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Abstract

As a generalization of vertex connectivity, for connected graphs G and T , the

T -structure connectivity κ(G,T ) (resp. T -substructure connectivity κs(G,T )) of

G is the minimum cardinality of a set of subgraphs F of G that each is iso-

morphic to T (resp. to a connected subgraph of T ) so that G − F is discon-

nected. For n-dimensional hypercube Qn, Lin et al. [6] showed κ(Qn,K1,1) =

κs(Qn,K1,1) = n − 1 and κ(Qn,K1,r) = κs(Qn,K1,r) = ⌈n2 ⌉ for 2 ≤ r ≤ 3 and

n ≥ 3. Sabir et al. [11] obtained that κ(Qn,K1,4) = κs(Qn,K1,4) = ⌈n2 ⌉ for n ≥ 6,

and for n-dimensional folded hypercube FQn, κ(FQn,K1,1) = κs(FQn,K1,1) = n,

κ(FQn,K1,r) = κs(FQn,K1,r) = ⌈n+1
2 ⌉ with 2 ≤ r ≤ 3 and n ≥ 7. They pro-

posed an open problem of determining K1,r-structure connectivity of Qn and FQn

for general r. In this paper, we obtain that for each integer r ≥ 2, κ(Qn;K1,r)=

κs(Qn;K1,r) = ⌈n2 ⌉ and κ(FQn;K1,r) = κs(FQn;K1,r) = ⌈n+1
2 ⌉ for all integers n

larger than r in quare scale. For 4 ≤ r ≤ 6, we separately confirm the above result

holds for Qn in the remaining cases.

Keywords: Structure connectivity; Substructure connectivity; Star graph; Hyper-

cube; Folded hypercube.

1 Introduction

It is well known that the topology of an interconnection network is often modeled

by a connected graph. Let G be a graph with vertex set V (G) and edge set E(G),

where each vertex represents a processor or node and every edge a communication link.

For a subgraph H of G, we use G − H to denote the subgraph G − V (H). For a set

F = {T1, T2, . . . , Tm} of subgraphs of G, let G−F = G−V (T1)−V (T2)− . . .−V (Tm). A

∗Corresponding author.
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good interconnection network should have some good performances, such as uniformity,

symmetry, high fault tolerance, expansibility and small fixed vertex degree. One of the

important parameters of high fault tolerance is connectivity. A vertex-cut of a graph G is

a set S ⊆ V (G) such that G−S has more than one component. The connectivity κ(G) of

G is defined as the minimum cardinality of a vertex-cut S such that G−S is disconnected

or has only one vertex. In 1994, Fabrega et al. [3] proposed g-extra connectivity, providing

more accurate measures for fault tolerance of large-scale parallel processing systems. For

a connected non-complete graph G and a non-negative integer g, a vertex cut S of G is

an g-extra cut if G− S is disconnected and every component of G− S has more than g

vertices. The g-extra connectivity κg(G) of G is defined as the minimum cardinality of

g-extra cut of G.

In reality of network reliability and fault-tolerance, the neighbors of a faulty node

might be more vulnerable. For networks and subnetworks made into chips, when any

node on the chip becomes faulty, the whole chip can be considered faulty. To study the

fault-tolerance of some structures of the network, Lin et al. [6] introduced the concepts of

structure connectivity and substructure connectivity of networks. Let T be a connected

subgraph of graph G. Let F be a set of subgraphs of G such that every member in F is

isomorphic to T . Then F is called a T -structure-cut of G if the deletion of all members

of F disconnects G, i.e. G − F is disconnected. The T -structure connectivity κ(G, T )

of G is defined as the minimum cardinality of a T -structure-cut of G. Similarly, a set

F ′ of subgraphs of G which each is isomorphic to a connected subgraph of T is called a

T -substructure-cut if G−F ′ is disconnected. The T -substructure connectivity κs(G, T ) of

G is defined as the minimum cardinality of a T -substructure-cut of G. Figure 1 shows an

example of T -structure-cut and T -substructure-cut where T is 3-cycle C3. By definition,

κs(G, T ) ≤ κ(G, T ). Note that K1-structure connectivity reduces to the classical vertex

connectivity.

Figure 1. C3-structure cut and C3-substructure cut.

In the study of T -structure connectivity, much of the work has been focused on certain

special structures of some given networks. Let Pk denote a path with k vertices, Ck a cycle

with k vertices, and K1,r a star with r ≥ 1 leaves. For the bubble-sort star graph BSn,
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Zhang et al. [15] obtained κ(BSn, T ) and κs(BSn, T ) for T ∈ {Pk, C2k}. For k-ary n-cube

network Qk
n, Lv et al. [7] showed κ(Qk

n, K1,r) and κs(Qk
n, K1,r) with 1 ≤ r ≤ 3; further,

Lu et al. [9] showed κ(Qk
n, T ) and κs(Qk

n, T ) for T ∈ {Pk, Ck} where 3 ≤ k ≤ 2n; For

n-dimensional twisted hypercube TQn, Li et al. [5] obtained κ(TQn, T ) and κs(TQn, T )

for T ∈ {K1,3, K1,4, Pk} where 1 ≤ k ≤ n.

For n-dimensional hypercube Qn, Lin et al. [6] showed

κ(Qn, K1,r) = κs(Qn, K1,r) =







n− 1, if r = 1, n ≥ 3,

⌈
n

2
⌉, if 2 ≤ r ≤ 3, n ≥ 3.

(1.1)

Moreover, Sabir et al. [11] established

κ(Qn;K1,4) = κs(Qn;K1,4) = ⌈
n

2
⌉, for n ≥ 6; (1.2)

and for n-dimensional folded hypercubes FQn, they also determined for n ≥ 7,

κ(FQn, K1,r) = κs(FQn, K1,r) =







n, if r = 1,

⌈
n + 1

2
⌉, if r = 2, 3.

From the above results we can see that for Qn and FQn the structure connectivity

of only small stars K1,r (1 ≤ r ≤ 4) have been already determined. So Sabir et al.

[11] pointed out that determining the K1,r-structure connectivity and K1,r-substructure

connectivity of Qn and FQn with general r remain open. In this paper, we treat general

star-structure connectivity for n-dimensional hypercube Qn and folded hypercubes FQn

and obtain the following results: for each integer r ≥ 2, κ(Qn;K1,r)= κs(Qn;K1,r) = ⌈n
2
⌉

and κ(FQn;K1,r) = κs(FQn;K1,r) = ⌈n+1
2
⌉ for all integers n larger than r in quare scale.

To describe clearly the extent of n exceeding r we introduce two functions f(r) and g(r).

For details, see Theorems 3.13 and 5.12. Such results partly solve the open problem.

For Qn, from the above-mentioned results (1.1), (1.2) and Theorems 3.13 we find that

the K1,r-structure and substructure connectivity of Qn for 4 ≤ r ≤ 6 and n = r and

r + 1 have not been determined yet. So in section 4, we separately discuss such low

dimensional cases and get the same result. That is, for 4 ≤ r ≤ 6 and n ≥ r we have

that, κ(Qn;K1,r) = κs(Qn;K1,r) = ⌈n
2
⌉.

2 Preliminaries

We only consider finite and simple graphs G. Two vertices u and v of G are adjacent

if they are the end-vertices of an edge. A neighbor of a vertex x of G means a vertex

of G adjacent to x. The neighborhood of a vertex x in G is the set of neighbors of x,

denoted by NG(x) = {y|xy ∈ E(G)}. The neighborhood of a vertex set A in G is denoted

by NG(A) = ∪x∈ANG(x) − A. A path Pk = v1v2 . . . vk of length k − 1 is a sequence of k
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distinct vertices such that vi−1vi ∈ E(G) for every 2 ≤ i ≤ k. If the end-vertices of a path

P of length k ≥ 3 are identified, then it becomes a cycle of length k, denoted by Ck.

An n-dimensional hypercube Qn is a simple graph on the all binary strings of length

n, such two strings u1u2 · · ·un and u′
1u

′
2 · · ·u

′
n, ui, u

′
i ∈ {0, 1} for 1 ≤ i ≤ n, are adjacent

if and only if they differ in exactly one position [8], that is,
∑n

i=1 |ui − u′
i| = 1. For any

vertex u = u1u2u3 . . . un in Qn, we set u
i = ui

1u
i
2u

i
3 . . . u

i
n is the neighbor of u in dimension

i of Qn where ui
j = uj for j 6= i and ui

i = 1 − ui. In general, for A ⊆ {1, 2, . . . , n}, let

uA be the vertex of Qn so that (uA)i = ui = 1 − ui if and only if i ∈ A. Obviously, for

A,B ⊆ {1, 2, . . . , n}, uA = uB if and only if A = B. So ui1,i2 is the neighbor of ui1 in

dimension i2 and ui1,i2,i3 is the neighbor of ui1,i2 in dimension i3. We make a convention:

the elements in {1, 2, . . . , n} are taken arithmetic operations on module n. It is known

that Qn is a bipartite and n-regular graph.

Figure 2. FQ3 and Q3.

As one of the popular variants of the hypercube, the n-dimensional folded hyper-

cube FQn proposed by El-Amawy and Latifi [1] is a graph obtained from hypercube

Qn by adding 2n−1 edges, each of them being between vertices u = u1u2u3 . . . un and

u = u1u2u3 . . . un, where ui = 1 − ui. FQn is a highly symmetric graph as a underlying

topology of several parallel systems, such as ATM Switches [10], PM21 networks [4] and

3D-FolH-NOC network [2]. For example, the FQ3 and Q3 are illustrated in Figure 2.

3 The star-structure connectivity of hypercubes

To determine the star-structure connectivity and star-substructure connectivity of n-

hypercubes, we first list some preliminary results.

Lemma 3.1. [13] Any two vertices in Qn(n ≥ 3) have exactly two common neighbors, if

they have any.

The following two lemmas in the case 3 ≤ r ≤ n are taken from Lemmas 2.4 and 2.5

in reference [11] respectively. We find that they also hold for r = 2 by Lemma 3.1, since

Qn is triangle-free.
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Lemma 3.2. Let K1,r be a star in Qn with 2 ≤ r ≤ n. If u is a vertex in Qn −K1,r, then

|NQn
(u)∩ V (K1,r)| ≤ 2, and equality holds if and only if u is adjacent two leaves of K1,r.

Lemma 3.3. Let K1,r be a star in Qn with 2 ≤ r ≤ n. If u and v are two adjacent

vertices of Qn −K1,r, then |NQn
(u, v) ∩ V (K1,r)| ≤ 2.

Now we extend two adjacent vertices u and v in Lemma 3.3 to a connected subgraph

C in Qn −K1,r with |V (C)| ≥ 2 as follows.

Lemma 3.4. Let K1,r be a star in Qn with 2 ≤ r ≤ n. If C is a connected subgraph in

Qn −K1,r with k = |V (C)| ≥ 2, then |NQn
(C) ∩ V (K1,r)| ≤ 2(k − 1), and equality holds

only if C is a star in Qn.

Proof. Let V (K1,r) = {x, x1, x2, . . . , xr} and E(K1,r) = {xxi|1 ≤ i ≤ r}. Then x is the

center of K1,r. Let V (C) = {u1, u2, . . . , uk}.

First, we prove that |NQn
(C) ∩ V (K1,r)| ≤ 2(k − 1). Suppose to the contrary that

|NQn
(C) ∩ V (K1,r)| ≥ 2(k − 1) + 1 = 2k − 1. By Lemma 3.2, each vertex ui in C has

at most 2 neighbors in K1,r, and if |NQn
(ui) ∩ V (K1,r)| = 2, then ui is adjacent to two

leaves in K1,r, so 2k ≥ |NQn
(C) ∩ V (K1,r)| ≥ 2k − 1. It means that there exists at

least k − 1 vertices in C which each has two neighbors in K1,r, and such neighbors are

pairwise distinct. Without loss of generality, we assume {uix2i−3, uix2i−2} ⊂ E(Qn) for

2 ≤ i ≤ k. Since C is connected, u1 is adjacent to ui for some 2 ≤ i ≤ k. If u1xj ∈ E(Qn)

with 2k − 1 ≤ j ≤ r, then there exists an odd cycle u1xjxx2i−3uiu1, a contradiction.

Otherwise, u1x ∈ E(Qn). Then NQn
(ui) ∩ NQn

(x) = {x2i−3, x2i−2, u1}, contradicting

Lemma 3.1. Hence |NQn
(C) ∩ V (K1,r)| ≤ 2(k − 1).

Next we show that if |NQn
(C)∩ V (K1,r)| = 2(k − 1), then C is a star in Qn. Suppose

to the contrary that C is not a star in Qn. Then we have that there exists a 4-vertex

path P4 in C by taking a longest path of C, so 4 ≤ k and 6 ≤ |NQn
(P4) ∩ V (K1,r)| ≤ 8

by Lemma 3.2. However, by Lemma 3.3, any two consecutive vertices in P4 together have

at most two neighbors in V (K1,r), which implies that P4 has at most four neighbors in

V (K1,r), a contradiction.

Yang et al. came to the following two results in the g-extra connectivity of Qn.

Lemma 3.5. [14] Let C be a subgraph of Qn with |V (C)| = g + 1 for n ≥ 4. Then

|NQn
(C)| ≥ (g + 1)n− 2g −

(

g

2

)

.

Lemma 3.6. [14] For n ≥ 4,

κg(Qn) =







(g + 1)n− 2g −
(

g

2

)

, if 0 ≤ g ≤ n− 4,

n(n−1)
2

, if n− 3 ≤ g ≤ n.

Lemma 3.7. For n ≥ r ≥ 2 and n ≥ 3, κ(Qn;K1,r) ≤ ⌈n
2
⌉ and κs(Qn;K1,r) ≤ ⌈n

2
⌉.
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Proof. Since κs(Qn;K1,r) ≤ κ(Qn;K1,r), we only prove κ(Qn;K1,r) ≤ ⌈n
2
⌉. Let u =

000 · · ·0 be a vertex in Qn. Then NQn
(u) = {ui|1 ≤ i ≤ n}.

If n ≥ 3 is odd, let Si = {u2i−1, u2i, u2i−1,2i} ∪ {u2i−1,2i,2i+j|1 ≤ j ≤ r − 2} for

1 ≤ i ≤ n−1
2
, and let Sn+1

2

= {un, un,1} ∪ {un,1,j|2 ≤ j ≤ r} for n > r and Sn+1

2

=

{un, un,1, u1} ∪ {un,1,j|2 ≤ j ≤ r − 1} for n = r. Then Si induces a star K1,r with the

center u2i−1,2i for 1 ≤ i ≤ n−1
2

and with the center un,1 for i = n+1
2

respectively (see Fig.

3(right)).

Let S = ∪
n+1

2

i=1 Si. Then NQn
(u) ⊆ S, and u is an isolated vertex of Qn − S. If n ≥ 4,

then the vertex u belongs to Qn − S, so the Si’s for 1 ≤ i ≤ n+1
2

form a K1,r-structure

cut of Qn. If n = 3 and r = 2, then S = {100, 010, 110} ∪ {001, 101, 111}, so S forms

a K1,2-structure cut of Q3 since u2,3 = 011 belongs to Q3 − S. If n = r = 3, then

S = {100, 010, 110, 111}∪{001, 101, 100, 111}, so S forms a K1,3-structure cut of Q3 since

u2,3 = 011 belongs to Q3 − S.

If n ≥ 4 is even, let Si = {u2i−1, u2i, u2i−1,2i} ∪ {u2i−1,2i,2i+j |1 ≤ j ≤ r − 2} for

1 ≤ i ≤ n
2
. Then Si induces a star K1,r with the center u2i−1,2i for 1 ≤ i ≤ n

2
. Then u is

an isolated vertex in Qn − S and u belongs to Qn − S, where S = ∪
n

2

i=1Si. Also S forms

a K1,r-structure cut of Qn.

Remark 3.8. Obviously Q2 has no K1,2-structure cut.

Remark 3.9. For the K1,r-structure cut Si’s, 1 ≤ i ≤ ⌈n
2
⌉, in the proof of Lemma 3.7,

Sm ∩ Sk = ∅ for each pair 1 ≤ m < k ≤ ⌊n
2
⌋, and Sm ∩ S⌈n

2
⌉ 6= ∅ for 1 ≤ m < ⌈n

2
⌉ if

and only if m = 1 and n = r ≥ 3 is odd (in this case, S1 ∩ Sn+1

2

= {u1, u1,2,n}). We now

give a proof as follows. Recall that Si = {u2i−1, u2i, u2i−1,2i}∪ {u2i−1,2i,2i+j|1 ≤ j ≤ r− 2}

for 1 ≤ i ≤ n−1
2
. For 1 ≤ m < k ≤ ⌊n

2
⌋, {2m − 1, 2m} ∩ {2k − 1, 2k} = ∅, and thus

{2m− 1, 2m, 2m+ j1} 6= {2k − 1, 2k, 2k + j2} for 1 ≤ j1, j2 ≤ r − 2, which implies that

Sm ∩ Sk = ∅. Next suppose that Sm ∩ S⌈n

2
⌉ 6= ∅ for 1 ≤ m < ⌈n

2
⌉. Then n ≥ 3 is odd.

If n > r, then Sn+1

2

= {un, un,1} ∪ {un,1,j|2 ≤ j ≤ r}. Since 1 < 2m < n, there are

1 ≤ j1 ≤ r − 2 and 2 ≤ j2 ≤ r − 1 such that {2m − 1, 2m, 2m + j1} = {n, 1, j2}, which

implies that 2m+ j1 = n and 2m− 1 = 1. So m = 1, and n = 2+ j1 ≤ r, a contradiction.

So we may assume that n = r ≥ 3. Then Sn+1

2

= {un, un,1, u1} ∪ {un,1,j|2 ≤ j ≤ r − 1}.

Similarly we have that m = 1. Conversely, if m = 1 and n = r ≥ 3 is odd, then we can

find that S1 ∩ Sn+1

2

= {u1, u1,2,n}. The proof is complete.

To describe our main result about n-hypercube Qn, we define the function f(r) for all

integers r ≥ 2 as follows.

f(r) =















f1(r) = max{
r + 7

2
,
r2 + 4r + 3

8
}, if r ≥ 3 is odd, (3.1)

f2(r) = max{
r2 + 2r

8
,
r + 8

2
,
r2 + 6r + 12

12
}, if r ≥ 2 is even. (3.2)

It is not difficult to find that f1(r) and f2(r) are both strictly increasing functions for

r ≥ 2 by considering the property of a quadratic function. As Table 1 shows some initial

6



Figure 3. K1,6-structure cut of Q12 and K1,7-structure cut of Q11.

values of f(r) for 2 ≤ r ≤ 20, in general we can prove that f(r) is an increasing function

and integral except at r = 8 in the following lemma.

Table 1. The values of f(r) for 2 ≤ r ≤ 20.

r 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

f(r) 5 5 6 6 7 10 31
3

15 15 21 21 28 28 36 36 45 45 55 55

Lemma 3.10. f(r) is an increasing function for r ≥ 2 and integral except at r = 8, and

for odd r ≥ 9,

f(r) = f(r + 1) =
r2 + 4r + 3

8
. (3.3)

Proof. By Eq. (3.1), we know that

f1(r) =







r+7
2
, if r = 3,

r2+4r+3
8

, if r ≥ 5 is odd,

and by Eq. (3.2),

f2(r) =



















r+8
2
, if 2 ≤ r ≤ 6 is even,

r2+6r+12
12

, if r = 8 ,

r2+2r
8

, if r ≥ 10 is even.

So we have

f1(r) =
r2 + 4r + 3

8
, for odd r ≥ 5, and

f2(r) =
r2 + 2r

8
, for even r ≥ 10.

7



Further, if r2 = r1 + 1, then

r21 + 4r1 + 3

8
=

r22 + 2r2
8

.

The above three equalities imply that for odd r ≥ 9, f(r) = f(r + 1) = r2+4r+3
8

, so Eq.

(3.3) holds. Together with Table 1 we know that f(r) is an increasing function for r ≥ 2.

It remains to prove that f(r) is integral for r ≥ 9. Let r + 1 = 2k ≥ 10. Then

f(r) = f(r + 1) = f2(2k) =
(2k)2+2×2k

8
= k(k+1)

2
, which is an integer.

Lemma 3.11. For all integers r ≥ 2, r < f(r).

Proof. Obviously, we have

f1(3)− 3 =
3 + 7

2
− 3 = 2 > 0, and

f1(r)− r =
r2 + 4r + 3

8
− r =

1

8
(r − 1)(r − 3) > 0, for r ≥ 5,

which implies that for odd r ≥ 3, the result holds.

For even r ≥ 2, we have

f2(r)− r =
r + 8

2
− r =

8− r

2
> 0, for 2 ≤ r ≤ 6, f2(8)− 8 =

7

3
> 0, and

f2(r)− r =
r2 + 2r

8
− r =

1

8
r(r − 6) > 0, for r ≥ 10,

so the result holds.

Lemma 3.12. If integers r ≥ 2 and n > f(r), then we have κ(Qn;K1,r) ≥ ⌈n
2
⌉ and

κs(Qn;K1,r) ≥ ⌈n
2
⌉.

Proof. Since κs(Qn;K1,r) ≤ κ(Qn;K1,r), we only show κs(Qn;K1,r) ≥ ⌈n
2
⌉. Suppose to

the contrary that κs(Qn;K1,r) < ⌈n
2
⌉. Then Qn has a set F of subgraphs that each is a

star of at most r leaves so that |F | ≤ ⌈n
2
⌉ − 1 and Qn − F is disconnected. So

|V (F )| ≤ (1 + r)|F | ≤ (1 + r)(⌈
n

2
⌉ − 1) ≤

1

2
(r + 1)(n− 1). (3.4)

Let C be a smallest component of Qn−F and k = |V (C)|. We distinguish the following

three cases by considering the neighborhood of C and g-extra connectivity in Qn.

Case 1. k = 1.

Let C = {u}. By Lemma 3.2, |NQn
(u) ∩ V (K1,r′)| ≤ 2 for each member K1,r′ in F ,

0 ≤ r′ ≤ r. Thus

n = |NQn
(u)| ≤

∑

K∈F

|NQn
(u) ∩ V (K)| ≤ 2|F |

≤ 2(⌈
n

2
⌉ − 1) ≤ 2(

n+ 1

2
− 1) = n− 1,

8



a contradiction.

Case 2. 2 ≤ k ≤ r
2
+ 1.

From the given conditions, we know that n ≥ 6. By Lemma 3.5, we have |NQn
(C)| ≥

nk − 2(k − 1)−
(

k−1
2

)

. By Lemma 3.4, |NQn
(C) ∩ V (K1,r′)| ≤ 2(k − 1) for each member

K1,r′ in F , 0 ≤ r′ ≤ r. We have

nk − 2(k − 1)−
(

k−1
2

)

≤ |NQn
(C)| ≤ 2(k − 1)|F | ≤ 2(k − 1)(⌈

n

2
⌉ − 1)

≤ (k − 1)(n− 1),

which implies that

n ≤
k(k − 1)

2
.

If r is even, then n ≤ r2+2r
8

, contradicting n > max{ r2+2r
8

, r+8
2
, r

2+6r+12
12

} = f(r). If r is

odd, then n ≤ r2−1
8

, contradicting n > max{ r+7
2
, r

2+4r+3
8

} = f(r).

Case 3. k ≥ r+1
2

+ 1.

If r is even, then k ≥ r
2
+ 2. Since n > f(r) ≥ r+8

2
, 0 < r

2
+ 1 ≤ n− 4, by Lemma 3.6

we have

κ r

2
+1(Qn) = (2 +

r

2
)n− 2(

r

2
+ 1)−

( r

2
+1
2

)

=
−r2

8
+

rn

2
+ 2n−

5r

4
− 2. (3.5)

SinceQn−F is disconnected and C is a smallest component ofQn−F , |V (F )| ≥ κ r

2
+1(Qn),

so by Ineq. (3.4) and Eq. (3.5) we have

1

2
(r + 1)(n− 1) ≥

−r2

8
+

rn

2
+ 2n−

5r

4
− 2,

which implies that n ≤ r2+6r+12
12

, contradicting n > max{ r2+2r
8

, r+8
2
, r

2+6r+12
12

} = f(r).

If r is odd, then k ≥ r−1
2

+ 2. Since n > f(r) ≥ r+7
2
, 0 < r−1

2
+ 1 ≤ n− 4, by Lemma

3.6 we have

κ r−1

2
+1(Qn) = (2 +

r − 1

2
)n− 2(

r − 1

2
+ 1)−

( r−1

2
+1

2

)

=
−r2

8
+

(r + 3)n

2
− r −

7

8
. (3.6)

Since Qn − F is disconnected and C is a smallest component of Qn − F , |V (F )| ≥

κ r−1

2
+1(Qn). So by Ineq. (3.4) and Eq. (3.6) we have

1

2
(r + 1)(n− 1) ≥

−r2

8
+

(r + 3)n

2
− r −

7

8
,

which implies n ≤ r2+4r+3
8

, a contradiction to n > max{ r+7
2
, r

2+4r+3
8

} = f(r).

From Lemma 3.11 we know that the condition of Lemma 3.12 implies that of Lemma

3.7. Hence we obtain the following main result in this section.

Theorem 3.13. If r ≥ 2 and n > f(r), then κ(Qn;K1,r) = κs(Qn;K1,r) = ⌈n
2
⌉.
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4 Some low dimensional cases of Qn

For r ≤ 6 and Qn, the remaining cases not solved are to determine the values of

κ(Qn;K1,r) and κs(Qn;K1,r) for 4 ≤ r ≤ 6 and n = r and r + 1.

In this section, we will solve separately the low dimensional cases, which cannot be

treated in the previous unified way. Latifi [4] express Qn = Q0
n

⊗

Q1
n, where Q0

n
∼= Qn−1

and Q1
n
∼= Qn−1. Q0

n and Q1
n induced by the vertices with the ith coordinates 0 and 1

respectively, where 1 ≤ i ≤ n. In following, NG−A(A) = {x|xy ∈ E(G), x ∈ G−A, y ∈ A}.

Lemma 4.1. κs(Q4, K1,4) ≥ 2.

Proof. We set F being a star of at most 4 leaves, Fi = F ∩Qi
4(i = 0, 1). It is sufficient to

prove that Q4−F is connected. Without loss of generality, assume the center of F belongs

to Q0
4. It is noticed that Q0

4 − F0 and Q1
4 − F1 are both connected since κs(Q3, K1,3) = 2.

Since there exists at least V (Q0
4−F0) = 23−4 = 4 edges between Q0

4−F0 and Q1
4−F1 but

|V (F1)| ≤ 1, there is an edge between Q0
4−F0 and Q1

4−F1. Thus Q4−F is connected.

Lemma 4.2. κs(Q5, K1,4) ≥ 3.

Proof. We set Fi be a star of at most 4 leaves. It is sufficient to prove that Q5−F1−F2 is

connected. If F1 ≇ K1,4 and F2 ≇ K1,4, then the result holds since κs(Q5, K1,3) = 3. Thus

we assume that Fi
∼= K1,4 and Qi

5 ∩ F2 = F i
2(i = 0, 1). Without loss of generality, assume

F1 ⊆ Q0
5. Since κs(Q4, K1,4) ≥ 2 by Lemma 4.1, Q1

5 − F 1
2 is connected. If Q0

5 − F1 − F 0
2

is connected, then Q5 − F1 − F2 is connected since |V (Q0
5 − F1 − F 0

2 )| ≥ 24 − 10 = 6

and |V (F 1
2 )| ≤ 5, there is a vertex in Q0

5 − F1 − F 0
2 which has a neighbor in Q1

5 − F 1
2 . If

Q0
5 − F1 − F 0

2 is disconnected and each component of Q0
5 − F1 − F 0

2 connects to Q1
5 − F 1

2 ,

then Q5−F1−F2 is connected. Hence, we consider there is a component C of Q0
5−F1−F 0

2

which is not connecting to Q1
5 − F 1

2 . Then NQ5
(C) ⊆ (F1 ∪ F2) and NQ1

5
(C) ⊆ F 1

2 , which

implies that |V (C)| = |NQ1
5
(C)| ≤ |V (F 1

2 )| ≤ 5. If 1 ≤ |V (C)| ≤ 2, then 5 ≤ |NQ5
(C)| ≤

∑2
i=1 |NQ5

(C)∩Fi| ≤ 4 by Lemmas 3.2 and 3.3, a contradiction. If |V (C)| = 3, then 10 ≤

|NQ5
(C)| ≤

∑2
i=1 |NQ5

(C) ∩ Fi| ≤ 8 by Lemma 3.4, a contradiction. If 4 ≤ |V (C)| ≤ 5,

then |NQ5
(C)| ≥ 11 by Lemma 3.5, so we have 11 ≤ |NQ5

(C)| ≤
∑2

i=1 |V (Fi)| ≤ 10, a

contradiction. Thus Q5 − F1 − F2 is connected.

By the above two lemmas and Lemma 3.7, we obtain the following theorem.

Theorem 4.3. For 4 ≤ n ≤ 5, κ(Qn, K1,4) = κs(Qn, K1,4) = ⌈n
2
⌉.

Lemma 4.4. κs(Q5, K1,5) ≥ 3.

Proof. Suppose to the contrary that κs(Q5;K1,5) ≤ 2. Let Fi be a star of at most 5 leaves

such that Q5 − F1 − F2 is disconnected and C be a smallest component of Q5 − F1 − F2.

We assume that for i = 0, 1, F i
1 = F1 ∩Qi

5, F
i
2 = F2 ∩Qi

5 and Ci = C ∩Qi
5. If F1 ≇ K1,5

and F2 ≇ K1,5, then Q5 − F1 − F2 is connected since κs(Q5, K1,4) = 3 by Theorem 4.3.

Thus we assume that Fi
∼= K1,5.
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Case 1. F1
∼= K1,5 and F2 ≇ K1,5. We set x is the center of F1. Without loss

of generality, assume that F2 ⊆ Q0
5. Since Q1

5
∼= Q4 and κs(Q4, K1,4) ≥ 2 by Lemma

4.1, Q1
5 − F 1

1 is connected. If Q0
5 − F 0

1 − F2 is connected, then C = Q5 − F1 − F2 since

|V (Q0
5−F 0

1−F2)| ≥ 24−10 = 6 and |V (F 1
1 )| ≤ 5, there is a vertex inQ0

5−F 0
1−F2 which has

a neighbor in Q1
5−F 1

1 . If Q
0
5−F 0

1 −F2 is disconnected and each component of Q0
5−F1−F 0

2

connects to Q1
5 − F 1

2 , then C = Q5 − F1 − F2 is connected. Hence, there exists a smallest

component C ′ ofQ0
5−F1−F 0

2 which is not connecting toQ1
5−F 1

1 . ThenNQ5
(C ′) ⊆ (F1∪F2)

and NQ1
5
(C ′) ⊆ F 1

1 , which implies that |V (C ′)| = |NQ1
5
(C ′)| ≤ |V (F 1

1 )| ≤ 5. As we know

that C ′ is also a component of Q5−F1−F2. Since Q
1
5−F 1

1 is connected, the components of

Q5−F1−F2 either contains Q
1
5−F 1

1 or not. If C 6= C ′, then (Q1
5−F 1

1 ) ⊆ C and |V (C)| ≥

|V (Q1
5−F 1

1 )| ≥ 24−5 = 11 > |V (C ′)|, it is a contradiction since C is a smallest component.

Thus C = C ′. If 1 ≤ |V (C)| ≤ 2, then 5 ≤ |NQ5
(C)| ≤

∑2
i=1 |NQ5

(C)∩Fi| ≤ 4 by Lemmas

3.2 and 3.3, a contradiction. If |V (C)| = 3, then 10 ≤ |NQ5
(C)| ≤

∑2
i=1 |NQ5

(C)∩Fi| ≤ 8

by Lemma 3.4, a contradiction. If 4 ≤ |V (C)| ≤ 5, then |NQ5
(C)| ≥ 11 by Lemma 3.5,

so we have 11 ≤ |NQ5
(C)| ≤

∑2
i=1 |V (Fi)| ≤ 10, a contradiction. Thus Q5 − F1 − F2 is

connected.

Case 2. Fi
∼= K1,5(i = 1, 2). We set F1 = {x, x1, x2, x3, x4, x5}, F2 = {y, y1, y2, y3, y4, y5}

where {xxi, yyi} ⊂ E(Q5)(i ∈ {1, 2, . . . , 5}). We have the following cases by the positions

of x and y.

Case 2.1. Both x and y belong to V (Qi
5). Without loss of generality, assume that x

and y belong to V (Q0
5) and {x5, y5} ⊂ V (Q1

5), Then Q1
5−x5−y5 is connected since κ(Q1

5) =

4. Thus C1 = Q1
5 − x5 − y5 or C1 = ∅. If C1 = Q1

5 − x5 − y5, then |V (C)| ≥ |V (C1)| =

24− 2 = 14. We have |V (Q5−F1−F2)| − |V (C)| ≤ 25− 12− 14 = 6, it is a contradiction

since C is a smallest component. Therefore C = C0. Then NQ1
5
(C) ⊆ {x5, y5} and

|V (C)| = |NQ1
5
(C)| ≤ 2. If 1 ≤ |V (C)| ≤ 2, then 5 ≤ |NQ5

(C)| ≤
∑2

i=1 |NQ5
(C) ∩ Fi| ≤ 4

by Lemmas 3.2 and 3.3, a contradiction. Thus Q5 − F1 − F2 is connected.

Case 2.2. Either x or y belongs to V (Qi
5). Without loss of generality, assume that

x ∈ V (Q0
5), y ∈ V (Q1

5) and x5 ∈ V (Q1
5), y5 ∈ V (Q0

5). Then NQ0
5
(C0) ⊆ (F 0

1 ∪ {y5}). If

1 ≤ |V (C0)| ≤ 2, then 4 ≤ |NQ0
5
(C0)| ≤ |NQ0

5
(C0) ∩ F 0

1 | + 1 ≤ 3 by Lemmas 3.2 and 3.3,

a contradiction. If 3 ≤ |V (C0)| ≤ 5, then 6 ≤ |NQ0
5
(C0)| ≤ |{x1, x2, x3, x4, y5}| = 5 by

Lemmas 3.5, a contradiction. Thus |V (C0)| ≥ 6 and |V (C1)| ≥ 6 by a similar argument.

So |V (C)| ≥ 12 and |V (Q5 − F1 − F2)| − |V (C)| ≤ 25 − 12 − 12 = 8. It contradicts to

that C is a smallest component. Thus Q5 − F1 − F2 is connected.

Lemma 4.5. For 5 ≤ r ≤ 6, κs(Q6, K1,r) ≥ 3.

Proof. Suppose to the contrary that κs(Q6;K1,r) ≤ 2. Let Fi(i = 1, 2) be a star of at most

r leaves and Q6−F1−F2 is disconnected. Let C be a smallest components of Q6−F1−F2.

If 1 ≤ |V (C)| ≤ 2, by Lemmas 3.2 and 3.3, |NQ6
(C) ∩ V (Fi)| ≤ 2. Thus 6 ≤

|NQ6
(C)| ≤

∑2
i=1 |NQ6

(C) ∩ V (Fi)| ≤ 4 a contradiction.

If |V (C)| = 3, then |NQ6
(C)∩V (Fi)| ≤ 4 by Lemma 3.4 and |NQ6

(C)| ≥ 13 by Lemma

3.5. Thus 13 ≤ |NQ6
(C)| ≤

∑2
i=1 |NQ6

(C) ∩ V (Fi)| ≤ 8, a contradiction.
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If |V (C)| ≥ 4, by Lemma 3.6 we have κ3(Q6) = 15. Since Q6−F1−F2 is disconnected

and C is a smallest component of Q6 − F1 − F2, 14 ≥ |V (F1)| + |V (F2)| ≥ κ3(Q6) = 15.

A contradiction.

By Lemmas 4.4 and 4.5, we have κs(Qn, K1,5) ≥ 3 with 5 ≤ n ≤ 6. Thus we get the

following theorem by Lemma 3.7.

Theorem 4.6. For 5 ≤ n ≤ 6, κ(Qn, K1,5) = κs(Q5, K1,5) = 3.

Lemma 4.7. κs(Q7, K1,6) ≥ 4.

Proof. Suppose to the contrary that κs(Q7;K1,6) ≤ 3. Let Fi be star of at most 6 leaves

such that Q7 − ∪3
i=1Fi is disconnected and C be a smallest components of Q7 − ∪3

i=1Fi

with |V (C)| = g + 1. Then NQ7
(C) ⊆ ∪3

i=1Fi and NQ7
(C) ⊆ ∪3

i=1(NQ7
(C) ∩ Fi). By

Lemma 3.5, we have

7(g + 1)− 2g −
1

2
g(g − 1) ≤ |NQ7

(C)| ≤
3

∑

i=1

|Fi| ≤ 21,

it implies that g ≤ 4 or g ≥ 7; for g ≤ 4, it contradicts to |NQ7
(C)| ≤

∑3
i=1 |NQ7

(C)∩Fi|

by Lemmas 3.2 and 3.4. Thus we have |V (C)| ≥ 8. We assume that Ci = C∩Qi
7(i = 0, 1).

If Fi ≇ K1,6(i = 1, 2, 3), then Q7−∪3
i=1Fi is connected since κs(Q7, K1,5) = 4 by Theorem

3.13. So we consider Fi
∼= K1,6. Without loss of generality, we assume that F1

∼= K1,6,

F1 ⊆ Q0
7 and Qi

7∩F2 = F i
2, Q

i
7∩F3 = F i

3(i = 0, 1). Since Qi
7
∼= Q6 and κs(Q6, K1,6) ≥ 3 by

Lemma 4.5, Q1
7−F 1

2 −F 1
3 is connected. Thus we know the components ofQ7−∪3

i=1Fi either

contains Q1
7−F 1

2 −F 1
3 or not. We have C1 = Q1

7−F 1
2 −F 1

3 or C1 = ∅. If C1 = Q1
7−F 1

2 −F 1
3 ,

then |V (C1)| ≥ 26 − 14 = 50. Since each vertex in C1 has exactly one neighbor in

NQ0
7
(C1), |NQ0

7
(C1)| = |V (C1)| ≥ 50 and NQ0

7
(C1) ⊆ (F1 ∪ F 0

2 ∪ F 0
3 ∪ C0). We know

|NQ0
7
(C1)| ≤ |V (F1∪F 0

2 ∪F 0
3 )|+ |V (C0)| ≤ 21+ |V (C0)|, which implies that |V (C0)| ≥ 29.

We get |V (C)| = |V (C1)|+ |V (C0)| ≥ 79 and |V (Q7−∪3
i=1Fi)|−|V (C)| < 27−79 = 49, it

is a contradiction since C is a smallest component. Therefore C ⊆ Q0
7−F1−F 0

2 −F 0
3 with

|V (C)| ≥ 8. We have 8 ≤ |V (C)| = |NQ1
7
(C)| ≤ |V (F 1

2 ∪F 1
3 )|, then |V (F 1

2 ∪F 1
3 )| ≥ 8. By

the above analysis, we know the component of Q7 −∪3
i=1Fi which contains Q1

7 −F 1
2 −F 1

3

have at least 29 vertices in Q0
7−F1−F 0

2 −F 0
3 , so the component of Q0

7−F1−F 0
2 −F 0

3 has

at least 8 vertices. Then κ6(Q
0
7) ≤ |V (F1 ∪F 0

2 ∪F 0
3 )| ≤ |V (∪3

i=1Fi)| − |V (F 1
2 ∪ F 1

3 )| ≤ 13.

As we know κ6(Q6) = 15 by Lemma 3.6. It is a contradiction. Thus Q7 − ∪3
i=1Fi is

connected.

By Lemma 3.7 and Lemmas 4.5, 4.7, we have the following theorem.

Theorem 4.8. κ(Q6, K1,6) = κs(Q6, K1,6) = 3; κ(Q7, K1,6) = κs(Q7, K1,6) = 4.
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5 The star-Structure connectivity of Fold Hypercube

In this section, we study the κ(FQn;K1,r) and κs(FQn;K1,r) for r ≥ 2. It is known

that FQn is triangle-free for n ≥ 3.

Lemma 5.1. [18] Any two vertices in FQn exactly have two common neighbors for n ≥ 4

if they have any.

It is easy to find the above lemma is true when n = 2. For n = 3, we find NFQn
(011)∩

NFQn
(110) = {010, 001, 100, 111}, so Lemma 5.1 is fault when n = 3.

Lemma 5.2. [12] Let FQn be a folded hypercube. Then

i) κ(FQn) = n+ 1;

ii) FQn is a bipartite graph if and only if n is odd;

iii) If FQn contains an odd cycle, then a shortest odd cycle has the length n+ 1.

Lemma 5.3. Let K1,r be a star in FQn with n ≥ 4 and n+1 ≥ r ≥ 2. If u is a vertex in

FQn −K1,r, then |NFQn
(u)∩ V (K1,r)| ≤ 2, and equality holds if and only if u is adjacent

to exactly two leaves of K1,r.

Proof. Since FQn is triangle-free for n ≥ 4, u cannot be adjacent to both a leaf and the

center of K1,r. If u is just adjacent to a leaf of K1,r, then by Lemma 5.1 u has at most

two neighbors in the leaves of K1,r, which are adjacent to the center of K1,r.

For n ≥ 5, FQn has no 5-cycle or 3-cycle. So we can derive the following result by

analogous arguments as Lemma 3.4.

Lemma 5.4. Let K1,r be a star in FQn with n ≥ 5 and n+1 ≥ r ≥ 2. If C is a connected

subgraph in FQn −K1,r with |V (C)| = k ≥ 2, then |NFQn
(C) ∩ V (K1,r)| ≤ 2(k − 1), and

equality holds only if C is a star in FQn.

Proof. Let V (K1,r) = {x, x1, x2, . . . , xr} and E(K1,r) = {xxi|1 ≤ i ≤ r}. Then x is the

center of K1,r. Let V (C) = {u1, u2, . . . , uk}.

First, we prove that |NFQn
(C) ∩ V (K1,r)| ≤ 2(k − 1). Suppose to the contrary that

|NFQn
(C) ∩ V (K1,r)| ≥ 2(k − 1) + 1 = 2k − 1. By Lemma 5.3, each vertex ui in C has

at most 2 neighbors in K1,r, and if |NFQn
(ui) ∩ V (K1,r)| = 2, then ui is adjacent to two

leaves in K1,r, so 2k ≥ |NFQn
(C) ∩ V (K1,r)| ≥ 2k − 1. It means that there exists at least

k− 1 vertices in C which each has two neighbors in K1,r, and such neighbors are pairwise

distinct. Without loss of generality, we assume {uix2i−3, uix2i−2} ⊂ E(FQn) for 2 ≤ i ≤ k.

Since C is connected, u1 is adjacent to ui for some 2 ≤ i ≤ k. If u1xj ∈ E(FQn) with

2k − 1 ≤ j ≤ r, then there exists a 5-cycle u1xjxx2i−3uiu1, a contradiction. Otherwise,

u1x ∈ E(FQn). Then NFQn
(ui)∩NFQn

(x) = {x2i−3, x2i−2, u1}, contradicting Lemma 5.1.

Hence |NFQn
(C) ∩ V (K1,r)| ≤ 2(k − 1).
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Next we show that if |NFQn
(C)∩V (K1,r)| = 2(k−1), then C is a star in FQn. Suppose

to the contrary that C is not a star in FQn. Then there exists a 4-vertex path P4 in C,

so 4 ≤ k and 6 ≤ |NFQn
(P4)∩V (K1,r)| ≤ 8 by Lemma 5.3. However, any two consecutive

vertices in P4 have at most two neighbors in V (K1,r), since FQn(n ≥ 5) has no 5-cycle

and |NFQn
(u) ∩ NFQn

(x)| ≤ 2 for u ∈ V (P4). This implies that P4 has at most four

neighbors in V (K1,r), a contradiction.

The following lemma can be obtained from Theorem 2.11 of [17].

Lemma 5.5. [17] Let C be a subgraph of FQn with |V (C)| = g + 1, for n ≥ 5, 1 ≤ g ≤

n+ 2. Then |NFQn
(C)| ≥ (n + 1)(g + 1)− 2g −

(

g

2

)

.

Lemma 5.6. [16] For n ≥ 7,

κg(FQn) =







(g + 1)(n+ 1)− 2g −
(

g

2

)

, if 0 ≤ g ≤ n− 3,

n(n+1)
2

, if n− 2 ≤ g ≤ n+ 1.

Lemma 5.7. For n + 1 ≥ r ≥ 2, n ≥ 3, κ(FQn;K1,r) ≤ ⌈n+1
2
⌉ and κs(FQn;K1,r) ≤

⌈n+1
2
⌉.

Proof. Since κs(FQn;K1,r) ≤ κ(FQn;K1,r), we only prove κ(FQn;K1,r) ≤ ⌈n+1
2
⌉. Let

u = 000 · · ·0 be a vertex in Qn. Then NFQn
(u) = {u} ∪ {ui|1 ≤ i ≤ n}.

Case 1. n ≥ 3 is odd. For 1 ≤ i ≤ n−1
2
, let Si = {u2i−1, u2i, u2i−1,2i}∪{u2i−1,2i,2i+j|1 ≤

j ≤ r−2} with r ≤ n and Si = {u2i−1, u2i, u2i−1,2i}∪{u2i−1,2i,2i+j|1 ≤ j ≤ n−2}∪{u2i−1,2i}

with r = n + 1. Let Sn+1

2

= {un, u, un} ∪ {un,j|1 ≤ j ≤ r − 2}. Noting that un = un, we

also know that Si induces a star K1,r with the center u2i−1,2i for 1 ≤ i ≤ n−1
2

and with

the center un for i = n+1
2

respectively. Let S = ∪
n+1

2

i=1 Si. Then NFQn
(u) ⊆ S, and u is an

isolated vertex of FQn − S. We can see that vertex u1,n /∈ Si for each 1 ≤ i ≤ n+1
2
. So

the S ′
is for 1 ≤ i ≤ n+1

2
form a K1,r-structure cut of FQn.

Case 2. n ≥ 4 is even. For r ≤ n, let Si = {u2i−1, u2i, u2i−1,2i} ∪ {u2i−1,2i,2i+j|1 ≤

j ≤ r − 2} when 1 ≤ i ≤ n
2
and Sn+2

2

= {u} ∪ {uj |1 ≤ j ≤ r}. For r = n + 1, let

Si = {u2i−1, u2i, u2i−1,2i} ∪ {u2i−1,2i,2i+j|1 ≤ j ≤ n − 2} ∪ {u2i−1,2i} when 1 ≤ i ≤ n
2
and

Sn+2

2

= {u, u1, u1}∪ {u1,j |2 ≤ j ≤ n}. Then Si induces a star K1,r with the center u2i−1,2i

for 1 ≤ i ≤ n
2
, and Sn+2

2

also induces a star K1,r with the center u for r ≤ n and with the

center u1 for r = n + 1 respectively. Let S = ∪
n+2

2

i=1 Si. We can see that u is an isolated

vertex in FQn − S and u1,n belongs to FQn − S. So S forms a K1,r-structure cut of

FQn.

Remark 5.8. For the K1,r-structure cut Si’s, 1 ≤ i ≤ ⌈n+1
2
⌉, in the proof of Lemma 5.7,

any pair of distinct Si and Sj are disjoint for n ≥ 6 and r ≤ n. A proof is presented here.

Recall that Si = {u2i−1, u2i, u2i−1,2i} ∪ {u2i−1,2i,2i+j|1 ≤ j ≤ r − 2} for 1 ≤ i ≤ ⌊n
2
⌋. For

1 ≤ m < k ≤ ⌊n
2
⌋, {2m− 1, 2m} ∩ {2k − 1, 2k} = ∅, and thus {2m − 1, 2m, 2m+ j1} 6=

{2k−1, 2k, 2k+j2} for 1 ≤ j1, j2 ≤ r−2, which implies that Sm∩Sk = ∅. We now consider
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Sm and S⌈n+1

2
⌉ for 1 ≤ m ≤ ⌊n

2
⌋. If n is odd, Sn+1

2

= {un, u, un, un,j|1 ≤ j ≤ r − 2}, and

1 < 2m < n. Since un,j agrees with u in exactly 2 positions, and u2m−1,2m,2m+j1 agrees

with u in exactly n− 3 positions, un,j 6= u2m−1,2m,2m+j1 for n > 5. So Sm ∩ S⌈n+1

2
⌉ = ∅. If

n is even, Sn

2
+1 = {u, uj |1 ≤ j ≤ r}, and Sm ∩ Sn

2
+1 = ∅ for n ≥ 6.

For r = n + 1 and n ≥ 6, we have a unique pair of intersecting K1,r-stars in the

Si’s, that is, S1 ∩ Sn+2

2

= {u1, u1,2}. For 3 ≤ n ≤ 5, however, there are many pairs of

intersecting K1,r-stars in the Si’s.

In order to describe our main result about n-dimensional folded hypercube FQn, we

define the function g(r) as follows.

g(r) =















g1(r) = max{6,
r + 5

2
,
r2 + 4r − 5

8
}, if r ≥ 3 is odd, (5.1)

g2(r) = max{6,
r2 + 2r − 8

8
,
r + 6

2
,
r2 + 6r

12
}, if r ≥ 2 is even. (5.2)

We find that g1(r) and g2(r) are both increasing functions. Table 2 lists the values of g(r)

for 2 ≤ r ≤ 20. We also have the following monotonicity and integrality of function g(r).

Table 2. The values of g(r) for 2 ≤ r ≤ 20.

r 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

g(r) 6 6 6 6 6 9 28
3

14 14 20 20 27 27 35 35 44 44 54 54

Lemma 5.9. g(r) is an increasing function for r ≥ 2 and integral except at r = 8, and

for odd r ≥ 9,

g(r) = g(r + 1) =
r2 + 4r − 5

8
. (5.3)

Proof. By Eq. (5.1), we find that

g1(r) =







6, if 3 ≤ r ≤ 5 is odd,

r2+4r−5
8

, if r ≥ 7 is odd;

and by Eq. (5.2),

g2(r) =



















6, if 2 ≤ r ≤ 6 is even,

r2+6r
12

, if r = 8 ,

r2+2r−8
8

, if r ≥ 10 is even.

So, we have

g1(r) =
r2 + 4r − 5

8
, for odd r ≥ 7,

g2(r) =
r2 + 2r − 8

8
, for even r ≥ 10.

15



Moreover, if r1 ≥ 9 and r2 = r1 + 1, then

r21 + 4r1 − 5

8
=

r22 + 2r2 − 8

8
,

which means that for odd r ≥ 9, Eq. (5.3) holds. Together with Table 2, we know that

g(r) is a monotonically increasing function for r ≥ 2.

We now only prove that g(r) is integral for r ≥ 9. Let r + 1 = 2k ≥ 10. Then

g(r) = g(r + 1) = g2(2k) =
(2k)2+2(2k)−8

8
= (k+2)(k−1)

2
, which is an integer.

Lemma 5.10. For all integers r ≥ 2, g(r) ≥ r.

Proof. We have

g1(r)− r = 6− r > 0, for 3 ≤ r ≤ 5;

g1(r)− r =
r2 + 4r − 5

8
− r =

1

8
(r + 1)(r − 5) > 0, for r ≥ 7.

Therefore, if r ≥ 3 is odd , then g1(r)− r > 0.

On the other hand,

g2(r)− r = 6− r ≥ 0, for 2 ≤ r ≤ 6;

g2(8)− 8 =
82 + 48

12
− 8 =

4

3
> 0;

g2(r)− r =
r2 + 2r − 8

8
− r =

1

8
(r2 − 6r − 8) > 0, for r ≥ 10.

So, if r ≥ 2 is even, then g2(r)− r ≥ 0.

Lemma 5.11. If integers r ≥ 2 and n > g(r), then we have κ(FQn;K1,r) ≥ ⌈n+1
2
⌉ and

κs(FQn;K1,r) ≥ ⌈n+1
2
⌉.

Proof. Since κs(FQn;K1,r) ≤ κ(FQn;K1,r), it suffices to show that κs(FQn;K1,r) ≥

⌈n+1
2
⌉. Suppose to the contrary that κs(FQn;K1,r)< ⌈n+1

2
⌉. Then there are a set F of

subgraphs of FQn that each is a star of at most r leaves so that |F | ≤ ⌈n+1
2
⌉ − 1 and

FQn − F is disconnected. Let C be a smallest component of FQn − F and k := |V (C)|.

We consider following three cases.

Case 1. k = 1.

Let C = {u}. By Lemma 5.3, |NFQn
(u) ∩ V (K1,r′)| ≤ 2 for each member K1,r′ in F ,

0 ≤ r′ ≤ r. Thus

n + 1 = |NFQn
(u)| ≤

∑

K∈F

|NFQn
(u) ∩ V (K)| ≤ 2|F |

≤ 2(⌈
n+ 1

2
⌉ − 1) ≤ 2(

n+ 2

2
− 1) = n,

a contradiction.

Case 2. 2 ≤ k ≤ r
2
+ 1.

16



Since n > g(r) ≥ r+5
2
, 2 ≤ k ≤ r

2
+ 1 ≤ n − 2. For n ≥ 7, by Lemma 5.5, we have

|NFQn
(C)| ≥ (n+1)k−2(k−1)−

(

k−1
2

)

. By Lemma 5.4, |NFQn
(C)∩V (K1,r′)| ≤ 2(k−1)

for each member K1,r′ in F , 0 ≤ r′ ≤ r. We have

(n+ 1)k − 2(k − 1)−
(

k−1
2

)

≤ |NFQn
(C)| ≤ 2(k − 1)|F | ≤ 2(k − 1)(⌈

n+ 1

2
⌉ − 1)

≤ (k − 1)n,

which implies that n ≤ (k−2)(k+1)
2

. If r is even, then n ≤ r2+2r−8
8

, contradicting n >

max{6, r
2+2r−8

8
, r+6

2
, r2+6r

12
} = g(r). If r is odd, then n ≤ r2−9

8
< r2+4r−5

8
≤ g(r), a

contradiction.

Case 3. k ≥ r+1
2

+ 1.

If r is even, then k ≥ r
2
+ 2. Since n > g(r) ≥ max{6, r+6

2
}, 2 ≤ r

2
+ 1 ≤ n − 3, by

Lemma 5.6 we have

κ r

2
+1(FQn) = (

r

2
+ 2)(n+ 1)− 2(

r

2
+ 1)−

( r

2
+1
2

)

=
−r2

8
+

rn

2
+ 2n−

3r

4
.

We also have that

|V (F )| ≤ (1 + r)|F | ≤ (1 + r)(⌈
n+ 1

2
⌉ − 1) ≤

1

2
(r + 1)n. (5.4)

Since FQn − F is disconnected, and C is a smallest component of FQn − F and

|C| = k ≥ r
2
+ 2, we have |V (F )| ≥ κ r

2
+1(FQn), so

1

2
(r + 1)n ≥

−r2

8
+

rn

2
+ 2n−

3r

4
,

which implies that n ≤ r2+6r
12

, contradicting n > max{6, r
2+2r−8

8
, r+6

2
, r2+6r

12
} = g(r).

If r is odd and n > g(r) ≥ max{6, r+5
2
}, then 2 ≤ r+1

2
≤ n − 3. By Lemma 5.6 we

have that

κ r+1

2

(FQn) = (
r + 1

2
+ 1)(n+ 1)− 2(

r + 1

2
)−

( r+1

2

2

)

=
−r2

8
+

(r + 3)n

2
−

r

2
+

5

8
. (5.5)

Since FQn − F is disconnected, and C is a smallest component of FQn − F and |C| =

k ≥ r+1
2

+ 1, we have that |V (F )| ≥ κ r+1

2

(FQn). From Ineq. (5.4) and Eq. (5.5) we also

have
1

2
(r + 1)n ≥ |V (F )| ≥

−r2

8
+

(r + 3)n

2
−

r

2
+

5

8
,

which implies that n ≤ r2+4r−5
8

, contradicting n > max{6, r+5
2
, r2+4r−5

8
} = g(r).

From Lemma 5.10 we know that the condition of Lemma 5.11 implies that of Lemma

5.7, and thus have the following main result of this section.

Theorem 5.12. If r ≥ 2 and n > g(r), then κ(FQn;K1,r) = κs(FQn;K1,r) = ⌈n+1
2
⌉
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6 Conclusion

For n-dimensional hypercubes Qn and folded hypercubes FQn, in this paper we have

showed that for all integers r ≥ 2 and n > f(r), κ(Qn;K1,r) = κs(Qn;K1,r) = ⌈n
2
⌉,

and for all integers r ≥ 2 and n > g(r), κ(FQn;K1,r) = κs(FQn; K1,r)= ⌈n+1
2
⌉; see

Theorems 3.13 and 5.12. In particular, both functions f(r) and g(r) have simple expres-

sions: f(r) = f(r + 1) = r2+4r+3
8

and g(r) = g(r + 1) = r2+4r−5
8

for odd r ≥ 9. But for

2 ≤ r ≤ 8, f(r) and g(r) are piecewise functions with 5 ≤ f(r) ≤ 31
3
and 6 ≤ g(r) ≤ 28

3
.

Especially, for low dimensional hypercubes Qn, we also obtain for all integers 4 ≤ r ≤ 6,

κ(Qn;K1,r) = κs(Qn;K1,r) = ⌈n
2
⌉ where n ≥ r. For 2 ≤ r ≤ 3, Lin et al. [6] has de-

termined κ(Qn, K1,r) and κs(Qn, K1,r). Our results solved partly the open problem of

determining K1,r-structure connectivity of Qn and FQn for general r. Setting r = 2, 3 in

Theorem 5.12, we obtain the results given by Sabir et al. in [11]. But for the cases that

7 ≤ r ≤ n ≤ f(r) and 1 ≤ r − 1 ≤ n ≤ g(r)(r ≥ 2;n ≥ 3), the open problem has not

been solved yet.

From the above facts obtained already we can propose the following general conjec-

tures:

Conjecture 6.1. For any integers n ≥ r ≥ 2 and n ≥ 3, κ(Qn;K1,r) = κs(Qn;K1,r) =

⌈n
2
⌉.

Conjecture 6.2. For any integers n+1 ≥ r ≥ 2 and n ≥ 3, κ(FQn;K1,r) = κs(FQn;K1,r) =

⌈n+1
2
⌉.
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