ηobs bin and compare it to the total number of dwarfs in that
in. 
For the simulated sample (i.e. the dwarfs generated for all possible

ombinations of R i , e , ρ, and θ ), we consider the same bins as for
he observed sample. For each bin, we add the probability that each
imulated dwarf has R sky or ηobs values that fall in the range given by
he bin. We then normalize this by the sum of all the probabilities in
ll bins. For the probability of disturbance, we apply an additional
actor of P dist to the likelihood of each ( R i , e , ρ, θ ) combination and
dd this to the appropriate ηobs bin. We then divide this sum by the
robability of ηobs falling in that bin (i.e. without considering P dist ). 
To quantify how closely the properties of the simulated sample of

warfs resemble the properties of the observed FDS dwarfs in terms
f each of the abo v e-mentioned observables, we use the binomial
robability 

 x = 

∏ 

Bins 

T ! 

( T − S ) ! S! 
p 

S ( 1 − p ) T −S , (48) 

here T is the total number of observed dwarfs, S is the number of
bserved dwarfs in a bin, p is the simulated probability that a dwarf
s in that bin, and the ‘x’ subscript refers to the observable under
onsideration. If this is the disturbed fraction, T is the total number
f observed dwarfs in a particular ηobs bin, S is the observed number
f disturbed dwarfs in that bin, and p is the probability given by the
imulation that a dwarf in that bin is disturbed. The total probability
s given by multiplying all probabilities for all the bins and all the
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Table 1. Priors for the free parameters in our 
model of the Fornax Cluster dwarf galaxy 
population. 

Parameter Minimum Maximum 

Slope P r −9 −3 
Slope P e −2 2 
r core (Mpc) 0.01 3 
P dist, floor 0 1 
P dist, ceiling 0 1 
ηmin, dist 0 5 
ηdestr ηmin, dist 5 
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Table 2. The parameters of our best-fitting model in each 
theory, obtained with the gradient ascent method (columns 
2–3) and based on 10 5 MCMC trials (columns 4–5). The 
last row shows the likelihood of the model (equations 48 
and 49 ). 

Gradient ascent MCMC 

Parameter � CDM MOND � CDM MOND 

Slope P r − 3 .77 − 3 .67 − 5 .85 − 4 .55 
Slope P e − 1 .55 0 .34 − 1 .98 − 1 .70 
r core 0 .62 0 .65 1 .35 0 .90 
P dist, floor 0 .09 0 .04 0 .10 0 .02 
P dist, ceiling 0 .65 0 .76 0 .54 0 .53 
ηmin, dist 0 .11 0 .24 0 .12 0 .10 
ηdestr 0 .24 1 .88 0 .23 1 .24 

log 10 P total − 30 .69 − 32 .46 − 30 .53 − 32 .25 
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bservables: 

 total = P R sky P ηobs P perturbed | ηobs . (49) 

In order to maximize this P total , we leave as free parameters: r core ,
lope P r , Slope P e , ηmin, dist , ηdestr , P dist, floor , and P dist, ceiling . We explore 

his set of parameter values using the MCMC method discussed 
elow. 

.3.1 MCMC analysis 

he MCMC method generates a sequence of parameter values in 
uch a way that their frequency distribution matches the posterior 
nference on the model parameters. The basic idea is to start with
ome initial guess for the parameters with likelihood P total and 
enerate a proposal by adding Gaussian random perturbations to 
he parameters, leading to a likelihood of P next with the revised 
arameters. The proposal is accepted if P next > P total or if a random
umber drawn uniformly from the range (0–1) is < P next / P total . If the
roposal is rejected, the parameter perturbations are not applied but 
he previous parameters must be recorded once more. 

We run a total of 10 5 trials in each chain and check that the
cceptance fraction is close to 0.234, the optimal acceptance rate 
or an efficient MCMC algorithm (Gelman, Gilks & Roberts 1997 ). 
his is achieved by rerunning the chain a few times to determine

he optimal step sizes for the parameter perturbations. To ensure that 
he algorithm chooses physically reasonable parameter values, we 
mpose the priors listed in Table 1 . If the algorithm chooses a value
or any of these parameters outside the specified range, it is asked
o draw another proposal, but this does not count as a new MCMC
rial. We let the algorithm consider a sufficiently large number of
roposals at each stage in the chain that we are sure to obtain a
hysically plausible proposal for the parameter combination to try 
e xt, ev en if this is rejected because it fits the observations poorly. 
To prevent the MCMC algorithm from starting with a set of values

hich is too f ar aw ay from the optimal set, we first fit the simulation’s
ree parameters to the observations using a gradient ascent algorithm 

Fletcher & Powell 1963 ). This maximizes P total by increasing or
ecreasing the step size according to how much P total increased or
ecreased with respect to the previous set of parameter values that it
ested. This is done until the step size becomes very small, indicating
hat the algorithm cannot increase P total any more. Then the algorithm 

onverges and returns the optimal set of parameter values. 

 RESULTS  O F  T H E  STATISTICAL  ANALYSI S  

e present our best-fitting model in each theory (Section 6.1 ) before
iscussing the parameter uncertainties obtained with the MCMC 

ethod (Section 6.2 ). 
.1 The best-fitting model 

he optimal set of parameters found by the gradient ascent algorithm
re given in columns 2 and 3 of Table 2 for � CDM and MOND,
espectively. These are the initial values at which we start the MCMC
hains. Due to the use of 10 5 trials, the MCMC method provides a
et of parameter values (a model) that fits the observations slightly
etter (higher P total in equation 49 ) than we achieved with gradient
scent. The best-fitting parameter values in the MCMC chain are 
lso given in Table 2 (columns 4–5) along with the goodness of fit
o the observations (last row). In this regard, there is little difference
etween the theories, though the optimal parameters are rather 
ifferent. We will return to this later (Section 8 ). 
Using these parameters, Fig. 9 shows the simulated and observed 

robability distributions of R sky , ηobs , and disturbed fraction versus 
obs , revealing a good overall fit to the observations in both theories. 8 

n particular, the rising likelihood of a dwarf appearing disturbed as
 function of ηobs is nicely reproduced by the best-fitting models. 

.2 Parameter uncertainties 

o fit the test mass simulation of the Fornax dwarf galaxy system to its
bserved properties, we require several free parameters in the model 
Section 5 ). Having discussed the values of these parameters in the
ost likely model (Table 2 ), we now find the most likely value of each

arameter and its uncertainty. This is some what dif ferent because
nstead of considering the most likely model, we use the MCMC
hain to obtain the posterior inference on each model parameter, 
hich we then characterize using its mode and 1 σ confidence 

nterval. The results are shown in Table 3 . 
We also use Fig. 10 to show the results of the MCMC analysis by

lotting the probability distribution of each parameter and showing 
ontour plots for all possible parameter pairs. The parameters 
lope P r , r core , P dist, floor , and P dist, ceiling co v er a similar range of values

n both theories. This is to be expected because the distribution
f dwarfs in the Fornax Cluster is known observationally such that
lope P r and r core are not strong tests of the gravity law, while P dist, floor 

nd P dist, ceiling are set by the proportion of dwarfs in different ηobs 

ins that appear disturbed (Fig. 3 ). Unlike these four parameters,
lope P e , ηmin, dist , and ηdestr co v er v ery different ranges in these two
odels. As discussed below, these are the parameters which can help
MNRAS 515, 2981–3013 (2022) 
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Figure 9. Comparison between observations and the best-fitting simulation in � CDM (left-hand column) and MOND (right-hand column) in terms of the 
distribution of projected separation R sky from the cluster (first row), tidal susceptibility ηobs (second row), and likelihood that a dwarf appears disturbed as a 
function of ηobs (third ro w). The observ ations (blue points with error bars) and the best-fitting simulation in each theory (red points) are plotted at the centre of 
each bin, but dithered slightly along the x -axis for clarity in case the model works well. The bin width in R sky is 100 kpc in both theories. For ηobs , the bin width 
is 0.15 in � CDM and 0.65 in MOND. 
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s discern between � CDM and MOND, allowing us to assess which
odel performs better when compared to observations. 
The inference on Slope P e (shown in the top panel of column 2

f Fig. 10 ) peaks close to the minimum allo wed v alue of −2 in
 CDM. The opposite happens in MOND, where the peak is close

o 1. Ne gativ e slopes in equation ( 41 ) assign higher probabilities to
early circular orbits. Ho we ver, according to Ambartsumian ( 1937 ),
e expect the eccentricity distribution to be thermal and thus have
NRAS 515, 2981–3013 (2022) 
lope P e ≈ 2 (for a deri v ation, see section 4.2 of Kroupa 2008 ). In
his regard, MOND performs better than � CDM. 

The major differences between � CDM and MOND are in the
arameters ηmin, dist and ηdestr , whose posterior inferences are shown
n detail in Figs 11 and 12 due to their importance to our argument.
he lo w v alues in � CDM arise because dwarfs have quite strong
elf-gravity by virtue of being embedded in a dominant dark matter
alo throughout their trajectory. This makes them less susceptible to
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Table 3. The most likely value and 1 σ confidence 
interval of each model parameter in our test mass sim- 
ulation of the Fornax Cluster dwarf galaxy population, 
based on 10 5 MCMC trials. 

Parameter � CDM MOND 

Slope P r −7 . 43 + 2 . 24 
−0 . 99 −7 . 58 + 2 . 18 

−0 . 88 

Slope P e −1 . 65 + 1 . 80 
−0 . 30 0 . 75 + 1 . 20 

−1 . 22 

r core 2 . 00 + 0 . 34 
−0 . 98 2 . 02 + 0 . 52 

−0 . 88 

P dist, floor 0 . 10 + 0 . 03 
−0 . 03 0 . 07 + 0 . 04 

−0 . 03 

P dist, ceiling 0 . 49 + 0 . 30 
−0 . 15 0 . 79 + 0 . 15 

−0 . 20 

ηmin, dist 0 . 11 + 0 . 05 
−0 . 06 0 . 24 + 0 . 24 

−0 . 19 

ηdestr 0 . 25 + 0 . 07 
−0 . 03 1 . 88 + 0 . 85 

−0 . 53 

t
η

a  

t
o
t  

t  

a  

d
a
o
t
s

b  

2  

g  

i
a

o
f
t  

o  

B  

F

7
D

A  

s
i  

t  

r  

c
W
R  

(  

(  

i
d
I  

2  

2  

2  

a
i
i  

w  

f
M

∇
w  

t

�

w  

d  

c

(  

o  

p  

t  

e  

c  

d  

t  

t  

i  

w

M

T
a
a  

r  

c
 

t  

m  

a  

v
t  

t  

u  

(  

t  

e
2

 

t
b  

o  

d  

a  

t  

f  

o  

p  

a  

 

b  

q
i  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/515/2/2981/6618002 by O
ulu U

niversity user on 06 Septem
ber 2022
he effect of tides (stronger self-gravity raises r tid and thus reduces 
, see equation 29 ). As a result, the algorithm needs to set ηmin, dist 

nd ηdestr to very low values in order to match the observed fact
hat many dwarfs are morphologically disturbed and we do not 
bserve dwarfs beyond a certain limiting η. MOND also boosts 
he baryonic self-gravity of a dwarf, but this boost is damped due to
he EFE of the cluster’s gravitational field. This effect gets stronger
s dwarfs approach the pericentre of their orbits, to the point that
warfs which are sufficiently close to the cluster centre can become 
lmost Newtonian despite a very low internal acceleration. Because 
f this, MONDian dwarfs are significantly more susceptible to tides 
han their � CDM counterparts. This causes the algorithm to choose 
ignificantly higher ηmin, dist and ηdestr values in the MOND case. 

N -body simulations of dwarf galaxies show that ηdestr should 
e ≈1 in � CDM (Pe ̃ narrubia et al. 2009 ; van den Bosch et al.
018 ). Ho we ver, fitting the observations with our MCMC method
ives a much lower value of ηdestr = 0 . 25 + 0 . 07 

−0 . 03 . This implies an
mportant discrepancy between model expectations in � CDM and 
ctual observations of dwarf galaxies in the Fornax Cluster. 

Turning to MOND, comparing the ηdestr value inferred from 

bservations with that obtained using simulations is not so straight- 
orward given that the best available N -body simulations studying 
he resilience of Milgromian dwarf galaxies to tides is by now very
ld and poorly suited to the present study (Brada & Milgrom 2000 ).
ecause of this, we perform our own N -body simulations of a typical
ornax Cluster dwarf galaxy, as described next. 

 N - B O DY  SIM ULATIONS  O F  A  F O R NA X  

WA R F  

s the last part of this project, we conduct our own N -body
imulations of a typical Fornax dwarf to find out the expected ηdestr 

n MOND. The moti v ation is that while the analytic formula for
he tidal radius (equation 20 ) should capture the scalings with the
ele v ant v ariables like the tidal stress and the EFE, there could be a
onstant numerical pre-factor that arises from a detailed simulation. 
e investigated this using the Milgromian N -body code PHANTOM OF 

AMSES ( POR ) developed in Bonn by L ̈ughausen, F amae y & Kroupa
 2015 ), who adapted it from the Newtonian N -body code RAMSES

Teyssier 2002 ). As a result, POR inherits many features of RAMSES ,
ncluding the adaptive mesh refinement technique to better resolve 
enser regions. POR can work with both particle and gas dynamics. 
t is suited for simulations of isolated galaxies (Banik et al. 2020 ,
022b ; Roshan et al. 2021a ), interacting galaxies (Renaud et al.
016 ; Thomas et al. 2017 , 2018 ; B ́ılek et al. 2018 ; Banik et al.
022a ), galaxy formation (Wittenburg, Kroupa & F amae y 2020 ),
nd even for cosmological structure formation (Wittenburg et al., 
n preparation). The main difference between POR and RAMSES 

s the fact that POR solves the ordinary Poisson equation twice,
ith g N found using standard techniques in the first stage and the

ollowing equation solved in the second stage to implement the 
OND corrections: 

 · g = ∇ · (
νg N 

)
, (50) 

here ν was defined in equation ( 16 ). The boundary condition for
he Milgromian potential � is 

 = 

√ 

GMa 0 ln r , (51) 

here M is the total mass in the simulation volume and r is the
istance from the barycentre in the simulation unit of length, the
hoice of which has no bearing on the result. 

Since Fornax Cluster dwarfs are expected to contain little gas 
Section 3 ), we can simplify the set-up greatly by using the ‘particle-
nly’ version of the POR code. In particular, we use the ‘staticparts’
atch (described in section 4.1 of Nagesh et al. 2021 ) which allows
he use of particles that provide gravity but do not mo v e if their mass
xceeds a user-defined threshold. This is helpful because we treat the
luster gravity as sourced by a point mass fixed at the origin, with the
warf at three possible initial distances R i . To ensure the gravity on
he dwarf is the same as in the Fornax Cluster, we use equation ( 8 )
o obtain g c and then obtain the corresponding g c, N with the simple
nterpolating function in the inverse form (equation 18 ), from which
e get the central mass: 

 c ≡ g c , N R 

2 
i 

G 

. (52) 

he different MOND dynamical cluster masses obtained in this way 
re: M c = 2.18 × 10 12 M � at 150 kpc, M c = 2.89 × 10 12 M �
t 300 kpc, and M c = 3.31 × 10 12 M � at 450 kpc. We use 7–13
efinement levels and set the box length to 6 R i as the apocentre
ould be at almost 2 R i . 

For the dwarf, we use a half-mass radius of r h = 0.84 kpc and a
otal mass of M dwarf = 3.16 × 10 7 M � represented by 10 5 particles,

aking the mass resolution 316 M �. These are typical parameters for
 dwarf in the Fornax Cluster (see the red star in Fig. 8 ). Setting the
elocity dispersion σ is non-trivial because we need to account for 
he cluster EFE when we initiate the simulation. We do this by using
he Fornax dwarf templates kindly provided by Prof. Xufen Wu, who
sed a similar method to that described in section 3.3 of Haghi et al.
 2019a ) to generate these templates. The idea is to take a Newtonian
emplate and then enhance the velocities by the factor needed to
nsure virial equilibrium given the enhanced gravity (Wu & Kroupa 
013 ). 
To set up the dwarf, we apply a Galilean transformation to the

emplate whereby the Cartesian positions of all particles are boosted 
y ( x 0 = R i , y 0 = 0, z 0 = 0) and the velocities are boosted depending
n the circular velocity at R i and the orbital eccentricity e , as
escribed in Section 5.1 . We start the simulation with the dwarf
t the semimajor axis of its orbit and receding from the cluster. We
hen evolve the system until shortly after the dwarf reaches apocentre
or the second time so that there is ample time to assess the impact
f the pericentre passage. The code generates an output of the mass,
osition, and velocity of every particle every 20 Myr, allowing us to
nalyse the structure of the dwarf and find out if it has been destroyed.

Our main objective is to find the threshold value of η at pericentre
eyond which the dwarf gets destroyed in the simulation. This re-
uires us to perform multiple simulations with different eccentricities 
n order to obtain different η values at pericentre. To guide our choice
MNRAS 515, 2981–3013 (2022) 
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Figure 10. The 1 σ confidence regions for the parameters in our model of the Fornax Cluster dwarf galaxy population using � CDM (orange) and MOND (blue), 
based on the priors listed in Table 1 . The top panel in each column shows the inference on a single parameter, while the other panels show the 1 σ confidence 
region for a pair of parameters. The results shown in this ‘triangle plot’ are based on 10 5 MCMC trials (Section 5.3.1 ). All the triangle plots shown in this 
contribution were generated using the PYGTC package (Bocquet & Carter 2016 ). 
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f parameters, we use a simple MOND Runge–Kutta orbit integrator
f a point mass orbited by a test particle in 2D. This is also very
elpful when deciding the appropriate duration for each simulation,
hich we keep fixed for models with the same R i . 

.1 Analysis 

e extract the particle positions r i , velocities v i , and masses m i 

sing EXTRACT POR (Nagesh et al. 2021 ), with the index i used in
hat follows to distinguish the particles. To assess if a dwarf has
een destroyed, we infer three properties of the dwarf from the
utput at each snapshot: its half-mass radius, velocity dispersion,
nd aspect ratio. Unlike in Newtonian gravity, the time-varying EFE
mplies that these quantities are expected to vary around the orbit
ven if the dwarf is completely tidally stable ( η 
 1), perhaps most
NRAS 515, 2981–3013 (2022) 
amously for the velocity dispersion (Kroupa et al. 2018 ). To assess
idal stability, we check whether the dwarf responds adiabatically to
he time-varying EFE. Tidal stability requires the dwarf to reco v er
he initial values for these parameters after the pericentre passage,
t least by the time of the next apocentre. If this is not the case,
hen the dwarf is either destroyed or unstable, in which case several
ericentre passages may be required to destroy the dwarf. Ho we ver,
t is beyond the scope of this project to simulate multiple pericentre
assages. 

.1.1 Finding the barycentre 

e apply an iterative outlier rejection scheme to accurately obtain
he barycentre position r and velocity v based on the positions and

art/stac1765_f10.eps
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Figure 11. The probability distribution of the tidal susceptibility abo v e 
which a dwarf is more likely to appear disturbed (Section 5.2.4 ). Notice 
that the MCMC analysis prefers significantly higher values for MOND (blue) 
than for � CDM (orange). 

Figure 12. The probability distribution of the tidal susceptibility at which a 
dwarf is destroyed (Section 5.2.4 ) according to � CDM (orange) and MOND 

(blue). 
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elocities of the particles. In the first iteration, we consider all the
articles and calculate 

r ≡
∑ 

i m i r i 
M 

, M ≡
∑ 

i 

m i . (53) 

e use a similar definition for v . The barycentre position and velocity 
re then used to find the root mean square (rms) dispersion in position
nd velocity: 

 

2 
rms ≡

∑ 

i m i | r i − r | 2 
M 

, (54) 

ith a similar definition used for v rms , which we call σ for consistency
ith other w ork ers. This lets us define a χ2 statistic for each particle
ased on its position: 

2 
pos ≡

( | r i − r | 
r rms 

)2 

, (55) 

ith a similar definition used for χ2 
vel based on the velocity. 

In the second iteration, we repeat the abo v e steps for only those
articles whose χ2 

pos and χ2 
vel are both below 25, which changes the 
alculated quantities. In subsequent iterations, we expect to have 
inned down the barycentre more precisely, so we use the stricter
ondition that 

2 
pos + χ2 

vel < χ2 
max , (56) 

here χ2 
max = 11 . 83 is set so that the likelihood of the χ2 statistic for

wo degrees of freedom exceeding χ2 
max is the same as the likelihood

f a Gaussian random v ariable de viating from its mean value by
3 σ . Our procedure can thus be thought of as 3 σ outlier rejection. 
We consider the algorithm to have converged once the difference 

n r and v between successive iterations is so small that 

| � r | 2 
r 2 rms 

+ 

| � v | 2 
σ 2 

< 10 −5 , (57) 

ith the additional requirement that the number of ‘accepted’ 
articles deviates from that in the previous iteration by no more
han the Poisson uncertainty. In the analyses described below, we 
ill only consider those particles which are accepted on the final

teration. 

.1.2 Velocity dispersion 

he velocity dispersion σ is already available as part of our 3 σ
utlier rejection system for finding the barycentre of the dwarf. This
D σ is found by applying equation ( 54 ) but using velocities rather
han positions. If the dwarf were isolated and unaffected by tides,
quation ( 14 ) of Milgrom ( 1994 ) tells us to expect that 

= 

(
4 

9 
GMa 0 

)1 / 4 

. (58) 

his assumes dynamical equilibrium and the deep-MOND limit, but 
oes not make any assumptions concerning whether the orbits are 
ostly radial or tangential. If the system is not spherically symmetric,

he velocity dispersion would not be the same along every direction,
 ut the b ulk 3D v elocity dispersion abo v e would still hold. Another
mportant caveat is that the system should consist only of particles
ith m i 
 M . 

.1.3 Half-mass radius 

o obtain the half-mass radius r h , we order the particles in ascending
rder of their distance to the abo v e-determined dwarf barycentre r .
e then find the index p such that 

p ∑ 

i= 1 

m i = 

M 

2 
, (59) 

ith the total mass M of all accepted particles in general being
lightly below the initial mass of the dwarf. By definition, r h is the
istance of particle p from the dwarf’s barycentre. 

 h ≡ | r p − r | . (60) 

.1.4 Aspect ratio 

o quantify the shape of the simulated dwarf, we obtain its inertia
ensor 

 jk ≡
∑ 

i 

m i ( r − r ) j ( r − r ) k , (61) 

here the spatial indices j and k take values in the range 1–3 because
MNRAS 515, 2981–3013 (2022) 
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Figure 13. Evolution of the half-mass radius (first column), 3D velocity dispersion (second column), and aspect ratio (third column) of the simulated dwarfs 
o v er time starting from an initial distance of R i = 150 kpc (first row), R i = 300 kpc (second row), and R i = 450 kpc (third row). In each panel, the different 
curves sho w dif ferent orbital eccentricities as indicated in the le gend, which giv es their corresponding η values at pericentre (solid grey line) based on the EFE 

and tidal stress there but with the mass and half-mass radius found at the next apocentre (see the text). The mass at that time is similar to the initial value. 
The vertical dashed grey lines represent the first and second apocentre of the orbit. The solid (dashed) coloured lines represent those dwarfs which do (do not) 
reco v er their initial properties. The dotted lines that repeat one of the eccentricities in each panel correspond to a higher resolution simulation (8 × 10 5 particles), 
indicating that resolution hardly affects our results. The horizontal black line in the lower middle panel represents the expected velocity dispersion of the dwarf 
in the IDM limit (equation 58 ). 
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here are three dimensions. We then find the eigenvalues of I . The
spect ratio of the dwarf is defined as 

spect ratio ≡
√ 

λmin 

λmax 
, (62) 

here λmin ( λmax ) is the smallest (largest) eigenvalue. 

.2 Results 

he results of our POR simulations are shown in Fig. 13 . Unlike in
he Newtonian case, even dwarfs with a very low tidal susceptibility
xhibit significant variations in their properties due to the time-
arying EFE. We can see that in the cases with low e , the dwarf
anages to reco v er the properties it had before pericentre. Ho we ver,

n the cases with higher e , these properties do not regain their
nitial values, indicating that the dwarf is tidally unstable. 9 This
NRAS 515, 2981–3013 (2022) 

 This seems to be the case for the MW satellite Crater II (Torrealba et al. 
016 ), whose low surface brightness, small pericentre (Li et al. 2021 ), and 

r
d
2
B

as expected because dwarfs with more eccentric orbits have closer
ericentre passages and thus higher η values at pericentre. 
To assess whether a dwarf is destroyed in the simulation, the

riterion that we apply is to consider destroyed those dwarfs which
ave a higher r h at the second apocentre than at pericentre. Since the
w arf is lik ely to e xpand ev en further as it heads towards its next
ericentre, this implies that the dwarf has been too destabilized by
ides to contract back to its size at its first pericentre passage. As
 result, the dwarf would have an even higher tidal susceptibility
t subsequent pericentres. This makes it very likely that the dwarf
ould not be able to survive multiple pericentre passages. On the
ther hand, if a dwarf that experiences a pericentre passage has a
maller r h at the subsequent apocentre and is contracting further,
emnant of an originally smaller object that got severely disrupted by tides 
uring its perigalacticon passage (Borukho v etskaya et al. 2022 ; Errani et al. 
022 ). It is also expected to be tidally unstable in MOND (see section 3.3 of 
anik & Zhao 2022 ). 

art/stac1765_f13.eps


The tidal stability of Fornax Cluster dwarfs 3001 

Table 4. Summary of our MOND N -body sim- 
ulation results for a Fornax dwarf with an initial 
distance of R i = 150 kpc and different orbital 
eccentricities (first column). The tidal suscepti- 
bility is calculated assuming the EFE and tidal 
stress at pericentre but using the half-mass radius 
of the dwarf at pericentre (second column) or at 
the subsequent apocentre (third column), which we 
argue in the text is more comparable to our MCMC 

results. The fourth column gives our assessment 
of the simulation based on the top-left panel of 
Fig. 13 . 

η using r h at . . . 
e Pericentre Apocentre Outcome 

0.03 0.6 0.5 Stable 
0.29 0.9 0.6 Stable 
0.45 1.2 1.0 Stable 
0.48 1.3 1.4 Marginal 
0.51 1.4 2.0 Unstable 
0.52 1.4 2.3 Unstable 
0.53 1.4 2.7 Destroyed 
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hen it may well get back to its size at first pericentre by the time it
eaches its second pericentre. This should allow it to survive multiple 
ericentre passages, which in the Fornax Cluster case should allow 

urvi v al o v er a Hubble time. 
To fairly compare our N -body results with our MCMC analysis, 

e should consider how observers calculate ηobs . The r h entering 
nto equation ( 29 ) is the observed size, so ideally we would calculate

at pericentre using the EFE and tidal stress there but using the
resently observed size. As a proxy for this, we use the size at
pocentre since this is the orbital phase at which we are most likely
o observe the dwarf. Physically, the tidal stability of a dwarf depends
n the ratio between its size and tidal radius at pericentre. Using the
atio between the tidal radius at pericentre and the half-mass radius
t apocentre may seem some what counter-intuiti ve. Ho we ver, the
destr values obtained in this way are much more comparable to those 
btained from our MCMC analysis of the Fornax Cluster for the 
easons discussed abo v e. In what follows, we will use η to mean the
alue calculated in this way, though Table 4 also shows results based
n the size at pericentre. 
To constrain ηdestr , we focus mainly on models with R i = 150 kpc

s dwarfs with a larger semimajor axis would typically be observed 
uch further out than the region contributing to the apparent tidal 

dge in Fig. 3 , especially if the eccentricity is significant. The results
f these models are summarized in Table 4 . The models with η ≤
.0 respond adiabatically. We choose ηdestr = 1.4 as the lowest value 
t which a dwarf can get destroyed in MOND since dwarfs with
his η still seem to be marginally capable of contracting their r h 
ack to their pericentre value by the time they reach apocentre. 10 

or the upper limit to ηdestr at pericentre, we choose a value of 2.0
ecause for this η, the dwarfs in our simulations are clearly larger
t apocentre than at pericentre and are still expanding at the end of
he simulation, indicating irreversible behaviour. We therefore infer 
hat ηdestr = 1.70 ± 0.30 if r h is measured at the second apocentre.
f instead we obtain r h at pericentre, then ηdestr has a slightly lower
alue of 1.35 ± 0.05. 
0 This certainly appears to be the case for the η = 1.5 model with R i = 

00 kpc. 

1

η

w
F
a

As expected, ηdestr is of order unity because the main physics 
hould be captured by analytic arguments (Zhao 2005 ; Zhao & Tian
006 ). Our numerical results suggest that it would be more accurate to
rop the factor of 2 

3 in equation ( 20 ), which would also reconcile the
umerical pre-factor with that in the Newtonian tidal radius formula 
equation 11 ) for the case α = 1 and g � a 0 . This seems to indicate
hat we should identify the tidal radius with the distance to the L1
agrange point in the deri v ation of Zhao & Tian ( 2006 ) − their
quation (36) introduces a factor of 2 

3 in the Newtonian limit because
he Roche Lobe extends to a shorter distance in the two non-radial
irections than in the radial direction by about this factor. Ho we ver,
t could be that for somewhat eccentric orbits, the Roche Lobe’s
xtent along the radial direction is the limiting factor to the dwarf’s
ize. 11 

Our simulations also show that the higher the initial distance to the
luster, the more resilient the dwarf is to the effect of cluster tides.
his is because a more eccentric orbit implies a shorter amount of

ime spent near pericentre, so the dwarf is exposed to a high η value
or only a very brief period, allowing it to reco v er. Therefore, we
ould probably still be able to observe dwarfs which have η = 2.4

or higher) at pericentre if these have sufficiently large apocentric 
istances. Given that in our analysis we considered dwarfs up to
00 kpc from the cluster centre, it is likely that there are several
warfs in our sample which experienced a somewhat higher η at 
ome point in their past − but for a sufficiently brief period that the
warf remained intact. This is fairly consistent with the results of our
CMC analysis, which found that ηdestr = 1 . 88 + 0 . 85 

−0 . 53 . 
The observed shape of a dwarf is one of the indicators for

hether it has been perturbed. Therefore, to estimate the η at which
imulated dwarfs should start appearing morphologically disturbed, 
e look at the evolution of their aspect ratio (equation 62 ). We
eed to bear in mind that even a uniform external field can cause
 MONDian dwarf to become deformed because the potential of a
oint mass is not spherical once the EFE is considered (Banik &
hao 2018a ). N -body simulations of dwarfs experiencing the EFE
ut not tides explicitly show that this process can yield axis ratios
f ≈0.7 (Wu et al. 2017 ). This is very much in line with our
owest eccentricity orbit with R i = 150 kpc, so the mild degree
f flattening evident here is not necessarily indicative of tidal effects.
e find that models with R i = 150 kpc start to acquire significantly

longated morphologies throughout most of their trajectories only 
hen η � 0 . 6 (see column 3 in Fig. 13 ). Therefore, we take ηmin, dist 

0.6. This is slightly higher than what our MCMC analysis requires
 ηmin, dist = 0 . 24 + 0 . 24 

−0 . 19 ). One possible explanation is that dwarfs with
igher R i start acquiring elongated morphologies at lower η. 
To check if increasing the resolution would affect our results, we

erform a high-resolution rerun of one of our models for each R i .
his is shown using the dotted line in each panel of Fig. 13 . The
nly resolution-related effect which we can observe is that the half-
ass radius of a distant dwarf expands less than at lower resolution.
ecause of this, we obtain slightly lower pericentric η values for 

he same orbit with higher resolution. Ho we ver, the e volution of the
warf properties as a function of η at pericentre remains almost the
ame as for the low-resolution model. Therefore, our conclusions 
hould barely be affected by the resolution of the simulation. 
MNRAS 515, 2981–3013 (2022) 

1 Without the 2 
3 factor in equation ( 20 ), the tidal susceptibility threshold is 

destr = 1.13 ± 0.20 when using r h at apocentre and ηdestr = 0.90 ± 0.03 
hen using r h at pericentre. Note that the MOND tidal susceptibilities of 
DS dw arfs w ould also be reduced by a f actor of 2 

3 in this case, which w ould 
ffect the inferred ηdestr posterior. 



3002 E. Asencio et al. 

M

8

O  

t  

A  

b  

c  

g  

s  

d  

s  

t  

e  

h  

C  

w
 

i  

i  

a  

a  

w  

o  

t
 

p  

a  

o  

t  

e  

o  

a  

t  

d  

d
s  

s  

b  

e
 

�  

d  

(  

d  

s  

m  

w
t  

≈  

>  

b  

o  

t  

t  

o  

o  

�

1

�

T

Figure 14. Joint inference on ηmin, dist and ηdestr (Section 5.2.4 ). We show the 
1 σ (inner solid line), 3 σ (dashed line), and 5 σ (outer dotted line) confidence 
region for MOND (blue) and � CDM (orange). The thick orange line shows 
the � CDM expectation that ηdestr ≈ 1. For MOND, the corresponding expec- 
tation from our N -body simulations (Section 7 ) is that ηdestr = 1.70 ± 0.30 
(horizontal blue stripe). The grey shaded region below the line of equality is 
not allowed by our choice of prior because it is unphysical. 
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 DISCUSSION  

bservations of Fornax Cluster dwarf galaxies show that some of
hem present a detectable level of disturbance in their morphology.
mong the environmental effects inside a galaxy cluster that could
e causing this disturbance, we found that gravitational tides from the
luster are the most likely cause (Section 3 ). The condition for a dwarf
alaxy in a galaxy cluster to be tidally stable is approximately the
ame as the requirement that the dwarf’s density exceed the average
ensity of the cluster interior to the dwarf’s orbit (equation 7 ). 12 This
hould be the case for a � CDM dwarf in a cluster because we expect
he dwarf to be dominated by dark matter and to have formed much
arlier than the cluster, at which time the cosmic mean density was
igher. Therefore, in this paradigm, the dwarf galaxies in the Fornax
luster should be little affected by the tides it raises. This is indeed
hat our calculations show (Fig. 2 ). 
In MOND, the enhancement to the Newtonian gravity of an

solated dwarf is similar to that provided by the dark matter halo
n � CDM. Ho we ver, MONDian dwarfs in a galaxy cluster are also
ffected by the resulting EFE, which weakens their self-gravity. As
 result, they are more susceptible to tides than dwarfs in � CDM,
hich has no EFE due to the strong equi v alence principle. Therefore,
bservations of Fornax dwarfs can be used to compare which of the
wo models performs better. 

To check if tides might be important in the Fornax Cluster, we
lotted the projected separation ( R sky ) of each FDS dwarf against
 measure of its surface brightness (Fig. 3 ). This revealed a lack
f low surface brightness dwarfs in the central ≈200 kpc even
hough such dwarfs are evident further out, indicating that selection
ffects are not responsible for the tentative tidal edge marked
n this figure as a grey line. Just below this, the proportion of
pparently disturbed dwarfs is also much higher than elsewhere in
he cluster (see Fig. 4 ). We quantified this trend by plotting the
isturbed fraction as a function of the tidal susceptibility η of each
warf (equation 29 ), revealing a clear rising trend detected at 2.9 σ
ignificance in � CDM and 3.5 σ in MOND (Fig. 5 ). These arguments
uggest that the dwarf galaxy population in the FDS catalogue has
een significantly shaped by tides, as previously argued by Venhola
t al. ( 2022 ). 

Ho we v er, the o v erall distribution of η only goes up to ≈0.5 in
 CDM (Fig. 2 ). We expect a dwarf to be destroyed or severely

isturbed only if η ≈ 1, as indicated by � CDM N -body simulations
Pe ̃ narrubia et al. 2009 ; van den Bosch et al. 2018 ). We quantified this
iscrepancy using our MCMC analysis, which shows that the tidal
tability limit of the Fornax dwarfs should be ηdestr = 0 . 25 + 0 . 07 

−0 . 03 to
atch observations. Therefore, � CDM dwarfs should be destroyed
hen the tidal force that they experience is ≈0.25 3 = 1.56 × 10 −2 

imes smaller than their internal gravity (tidal force/internal gravity
η3 ). Not only is this unrealistic, but also such a low ηdestr is in
 5 σ tension with the ηdestr value of 1 inferred from � CDM N -

ody simulations (Fig. 14 ). The highest ηdestr value achieved with
ur MCMC analysis for � CDM is only 0.60. This corresponds
o the 4.42 σ upper limit because we ran 10 5 MCMC trials. Since
he uncertainty on ηdestr towards higher values from the mode is
nly 0.07, it is clear that ηdestr = 1 is strongly excluded by the
bservations if the tidal susceptibilities are calculated within the
NRAS 515, 2981–3013 (2022) 

 CDM framework. 

2 The tidal stress � g c / � r is related to the cluster mass profile M c ( < R ) by 
 g c / � r = GM c (2 − α)/ R 

3 , from which it follows that r 3 tid /M dwarf ≈ R 

3 /M c . 
hus, a dwarf with r h ≈ r tid has M dwarf /r 

3 
h ≈ M c /R 

3 . 

a  

η  

w  

d  

t  

(  
These calculations are based on equation ( 11 ), which can be
ritten in the alternative form 

r tid, � CDM 

R 

= 

(
M dwarf 

βM c ( < R ) 

)1 / 3 

, β = 2 ( 2 − α) , (63) 

here α = 1.1 (defined in equation 8 ) is the logarithmic slope
f the Fornax Cluster mass profile M c ( < R ) based on hydrostatic
quilibrium of the gas around its central galaxy (Paolillo et al. 2002 ).
his implies β = 1.8. Other w ork ers use slightly different definitions

or the tidal radius, which affects the results somewhat because
he calculated η ∝ β1/3 . F or e xample, equation (6) of Wasserman
t al. ( 2018 ) gives β = 2 − α = 0.9 for radial orbits and β = 3

α = 1.9 for circular orbits. Allowing even a modest amount of
ccentricity, it is clear that β in their tidal radius definition is smaller
han our adopted 1.8, so their formula generally gives even lower η
alues, worsening the problem for � CDM. Meanwhile, equation (3)
f Pe ̃ narrubia et al. ( 2009 ) gives β = 3, though this is for circular
rbits and lacks a rigorous deri v ation (see section 3.1 of Pe ̃ narrubia,
avarro & McConnachie 2008 ). β = 2 is more appropriate to account

or elongation in the potential along the radial direction (Innanen,
arris & Webbink 1983 ; Zhao & Tian 2006 ). Ho we ver, e ven if we

dopt β = 3, this would only raise our calculated η values by a factor
f (3/1.8) 1/3 , or equi v alently imply that we can keep our definition
ut should consider dwarfs to be destroyed at ηdestr = (1.8/3) 1/3 =
.84. This is still well abo v e the value given by any of the 10 5 trials in
he MCMC analysis. A more recent detailed deri v ation af firms that
or circular orbits, the appropriate value of β = 3 − α = 1.9 in the
ornax case (equation 5 of van den Bosch et al. 2018 ), which is very
imilar to our adopted value of 1.8. Although this could be somewhat
igher with a lower value for α, we can get β = 3 only for circular
rbits around a point mass ( α = 0), which is not consistent with
he Fornax Cluster having an extended dark matter halo. Moreover,
 dwarf on an elliptical orbit is exposed to the pericentre value of

for only a short time. We may intuitively expect that a dwarf
ould be disrupted only if it experiences η > 1 for a significant
uration, since otherwise there is not enough time for tidal forces
o disrupt the dwarf. This could explain why van den Bosch et al.
 2018 ) found that dwarfs are actually quite robust to tides, more so
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Figure 15. Joint inference on P dist, floor and P dist, ceiling (Section 5.2.4 ). We 
show the 1 σ (inner solid line), 2 σ (dashed line), and 3 σ (outer dotted line) 
confidence region for MOND (blue) and � CDM (orange). Physically, we 
expect to get values above the solid red line of equality ( P dist, ceiling ≥
P dist, floor ), though this is not imposed as a prior. Even so, this is fa v oured 
by the MCMC analysis, which gives a likelihood that P dist, ceiling ≤ P dist, floor 

of only 3.14 × 10 −3 (2.95 σ ) in MOND and 6.43 × 10 −3 (2.73 σ ) in � CDM. 
Both theories prefer a non-zero false positive rate of P dist, floor ≈ 0.1, which is 
related to the similar fraction of dwarfs classified as disturbed in the outskirts 
of the Fornax Cluster where tides should be unimportant (Fig. 4 ). 
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han in many numerical simulations where apparent tidal destruction 
ould be a numerical artefact (see also Webb & Bovy 2020 ). It
ould well be that the appropriate ηdestr is slightly abo v e 1, as in
he MOND case. Moreo v er, van den Bosch et al. ( 2018 ) found that
 alaxy–g alaxy harassment is much less damaging than the tidal shock 
rom pericentre passage. While their work addressed subhaloes in a 

W-like halo and neglected hydrodynamics, it is still very useful 
n showing that a subhalo can resist disruption even if the energy
t gains from harassment exceeds the binding energy, justifying our 
eglect of the harassment scenario (Section 4.1 ). 
In MOND, we obtained a tidal stability limit with the MCMC

nalysis of ηdestr = 1 . 88 + 0 . 85 
−0 . 53 , which is closer to the expected value

f ≈1 based on analytic arguments (equation 20 ). To check if this
imit is accurate, we performed several N -body simulations of a dwarf 
rbiting a central potential similar to the Fornax Cluster (Section 7 ).
hese simulations suggest that cluster tides would make Fornax 
warfs appear disturbed when ηmin,dist � 0 . 6 and destroy them at
destr = 1.70 ± 0.30, which is in good agreement with our MCMC
esults (see Fig. 14 ). 

We considered several possible explanations for the discrepancy 
etween the low tidal susceptibility values of � CDM dwarfs and 
he fact that some of the observed Fornax dwarfs appear disturbed. 
his could be due to the fact that cluster tides are not the main effect

esponsible for the observed morphological disturbances. Ho we ver, 
here are several trends in the FDS that suggest exactly this. These
rends are as follows: 

(i) There are fewer low surface brightness dwarfs towards the 
entre of the cluster, where they are most susceptible to tides (Fig.
 ). Since such dwarfs are detectable further out, this feature cannot
e ascribed to selection effects. A related finding is that FDS dwarfs
re typically larger towards the cluster centre, which could be related 
o tidal heating (for a more detailed discussion, see section 7.4 of
enhola et al. 2022 ); and 
(ii) The algorithm in charge of fitting the simulated Fornax system 

o the observations clearly noticed a rising trend between η and the 
robability of disturbance ( P dist ). This is shown by the fact that the
lgorithm chose P dist, ceiling > P dist, floor with ≈3 σ confidence in both 
 CDM and MOND (see Fig. 15 ), even though we did not impose

his condition a priori. 

We have seen that these trends cannot be understood in � CDM
s a direct consequence of cluster tides given the very low η values.
oreo v er, the other major environmental effect that could be causing

he observed disturbance (g alaxy–g alaxy harassment) also presents 
ery low η values (see Section 4.1 ). 

Another possibility is that our results could be affected by some 
f the assumptions or choices that we made during the analysis. 
o check if this is the case, we repeat the procedures described

n Section 5 but change some of the assumed conditions and/or 
arameters in the following ways: 

(i) Considering that the FDS dwarfs could have a lower dark matter 
raction within their optical radii: We consider the possibility that 
he dark matter fraction of the FDS dwarfs is lower than assumed in
ur nominal case (this is moti v ated in Section 8.1.1 ). Assuming that
 CDM explains the properties of isolated dwarfs, we use the velocity

ispersions of nearby isolated dwarfs to estimate their typical dark 
atter fraction, which returns a some what lo wer v alue than assumed

n our nominal analysis. Substituting this fit (equation 65 ) into our
CMC chain raises ηdestr slightly, but it is still only 0 . 33 + 0 . 04 

−0 . 05 . We
hen consider a very conserv ati ve scenario in which there is only 10 ×
s much dark matter as stars within the optical extent of each dwarf,
hich requires altering equation ( 10 ) to M dwarf, � CDM 

= 11 M � . For
his very low dark matter fraction, we obtain that ηdestr = 0 . 54 + 0 . 19 

−0 . 09 ,
hich reduces the tension between observations and ηdestr = 1 (as 

xpected from N -body simulations) to 2.29 σ (the triangle plot for this
nalysis is shown in Fig. F1 ). While this is a significant impro v ement
ith respect to the > 5 σ tension in the nominal case, we see that even
hen considering one of the most conserv ati ve assumptions for the

mount of dark matter contained within the optical radius of a dwarf,
destr ≥ 1 is still excluded at 97.8 per cent confidence. Moreo v er, we
how in Section 8.1.1 that in a recent high-resolution cosmological 
 CDM simulation, the dark matter fraction within the stellar r h of a

warf is far higher than this at the rele v ant M � , and is actually quite
lose to our nominal assumption; 

(ii) Changing the lower limit to the distribution of dwarf densities 
n the test mass simulation: To check if the adopted detection limit
o the density of the Fornax dwarfs significantly affects the results,
e repeat the analysis using a density threshold ρ t that is 5 σ below

he mean logarithmic density. We also consider a density limit of
mean (grey line in Fig. 6 ). For reference, the nominal ρ t in MOND

s 2.88 σ below the mean logarithmic density, while ρmean is 1.91 σ
elo w. The corresponding v alues in � CDM are 3.58 σ and 2.56 σ ,
espectively (see Appendix E ). Fig. F2 shows the triangle plots
omparing the results obtained using these two density limits with 
he nominal one for � CDM and MOND. From these plots (described
urther in Appendix F ), we can see that choosing a lower ρ t worsens
he tension for � CDM while maintaining consistency in MOND. 
sing a higher ρ t helps to increase the estimated values for ηdestr 

n � CDM. Ho we ver, e ven if we use ρ t = ρmean , the inferred ηdestr 

s still significantly below the threshold of ≈1 required in N -body
imulations, while the inference on ηmin, dist hardly changes. Thus, 
hoosing even higher ρ t could perhaps help � CDM to reach a
easonable ηdestr . Ho we ver, taking such high values for ρ t would
e in disagreement with observations as the whole point of ρ t is that
warfs are not detectable if the y hav e a lower density, but dwarfs
ith a lower density are clearly observed if we adopt such a high ρ t ;
MNRAS 515, 2981–3013 (2022) 
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(iii) Changing the values of the deprojection parameters (see
ppendix A ): The deprojection parameters in our nominal analysis
ere offset = 0.4 ◦ and nnuc floor = 1.2 ◦ based on fig. 6 of Venhola

t al. ( 2019 ). We repeat our analysis using deprojection values at the
pper limit of the envelope in this figure: offset = 0.5 ◦ and nnuc floor =
.5 ◦. Fig. F3 shows the triangle plots comparing the results for these
wo different deprojections in � CDM and MOND. From these plots,
e can see that these two deprojections give almost the same results

n either theory; 
(iv) Changing the ratio between present and pericentre distances

see Appendix B ): A related change we could make is to consider
ltering the assumed ratio of 0.29 between the average R and
he pericentre distance. This is valid for a thermal eccentricity
istribution with Slope P e = 2, which is expected theoretically but
s the highest possible value (equation 41 ). With a lower Slope P e , the
atio would rise as orbits would typically be more circular, reducing
he calculated tidal susceptibility at pericentre. This would worsen
he problem for � CDM; and 

(v) Increasing the resolution: In Section 5.1 , we created a grid of
00 × 100 cells for different values of the orbital eccentricity ( e ) and
nitial distance to the cluster centre ( R i ). We increase the resolution
o 200 × 200 and repeat the analysis to check if this has any effect
n the results. The triangle plots showing the results in � CDM and
OND for these two resolutions are shown in Fig. F4 . From these

lots, we can see that the results are nearly identical for the high-
nd low-resolution cases. 

From these tests, we infer that our results are not significantly
ffected by modelling assumptions. 

.1 The dark matter content of dwarf galaxies in � CDM 

ur conclusion that � CDM is inconsistent with the FDS dwarfs
elies heavily on their low values of η in this paradigm, which in
urn relies on the assumption that they should be dominated by dark
atter. We therefore explore whether consistency could be gained by

artially relaxing this assumption in a manner consistent with other
onstraints. 

To try and raise η while continuing to use Newtonian gravity, we
onsider the possibility that the FDS dwarfs are TDGs. Our results
re presented in Appendix D . We see that this scenario is also not
iable because the elliptical galaxies in the cluster must still contain
ubstantial dark matter haloes, leading to highly efficient disruption
f dwarfs through g alaxy–g alaxy harassment. 
It thus seems clear that the FDS dwarfs should be primordial. In this

ase, we may consider whether the dark matter density in their central
egions could be substantially less than assumed here, raising their
idal susceptibility within the � CDM framework. The transformation
f central cusps in the dark matter density profile into cores is
xpected to be rather inefficient for dwarfs with M � � 10 7 . 2 M �
Di Cintio et al. 2014 ; Dutton et al. 2016 ; Tollet et al. 2016 ).

ost FDS dwarfs have a lower M � (i.e. they lie below the red
ine in Fig. 7 ). This makes it unlikely that baryonic feedback has
ubstantially reduced the central dark matter density of most FDS
warfs, especially at the low-mass and low surface brightness end
mportant to our argument about tidal stability. Adiabatic contraction
ould actually raise the central dark matter density (Forouhar Moreno
t al. 2022 ; Li et al. 2022 ), as could tidal stripping of the dark matter
alo (Pe ̃ narrubia et al. 2008 ). The colours of the FDS dwarfs also
ndicate that star formation stopped early, most likely due to ram
ressure stripping of the gas (Section 3 ). Thus, it would only be
ossible for strong feedback to substantially reduce the baryonic
NRAS 515, 2981–3013 (2022) 
otential depth once. This is insufficient to substantially affect the
entral dark matter density even in the extreme case that the entire
as disc is instantaneously remo v ed (Gnedin & Zhao 2002 ). Multiple
ursts of star formation would be required to substantially affect the
ominant dark matter halo (Pontzen & Go v ernato 2012 ), but it is
ery unlikely that this occurred in most FDS dwarfs. Consequently,
hey should still have a significant amount of dark matter in their
entral regions, as is the case with Galactic satellites whose star
ormation ended early (Read, Walker & Steger 2019 ). Moreover, the
ow surface brightness nature of the FDS dwarfs considered here
mplies an atypically large size at fixed M � , causing the baryonic
ortion of the dwarf to enclose a larger amount of dark matter than
or the more typical Illustris galaxies considered by D ́ıaz-Garc ́ıa et al.
 2016 ). 

Another way in which FDS dwarfs could lose dark matter is
hrough interactions with a massive elliptical galaxy. This scenario
as been shown to lead to a dwarf like DF2 with an unusually
ow dark matter content (Shin et al. 2020 ). Ho we v er, such e xam-
les are rare in cosmological simulations (Haslbauer et al. 2019a ;
oreno et al. 2022 ). In addition, the possibility that most FDS

warfs lack dark matter altogether runs into se vere dif ficulties based
n simple analytic arguments: Newtonian TDGs would be very
ragile and easily disrupted by interactions with massive cluster
llipticals, which must have substantial dark matter haloes in a
 CDM context (Appendix D ). MOND seems to offer the right

evel of tidal stability: neither too much such that all the dwarfs
re completely shielded from tides and the observed signs of tidal
isturbance remain unexplained, nor too little such that the dwarfs
ould have been destroyed by now in the harsh cluster environment

tudied here. The FDS dwarfs behave just as they ought to in
OND. 
This conclusion is in agreement with the recent work of Keim

t al. ( 2022 ), which used the observed tidal disturbance of the dwarf
alaxies NGC 1052-DF2 and NGC 1052-DF4 to argue that they must
e ‘dark matter free’, since otherwise their dark matter halo would
ave shielded them from tides. Phrased in a less model-dependent
ay, these observations indicate much weaker self-gravity than for a

ypical isolated dwarf, which is a clear prediction of MOND due to
he EFE (F amae y et al. 2018 ; Kroupa et al. 2018 ; Haghi et al. 2019a ).
n the more isolated galaxy DF44, the self-gravity is stronger despite
 similar baryonic content (van Dokkum et al. 2019 ), but this too
s in line with MOND expectations (B ́ılek et al. 2019 ; Haghi et al.
019b ). Strong evidence for the EFE has also been reported from
he outer rotation curves of spiral galaxies, which tend to be flat
or isolated galaxies b ut ha ve a declining trend for galaxies in a
ore crowded environment (Haghi et al. 2016 ; Chae et al. 2020 ,

021 ). 
Our results with the FDS are similar to those of Chilingarian

t al. ( 2019 ) and Freundlich et al. ( 2022 ), who also report signs
f tidal disturbance in some of the dwarf galaxies in the Coma
luster. Another case in point is the recent study of the dwarf galaxy
opulation in the Hydra I cluster, where the proximity to the cluster
entre seems to be affecting the morphology of the dwarfs in a
anner suggestive of tidal effects (e.g. larger half-mass radii for

warfs closer to the cluster centre; La Marca et al. 2022 ). Closer
o home, the MW satellites also show signs of tidal disturbance
ike elliptical isophotes (McGaugh & Wolf 2010 ). There is a good
orrelation between these features and the value of η in MOND,
hich moreo v er has a maximum value v ery close to 1 (see their
g. 6). Ho we ver, the maximum η in � CDM is � 0 . 2 , making it
ifficult to understand the observations in this framework. 
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Figure 16. The relation between stellar mass and Newtonian dynamical 
mass (equation 64 ). The semi-transparent coloured dots represent galaxies 
from four different galaxy surv e ys as indicated in the legend (Falc ́on-Barroso 
et al. 2011 ; McConnachie 2012 ; Ry ́s, van de Ven & Falc ́on-Barroso 2014 ; 
Toloba et al. 2014 ). The cyan dots with error bars represent the logarithmic 
mean and dispersion of the total/stellar mass ratio within the stellar r h of 
the dwarfs in each M � bin in the � CDM cosmological simulation Illustris 
TNG50 (Pillepich et al. 2018 , 2019 ; Nelson et al. 2019a , b ). These bins have 
a width of 0.25 dex and cover the mass range log 10 ( M � /M �) = 4.5–12. The 
solid black line represents the expected trend in � CDM with the nominal 
dark matter fraction from abundance matching (equation 10 ). The dashed 
black line represents the fit to the dwarfs from the aforementioned galaxy 
surv e ys in the mass range co v ered by the FDS dwarfs. The horizontal blue 
line at log 10 11 shows our conservative assumption that M DM 

= 10 M � . In 
these three cases, the relations are only plotted o v er the M � range of the 
FDS dwarfs. Their median mass is shown with the dashed green vertical line. 
The solid red vertical line corresponds to the stellar mass below which core 
formation is inefficient in � CDM (see the text). 
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.1.1 Revised dark matter fraction in � CDM dwarfs 

hroughout our analysis, we followed the D ́ıaz-Garc ́ıa et al. ( 2016 )
rescription that 4 per cent of the total dark matter halo of each 
warf lies within its optical radius, with the total halo mass M halo 

ollowing from M � through the Moster et al. ( 2010 ) abundance
atching relation. The factor of 4 per cent was obtained by fitting to 

he dynamically inferred dark matter masses M DM 

within the optical 
adii of S 

4 G galaxies, as shown in fig. 6 of D ́ıaz-Garc ́ıa et al. ( 2016 ).
n this figure, we can see that for low-mass galaxies ( M � � 10 9 M �),
he M DM 

/ M � versus M � relation seems to flatten at M DM 

≈ 10 M � .
o we ver, this is unclear because S 

4 G has very few well-observed
alaxies with such a low mass. 

We can use other surv e ys to extend the S 

4 G results to even
ower mass by using measurements of the baryonic properties of 
Sph galaxies and their line-of-sight velocity dispersion σ los . The 
ewtonian dynamical mass of galaxies from the other surv e ys are

ound using equation (2) in Wolf et al. ( 2010 ): 

 dyn ( < r h ) = 

3 r h 〈 σ 2 
los 〉 

G 

, (64) 

here M dyn ( < r h ) is the mass within the baryonic r h . Note that when
sing this to estimate M DM 

/ M � , we account for the fact that only half
he stellar mass is enclosed within r h . 

To check the consistency between the assumed dark matter fraction 
nd observations of isolated dwarfs, we use Fig. 16 to plot M dyn / M � 

f the galaxies in four different galaxy surv e ys (semi-transparent
oloured dots), assuming the D ́ıaz-Garc ́ıa et al. ( 2016 ) result for
he dark matter fraction as used in our nominal analysis (black
ine; equation 10 ), and assuming conserv ati vely that M DM 

= 10 M � 

blue line). We can see that it is rather unlikely that the FDS dwarfs
enerally have much less dark matter in their baryonic region than
e assumed, since the linear regression to the survey data over the
 � range of the FDS dwarfs (dashed black line) is quite close to our

ominal dark matter fraction. We can also use the Illustris TNG50
osmological simulation (Pillepich et al. 2018 , 2019 ; Nelson et al.
019a , b ) to check the dark matter fraction that we expect dwarfs to
ave in the � CDM paradigm. We do this in Fig. 16 , where we show
he mean and standard deviation of M DM 

/ M � + 1 within the stellar
 h in M � bins of width 0.25 dex (cyan dots with error bars). The
rend followed by these simulated dwarfs is even steeper than that
iven by the observed dwarfs, though both give a similar dark matter
raction at the low-mass end crucial to our analysis (the median M � 

f the FDS dwarfs is shown by the vertical dashed green line at
og 10 ( M � /M �) = 6.96). This further supports our nominal choice
or the dark matter fraction of FDS dwarfs. One reason for their
igh expected dark matter fraction is that the vast majority of them
ave too little stellar mass for efficient core formation, the threshold
or which is shown by the red vertical line at log 10 ( M � /M �) =
.2 for the reasons discussed abo v e. All these arguments highlight
hat the M DM 

= 10 M � case is clearly very conserv ati ve gi ven the
teep relation followed by low-mass galaxies that we expect from 

bundance matching arguments, Illustris TNG50 results, and the 
elocity dispersions of nearby dwarfs. 

To assess the sensitivity of our analysis in Section 5 to the assumed
ark matter fraction, we repeat it with the dark matter fraction given
y the linear fit (equations 18 and 19 of Banik & Zhao 2018b ) to the
bserved isolated dwarfs in Fig. 16 : 

log 10 

(
M DM 

M � 

+ 1 

)
= −0 . 396 + 4 . 089 log 10 

(
M � 

M �

)
, (65) 

here M DM 

/ M � is the ratio of dark matter to stars within the stellar r h .
he typical dwarf densities in this case are about 0.5 dex lower than
ith the nominal dark matter fraction. As a result, the logarithmic
ean is lower than in the nominal case by a similar amount: It is now

og 10 ρ
(
M � pc −3 

) = −1 . 41. In this case, the density threshold ρ t =
.85 × 10 −4 M � pc −3 is 2.44 σ below the mean. To keep our statistical
nalysis comparable to our nominal one, we use the same six bins
n ηobs as before. In this way, we obtain that equation ( 65 ) gives a
lightly higher ηdestr = 0 . 33 + 0 . 04 

−0 . 05 . The maximum v alue achie ved by
he MCMC chain is only 0.59, which implies that the � CDM model
s still in > 5 σ tension with the expected value of 1. 

For completeness, we repeat our analysis with the very conserva- 
ive assumption that M DM 

= 10 M � . In this case, the distribution of
warf densities is similar to that in MOND (Fig. 6 ) but scaled up
1 ×. Thus, the logarithmic dispersion remains σ = 0.57 dex and the
ensity threshold ρ t = 4.66 × 10 −4 M � pc −3 is still 2.88 σ below the
ean log 10 ρ, which is now −1.69 in these units. As expected, the ρ t 

alue is 11 × higher than in the MOND model − and thus much less
han in our nominal � CDM analysis. We found that in this reduced
ensity case, ηdestr = 0 . 54 + 0 . 19 

−0 . 09 and the probability that ηdestr ≥ 1 is
.23 × 10 −2 (2.29 σ ). 
Appendix F shows the complete triangle plot with the distributions 

f the model parameters and parameter pairs for the nominal � CDM
nalysis and the two revised cases described abo v e. There is little
mpact to the inferences on parameters other than ηdestr , ηmin, dist , and
lope P e . 
Therefore, it is clear that assuming a lower dark matter fraction for

he � CDM dwarfs helps to alleviate the tension between observations
nd N -body simulations only if this fraction is reduced significantly.
MNRAS 515, 2981–3013 (2022) 
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o we ver, having a dark matter fraction of M DM 

/ M � = 10 within
he optical radius is a very conserv ati ve assumption at odds with
any other lines of evidence, including cosmological simulations.
ven with this assumption, ηdestr ≥ 1 is still excluded by our MCMC
nalysis of the FDS at 97.8 per cent confidence. 

 C O N C L U S I O N S  

e studied the tidal susceptibility of dwarf galaxies in the Fornax
luster to gravitational effects of the cluster environment in both
 CDM and MOND. In both theories, we found cluster tides to be

he main effect. Thus, cluster tides should be able to explain the
bserved morphological disturbance of some Fornax dwarfs and the
ack of low surface brightness dwarfs towards the cluster centre
Fig. 3 ). By constructing a test mass simulation of the Fornax system
nd performing a statistical analysis using the MCMC method, we
onstrained the tidal susceptibility ( η ≡ r h / r tid ) value at which a
ornax dwarf should get destroyed in order to match the observations,
hich we call ηdestr . We found that ηdestr = 0 . 25 + 0 . 07 

−0 . 03 in � CDM and
 . 88 + 0 . 85 

−0 . 53 in MOND. 
The ηdestr value in � CDM falls significantly below analytic expec-

ations (equation 11 ) and is in > 5 σ tension with N -body simulation
esults, which indicate that ηdestr ≈ 1 (Pe ̃ narrubia et al. 2009 ; van
en Bosch et al. 2018 ). In other words, the very low η values of
DS dwarfs imply that they should be unaffected by cluster tides,
ontradicting the observed signs of tidal disturbance. We also found
hat the other major environmental influence of interactions with
ndi vidual massi ve galaxies in the cluster should not be a significant
rocess in � CDM (see also section 7.3.3 of Venhola et al. 2019 ).
e discarded the possibility that the abo v e-mentioned discrepanc y

s due to the minimum allowed density of the simulated sample of
warfs being too low, the deprojection parameters being different
rom our nominal ones, the resolution of the test mass simulation not
eing high enough to get reliable results, and the dwarfs having less
ark matter than we assumed (Section 8 ). In particular, the velocity
ispersions of nearby isolated dwarfs suggest a slightly lower dark
atter fraction (dashed line in Fig. 16 ). Using this only slightly raises

destr to 0 . 33 + 0 . 04 
−0 . 05 . Even if we conserv ati vely assume that the FDS

warfs have only 10 × as much dark matter as stars within their optical
adius, we still get a 2.29 σ tension with expectations (equation 11 ).
herefore, our results reliably show that the � CDM paradigm is in
erious tension with observations of perturbed dwarf galaxies in the
ornax Cluster (observations which are strongly suggestive of tidal
ffects, see also section 7.4 of Venhola et al. 2022 ). 

An alternative model that assumes different properties for the dark
atter particles could perhaps reconcile the basics of the � CDM

osmology with the observed morphological disturbances of some
ornax dwarfs. One of the most popular alternatives is the ‘superfluid
ark matter’ model (Berezhiani & Khoury 2015 ; Hossenfelder &
istele 2020 ). Like most hybrid models, it attempts to reconcile

he successes of MOND on galaxy scales with the advantages of
ark matter on larger scales, especially with regards to the CMB
nisotropies and galaxy cluster dynamics. Ho we ver, this model also
resents its own problems, including orbital decay of stars in the
alactic disc from Cherenkov radiation (Mistele 2021 ) and that

he LG satellite planes extend beyond the estimated superfluid core
adii of the MW and M31, making it difficult to explain the high
bserv ed internal v elocity dispersions of the satellites in these planes
see section 5.6 of Roshan et al. 2021a ). There are also difficulties
 xplaining the observ ed re gularities in rotation curv es consistently
ith gravitational lensing results in a theory where baryons feel

xtra non-gravitational forces that do not affect photons (Mistele,
NRAS 515, 2981–3013 (2022) 
cGaugh & Hossenfelder 2022 ). Another possibility is that the dark
atter particles are fuzzy with a low mass and thus a long de Broglie
avelength, reducing their density in the central region of a dwarf
alaxy. Ho we ver, ultralight bosons (Hu, Barkana & Gruzinov 2000 ;
ui et al. 2017 ) are in significant tension with observations of the
yman- α forest (Rogers & Peiris 2021 ). More generally, reducing

he ability of dark matter to cluster on small scales would make it
ifficult to form dwarf galaxies at high redshift and to explain their
igh Newtonian dynamical M / L ratios. 
This brings us to the MOND case, in which the inferred ηdestr is
uch more consistent with analytic expectations (equation 20 ). In

rder to compare ηdestr with the results of N -body simulations as we
id for � CDM, we had to perform numerical MOND simulations
urselves (though one pioneering study exists, see Brada & Milgrom
000 ). From our simulations tailored to the properties of a typical
warf galaxy in the Fornax Cluster, we obtained that ηdestr =
.70 ± 0.30, in excellent agreement with the value required to
t the observational data according to the MCMC method. We

herefore conclude that MOND performs significantly better than
 CDM and is clearly the preferred model in all the tests that we

onducted throughout this work, even though it was not designed
ith the FDS in mind. Nevertheless, MOND still needs an additional

ngredient to explain some of the observations on larger scales,
specially the temperature and pressure profiles in galaxy clusters
nd the CMB power spectrum (F amae y & McGaugh 2012 ). For this,
ev eral models hav e been proposed that complement MOND. Some
f the most promising ones are the relativistic MOND theory which
an fit the speed of gra vitational wa ves and the CMB anisotropies
ut likely cannot explain the dynamics of virialized galaxy clusters
Skordis & Zło ́snik 2021 ); and the νHDM model that assumes

OND gravity and 11 eV sterile neutrinos (Angus 2009 ). These
roposed particles would play the role of a collisionless component
hat only aggregates at the scale of galaxy clusters, helping to
xplain the Bullet Cluster (Angus et al. 2007 ) and other virialized
alaxy clusters (Angus et al. 2010 ), where the MOND corrections
o Newtonian gravity are generally small. MOND has also pro v ed
apable of explaining several physical phenomena that � CDM has
een failing to describe, including the planes of satellite galaxies
n the LG and beyond (Pawlowski 2021a , b ), the weakly barred
orphology of M33 (Sell w ood, Shen & Li 2019 ; Banik et al. 2020 ),

nd the pattern speeds of galaxy bars (Roshan et al. 2021a , b ). Using
he νHDM extension, MOND can also explain the CMB (Angus &
iaferio 2011 ), the KBC void and Hubble tension (Haslbauer et al.
020 ), and the early formation of the interacting galaxy cluster
l Gordo (Katz et al. 2013 ; Asencio, Banik & Kroupa 2021 ).
herefore, this later model is capable of explaining both the CMB
nd the dynamics of galaxy clusters while preserving the successes
f MOND at galaxy scales (Banik & Zhao 2022 , and references
herein). In this study, we have shown that it should also be capable of
esolving the problem faced by � CDM with regards to the observed
igns of tidal disturbance in Fornax Cluster dwarf galaxies. 
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imulations. The authors are grateful to Sara Eftekhari for providing 
he table of literature data shown in Fig. 16 . They are also grateful to
he referee for comments which substantially impro v ed this paper. 

ATA  AVA ILA BILITY  

he results presented can be reproduced by using the data available 
n the Vizier catalogue 13 and following the methods described in this
aper. For a user guide describing how to install POR and providing
inks from which it can be downloaded, we refer the reader to Nagesh
t al. ( 2021 ). 
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PPEN D IX  A :  DEPROJECTING  DISTANCES  IN  

H E  SKY  PLA N E  TO  3 D  DISTANCES  

n order to convert an observed 2D projected distance R sky into a 3D
istance R , we use a simplified version of the deprojection method
pplied in Venhola et al. ( 2019 ). F or conv enience, we normalize
istances to d Fornax = 20 Mpc, the distance to the Fornax Cluster
Blakeslee et al. 2009 ). Thus, we define 

2D ≡ R sky 

d Fornax 
, θ3D ≡ R 

d Fornax 
. (A1) 

ig. 6 of Venhola et al. ( 2019 ) shows the relation between these
uantities for nucleated and non-nucleated dEs. 14 The relation for 
ucleated dwarfs is almost parallel to the line of equality, but with
n offset of ≈0.4 ◦. Therefore, we deproject a dwarf labelled as
nucleated’ using 

3D = θ2D + offset , (A2) 

ith offset = 0.4 ◦ in our nominal analysis. 
In the case of non-nucleated dwarfs, θ3D has a constant floor value 

f ≈1.2 ◦ until it joins the relation between θ3D and θ2D followed 
y nucleated dwarfs at θ2D > nnuc floor − offset. Therefore, for the 
on-nucleated dwarfs, we apply the following deprojection: 

3D = 

{
nnuc floor , if θ2D ≤ nnuc floor − offset , 
θ2D + offset , if θ2D ≥ nnuc floor − offset , 

(A3) 

here nnuc floor = 1.2 ◦ in our nominal analysis. As with the nucleated
warfs, we use offset = 0.4 ◦. 

PPEN D IX  B:  O B TA I N I N G  R PER 

F RO M  A  3 D  

ISTA N C E  

ssuming a thermal eccentricity distribution (Jeans 1919 ; Ambart- 
umian 1937 ; Kroupa 2008 ), we have that the probability distribution
f eccentricities is P e = 2 e . If the orbits are approximately Keplerian,
he pericentre distance R per = a (1 − e ), where a is the semimajor axis
nd e is the eccentricity. The time-average distance can be calculated 
s 〈 R 〉 = a (1 + e 2 /2) (section 3 of M ́endez & Rivera-Valent ́ın 2017 ).
o obtain the relation between 〈 R 〉 and R per , we integrate over the
hole eccentricity distribution: 

R per 

〈 R〉 = 

∫ 

R per 

〈 R〉 
∣∣∣∣

e 

P e d e = 

∫ 1 

0 

( 

1 − e 

1 + 

e 2 

2 

) 

2 e d e = 0 . 29 . (B1) 

e assume that the 3D distance of a dwarf inferred from its observed
rojected distance (Appendix A ) is about the same as its time-average
istance. We therefore obtain that for the FDS dwarfs, R per = 0 . 29 R.
4 Results are also shown for dwarf irregulars, but we removed these from our 
ample. 

o
r  

m
e

PPENDI X  C :  D O  TWO  EXPERI MENTS  H AV E  

H E  SAME  P RO P O RT I O N  O F  SUCCESSES?  

n Section 4.3 , we encountered the problem that one experiment
ives S obs, 1 ‘successes’ out of T 1 trials while another experiment 
ives S obs, 2 successes out of T 2 trials, with a success defined as a
warf galaxy that appears disturbed. The problem is to test the null
ypothesis that the proportion of successes ( x ) is the same in both
xperiments assuming that T 1 and T 2 are set in advance independently 
f the actual number of successes. We consider this problem in
ollowing two stages as follows: 

(i) Keeping x fixed, we evaluate the likelihood P x of obtaining 
ata as bad as or worse than the observed combination ( S obs, 1 , S obs, 2 )
or the null hypothesis; and 

(ii) We then obtain a weighted mean value for P x by considering all
lausible x , each time weighting by the likelihood that the observed
 S obs, 1 , S obs, 2 ) arises with that x . 

If we know x , we can use binomial statistics (equation 48 ) to find
he likelihood of obtaining any combination ( S 1 , S 2 ). We obtain P x 

y adding the probabilities of all ( S 1 , S 2 ) combinations which are as
ikely as or less likely than the observed combination ( S obs, 1 , S obs, 2 ).
his follows the usual principle that if the data seems unlikely given

he null hypothesis, we should consider all the ways in which it could
ook as bad or even worse. 

If the null hypothesis were true, the probability distribution of 
ts parameter x can be found more accurately by combining the
wo experiments to obtain a single experiment with ( S obs, 1 + S obs, 2 )
uccesses out of ( T 1 + T 2 ) trials. We use equation ( 32 ) to calculate the
ean x 0 and uncertainty σ x of the resulting posterior inference on x

ssuming a uniform prior. We then consider all values of x within the
ange x 0 ± 5 σ x provided this does not go outside the mathematically 
llowed range (0–1). Within the considered range of x , we weight
ach P x determination by the binomial likelihood P obs ( x ) of obtaining
he observed combination ( S obs, 1 , S obs, 2 ), so P obs ( x ) is a product of
he binomial likelihood from each of the experiments. The idea is
hat each P x should be weighted by how plausible the corresponding
 is given the data in the context of the null hypothesis. This leads to
ur estimated P -value: 

 = 

∫ 
P x P obs ( x ) dx ∫ 
P obs ( x ) dx 

. (C1) 

ince it is possible that no value of x matches the observations very
ell because the null hypothesis is wrong, P obs ( x ) might not integrate

o 1. 
In the particular case of Section 4.3 , calculating the significance

 in this way only tells us how plausible it is that f d is the same
n the low η and high η subsamples, which is the null hypothesis.
ur alternative hypothesis specifies that f d should be higher in the
igh η subsample on physical grounds, not merely that f d should 
ave some sort of correlation with η. Since the inferred f d indeed
ises with η, we should bear in mind that the low likelihood of the
ull hypothesis is caused by a deviation in just the sense expected
n physical grounds under the alternative hypothesis where tides are 
ele v ant. On the other hand, we tried all possible choices of ηt to
aximize the significance of the signal, leading to a look-elsewhere 

ffect. 
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PPENDIX  D :  TIDAL  SUSCEPTIBILITY  O F  

E W TO N I A N  T D G  S 

s discussed in Section 8 , our results indicate a higher level of tidal
usceptibility than is expected in � CDM. This could be a sign that
he Fornax dwarfs lack dark matter altogether, which is possible
n this framework if the FDS dwarfs are mostly TDGs. These are
xpected to be rather rare in � CDM, so the scenario is not very
lausible (Haslbauer et al. 2019b ). We none the less consider it for
ompleteness. 

If the dwarfs are of tidal origin, they would be free of dark matter
Barnes & Hernquist 1992 ; Wetzstein et al. 2007 ). Ho we ver, the
assive cluster galaxies would still be surrounded by a dark matter

alo. In this scenario, the mass ratio between the dwarfs and the
assive galaxies would be rather extreme, suggesting a serious

roblem with the stability of the dwarfs. 
To quantify this, we obtain the tidal radius of a dwarf by applying

quation ( 11 ) considering only its baryonic mass. Similarly, we
an obtain the disruption time-scale by applying equation ( 13 ) and
ccounting for the fact that the terms referring to the dwarf (those
abelled with a subindex ‘dwarf’) should be purely baryonic while
he terms referring to the large galaxies (labelled with a subindex ‘p’)
hould still account for the dark matter contribution to the mass and
alf-mass radius. We can then substitute in these results to obtain
NRAS 515, 2981–3013 (2022) 

igure D1. The distribution of tidal susceptibility values of Fornax Cluster 
warfs in a Newtonian TDG scenario to cluster tides (top panel) and 
arassment (bottom panel), with a bin width of 0.05 and 0.5, respectively. 
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niversity 
he susceptibility to cluster tides (equation 29 ) and g alaxy–g alaxy
arassment (equation 31 ). The results are shown in Fig. D1 . 
As expected, the dwarfs are now much more susceptible to cluster

ides (higher ηrtid than in Fig. 2 ). The distribution of ηrtid becomes
ery similar to MOND, suggesting that maybe the Newtonian TDG
cenario is plausible. Ho we ver, the tidal susceptibility to harassment
 ηhar ) is very large in this scenario and greatly exceeds 1 for the vast
ajority of the dwarfs. The high ηhar values arise because the dwarfs

re completely unprotected: They do not have a boost to their self-
ravity either from MOND or from a dark matter halo. Given their
ow surface brightness, this leads to very weak self-gravity. However,
n a � CDM universe, the large galaxies must still have dark matter
aloes. As a result, purely baryonic dwarfs go v erned by Newtonian
ravity should have already been destroyed by encounters with the
assive cluster galaxies. Therefore, we can consider that the TDG

cenario in � CDM is extremely unlikely. Note that in MOND, our
nalysis is not sensitive to whether the dwarfs are TDGs or formed
rimordially − they are purely baryonic in either case. 

PPENDI X  E:  DI STRI BU TI ON  O F  DWA R F  

ENSITIES  IN  � C D M  

ur MCMC analysis relies on an assumed distribution for the dwarf
ensities, which are crucial to their tidal stability. We therefore
eed to repeat the steps discussed in Section 5.2.3 for the case
f � CDM. For this model, we show the mass–luminosity relation
Fig. E1 ), the surface density–volume density relation (Fig. E2 ), and
he histogram of volume densities of the dwarfs in the FDS catalogue
Fig. E3 ). The main difference is that the mass of the dwarfs is
igher since it includes the contribution of the dark matter component
ithin the optical radius (equation 10 ). This raises their surface and
olume density. We found that M/L r ′ = 74 . 92 ± 52 . 38 M �/ L �,r ′ ,
ndicating a rather high dispersion. Moreo v er, we can no longer
pproximate that the slope of the relation is 1 on logarithmic axes,
ndicating non-linearity. 

Due to these difficulties, we found that it would be unsuitable
o repeat the steps described in Section 5.2.3 . To enable a fair
omparison with MOND, we none the less used as similar a
rocedure as possible. For this, we fixed the logarithmic offset
etween the density of the least dense dwarf in our sample ( ρmin, FDS )
nd the adopted density threshold of the surv e y ( ρ t ). As a result,
he minimum observational limit (black line in Fig. E3 ) is 0.09 dex
igure E1. Similar to Fig. 7 , but for � CDM instead of MOND and showing 
nly the linear regression. 
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igure E2. Similar to Fig. 8 , but for � CDM instead of MOND and showing
nly the linear regression. 

igure E3. The distribution of each dwarf galaxy’s mean density within its
alf-mass radius, accounting for both baryonic and dark matter. The orange
ertical line at −0.99 shows the sample mean, while the magenta lines offset
y ±0.54 dex show the standard deviation around it. Other lines have a similar
eaning to Fig. 6 and have been obtained similarly to the MOND case to

llow a fair comparison (see the text). 

elow ρmin, FDS , the mean observational limit (grey line in this figure) 
s 0.46 dex above ρmin, FDS , and the maximum observational limit 
dashed black line in this figure) is 0.79 dex above ρmin, FDS . As in
he MOND case, we choose the minimum observational limit (black 
ine in Fig. E3 ) as our nominal density limit for the distribution since
t is the only one of these three choices that implies ρ t < ρmin, FDS ,
hich is required of a realistic detection threshold. Assuming instead 

he mean observational limit would make us lose two observed dwarf 
alaxies from the low-density tail of the distribution. Note also that 
hese dwarfs have a clear tidal morphology because we remo v ed an y
warfs where this is unclear (Section 2.1 ). 
To summarize, our nominal ρ t in � CDM is 3.58 σ below the mean
ogarithmic density, while ρmean is 2.56 σ below. 

PPENDI X  F:  T R I A N G L E  PLOTS  WI TH  

LT E R NAT I V E  M O D E L L I N G  C H O I C E S  

n this appendix, we rerun our MCMC analysis with different 
odelling assumptions and show their impact using triangle plots 

imilar to Fig. 10 . Instead of showing � CDM and MOND results
n the same graph as done there, our approach will be that each
raph shows results for different modelling assumptions but within 
he context of the same theory. We will use different panels for the
ifferent theories. As before, we show only the 1 σ contour for each
air of parameters, though the full probability distribution is shown 
hen considering the posterior on one parameter marginalized o v er

ll others. The results presented here are discussed in more detail in
ection 8 . 
In Fig. F1 , we check how decreasing the dark matter fraction

ithin the optical radius of the FDS dwarfs affects the results. In
articular, we consider the revised dark matter fraction given in 
quation ( 65 ) based on the observed velocity dispersions of nearby
warfs (Section 8.1.1 ). As discussed there, we also consider the
ery conserv ati ve case M DM 

= 10 M � . The main impact is on the
arameters ηdestr and ηmin, dist . The inference on the slope of the 
ccentricity distribution is rather different for the case M DM 

= 10 M � ,
ut otherwise the posteriors are not much different to the nominal
 CDM case in both revised analyses shown here. 
In Fig. F2 , we compare the parameter inferences resulting from

he MCMC analysis assuming three different lower limits ( ρ t values) 
o the density distribution of the dwarfs: 

(i) The lowest considered ρ t is set at 5 σ below the mean logarith-
ic density; 
(ii) The second-lowest considered ρ t is the nominal value used in 

he main analysis; and 
(iii) The highest considered ρ t is the mean observational limit 

 ρmean ), which we obtained in Section 5.2.3 and Appendix E for
OND and � CDM, respectively. 

In Fig. F3 , we compare � CDM and MOND while assuming two
if ferent v alues for the deprojection parameters ‘of fset’ and ‘non-
ucleated floor’ (see Appendix A ). In addition to the nominal values
sed in the main analysis, we also consider a higher set of values
orresponding to the highest plausible 3D distance given the sky- 
rojected distance (see fig. 6 of Venhola et al. 2019 ). This entails
etting nnuc floor = 1.5 ◦ and offset = 0.5 ◦ instead of the nominal
nuc floor = 1.2 ◦ and offset = 0.4 ◦. 
In Fig. F4 , we check if increasing the resolution of the orbital

lements in the test mass simulation affects the results for � CDM
nd MOND. The nominal resolution used is a grid of size 100 × 100
or the eccentricity e and initial distance from the cluster centre
 R i ), which also corresponds to the semimajor axis. In the higher
esolution case, this is raised to 200 × 200. 
MNRAS 515, 2981–3013 (2022) 
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Figure F1. Triangle plot showing the inferred parameter values in the 
� CDM model constrained by our statistical analysis assuming the nominal 
dark matter fraction (equation 10 ; blue), our fit to the empirically determined 
dark matter fractions of nearby isolated dwarfs (equation 65 ; orange), and a 
very conserv ati ve scenario in which the mass of dark matter within the optical 
radius of each dwarf is only 10 × that of the baryons (green). 

Figure F2. Triangle plot similar to Fig. 10 , but this time showing � CDM (left-hand panel) and MOND (right-hand panel) in separate panels. Each panel shows 
the difference in the final results when using three different lower limits to the density distribution of the simulated Fornax dwarfs. The results for the 5 σ lower 
limit are shown in green, those with the nominal density limit are shown in blue, and results for the mean observational limit ( ρmean ) are shown in orange. 
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Figure F3. Similar to Fig. F2 , but showing the difference in the final results for � CDM (left-hand panel) and MOND (right-hand panel) when two different 
sets of values for the parameters ‘offset’ and ‘non-nucleated floor’ are used to deproject distances (Appendix A ). Results for the nominal deprojection (offset = 

0.4 ◦, non-nucleated floor = 1.2 ◦) are shown in blue, while results with the revised deprojection parameters (offset = 0.5 ◦, non-nucleated floor = 1.5 ◦) are shown 
in orange. 

Figure F4. Similar to Fig. F2 , but showing the difference in the final results for � CDM (left-hand panel) and MOND (right-hand panel) with two different 
resolutions in orbital elements. The nominal resolution case (blue) uses a grid of 100 × 100 bins to generate orbits with different eccentricities and initial 
positions/semimajor axes. The high-resolution case (orange) uses a grid of 200 × 200 bins. 
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